Macrocyclization strategies for cyclic peptides and peptidomimetics

Clément Bechtler^a and Christina Lamers^a*

Department Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, 4056 Basel, Switzerland.

Supplementary Table S1: Commonly used macrocyclization reactions for peptides. The required reaction partners are listed as well as if they have been reported to work succesfully on-resin, in solution, in a chemoselective way or on unprotected petides, a green tick signifying it has been reported, a red cross that it has not been reported.

	Required	functional groups:				ş	_	
Bond or functional group formed	Reaction partner I (N-terminus)	Reaction partner II (C-terminus)	Reaction	On-resin	In solution	Chemoselecti	Unprotected	Comments
	H ₂ N-	-COOH	Amide coupling	~	~	?	~	
	HNCys-	-COSR	NCL	\checkmark	\checkmark	~	√	
	HNAla-	-COSR	NCL + desulfurisation	\checkmark	\checkmark	\checkmark	\checkmark	
	H ₂ N-	-COSR	aminolysis	?	\checkmark	√	Lys	Other lysine needs to be protected
	H ₂ N-	-COO-Sanger	aminolysis	?	\checkmark	\checkmark	Lys	Other lysine needs to be protected
	H ₂ N-	-COO-Dbz	aminolysis	\checkmark	\checkmark	\checkmark	?	
	N ₃ CH ₂ NH-	-COSCH ₂ PPh ₂	Staudinger	?	\checkmark	\checkmark	?	
Amide	2-amino thioamide-	-COOH	Ag-promoted lactamisation	\checkmark	\checkmark	\checkmark	✓	
	HNCys-	-glycolaldehyde	Thiazolidine formation	?	\checkmark	\checkmark	?	Or sidechain aldehyde
	RONH-	-Ketoacide	КАНА	?	\checkmark	\checkmark	?	Mild conditions
	5-oxaproline-	-Ketoacide	ΚΑΗΑ ΙΙ	?	\checkmark	\checkmark	?	Introduces homoserine, epimerization
	HNSer/Thr-	-COO-salicylaldehyde	Ser/Thr ligation	\checkmark	\checkmark		?	
	H ₂ N-	-соон	Lactam formation, subsequent O-to-N transfer		\checkmark		?	Depsipeptide mediated
	2-OH-6-NO ₂ -benzyl-	-соон	Lacton formation and O-to- N migration		\checkmark			
	H ₂ N- -COOH	<i>tert</i> -butyl-isocyanide and aziridine aldehyde	MCR, disrupted Ugi	\checkmark	\checkmark	?	?	
N-substituted amide	COOH, -NH ₂ , -CHO, -NC	-	MCR, Ugi		\checkmark	?	?	
Amine	H ₂ N- nitrotyrosine	-CHO, -NC	MCR, Ugi-Smiles	√	~	?	?	
	-NH ₂ (Lys)	Diborono-benzene scaffold	Petasis reachtion stapling	\checkmark	\checkmark	?	?	
	H ₂ N-	-CHO	Trapping imine: CN⁻ Strecker Reduction with BH₃CN		\checkmark	\checkmark		
lmino to amino	H ₂ NTrp/His-	-CHO	Trapping imine Pictet- Spengler		\checkmark	\checkmark		
inine to anine	H ₂ N-	-СНО	Intramolecular 4- imidazolidinone formation		\checkmark	\checkmark		CyClick
	NH ₂ -Gly-	Carboxybenzaldehyde on sidechain	Trapping imine with dipolarophiles	\checkmark		\checkmark		
	NH ₂ (Lys)	НСНО	Trapping with Trp or Arg		\checkmark	\checkmark		
Imine	H ₂ N-	-сно	Trapping imine as iminoboronate		\checkmark	~		Introduction of non-natural amino acid; reversible upon stimuli (pH, oxidation, small molecules)
Imine to pyrrole	NH ₂ (Lys)	Furan to diketoene	Ketoenal formation		\checkmark	\checkmark		
Oxime	hydroxylamine	aldehyde	oxime		\checkmark	\checkmark		E- and Z-isomer
-S-S-	Thiol	Thiol	oxidation	\checkmark	\checkmark	\checkmark		
-S-CH ₂ -S-	Thiol	Thiol	Methylene thioacetal formation	?	\checkmark	✓	\checkmark	
-S-	Thiol	Bromo/chloroacetate	Attached to Lys-sidechain or N-terminal amino group	~	~	√	~	Primary amines have to be protected; can be applied on in vitro techniques
	Thiol	alkene	Thiol-ene	\checkmark	\checkmark	\checkmark	\checkmark	Alkene as acryloyl, compatible on phage

	Thiol	alkene	Radical thiol-ene	\checkmark	\checkmark	\checkmark		Alkene as allyloxy PG or non- natural AA
	Thiol	alkyne	Radical thiol-yne		\checkmark	\checkmark		Generates E- and Z- isomer
	Thiol	DHA	Michael-addition	\checkmark	~	~		
	Thiol	scaffolds		<	~	~		
	Alcohol	Aryl boronic acid	Evans-Chan-Lam coupling	?	\checkmark	\checkmark	?	Also for aryl amines or aryl thioethers
C-0	Alcohol	Carbonate	Tsuji-Trost reaction	?	~	~	<	
	Alcohol	Aryl bromide	Metal-photoredox-catalsed reactions	?	\checkmark	\checkmark	?	
	Organometal, alkene	Halide	Traditional cross coupling	~	~	~	?	Suzuki couplings on unprotected peptides reported, but usually protected
C-C	Alkene, allyl, aryl	Aryl, aryl halide	CH activation – cross coupling	?	\checkmark	\checkmark	?	
	Acrylate	C-terminal carboxylic acid	Ir-photocatlysed reaction	?	\checkmark	\checkmark	\checkmark	
	Alkyne	Alkyne	Glaser-Hay coupling	\checkmark	\checkmark	\checkmark	?	
C=C	Alkene	Alkene	RCM	~	\checkmark	\checkmark	\checkmark	Also suitable for DNA-enocded libraries
C≡C	Alkyne	Alkyne	RCAM	<	~	~	?	
1,4- Disubstiuted triazole	Alkyne	Azide	CuAAC	~	~	~	~	
1,5- Disubstiuted triazole	Alkyne	Azide	RuAAC	~	√	~	?	
1,5- Disubstiuted triazole	Alkyne	Azide	Metal-free Dipolar cycloaddition	~	?	\checkmark	?	

Supplementary Table S2: Selection of examples in which peptide macorcyclizations were used to improve biological properties of peptides. AT₂ = Angiotensin II receptor type 2, AT₁ = Angiotensin II receptor type 1, OXTR = oxytocin receptor, IR = insulin receptor, pAkt = phosphorylated Akt, eIF4E = eukaryotic translation initiation factor 4E, UTR = urotensin II receptor.

group or bond formed	Reaction	Aim	Change of	Target	Result	Comment	Reference
	Lactam coupling head- to-tail	β-hairpin as smaller α-helix mimetic	Secondary structure (α- helix)	p53-HDM2	IC ₅₀ 0.53 μM (8 AA β-hairpin) vs 1.1 μM (15 AA α -helix)		1
	Lactam sidechain-to- sidechain	Smallest α-helix (pentapeptide)			Induction of α -helix in water		2
Lactam	NCL	Improve proteolytic stability	Free N- and C- terminus	α-conotoxin MII derivatives on nicotinic acetylcholine receptor	Improved proteolytic stability (20%)	Preserve full activity (1.3 $\mu M)$	3
	Aldehyde + N-term. Cys	Synthesis natural compound		Lugdunin	S. aureus MIC 1.5 μg/mL		4
	Serine ligation	Synthesis natural compound		Daptomycin	First total synthesis		5
	Scaffold	PPI	Linear peptide	TNFα:TNFα receptor	3.1 μM (ELISA) K _D 0.45 μM	scaffold essential for affinity (KD >10 μM)	6
Oxime		Affinity and proteolytic stability	Linear peptide	p53 HDM2/X	IC ₅₀ HDM2 110 nM; HDMX 340 nM (linear: 1.5 μM; 7.5 μM)	10- to 15- fold higher stability, 40% higher helicity	7
Disulfide	Oxidation of Cysteines		Linear vs lactam vs disulfide cyclized	ERα	K_i 0.17 μM vs 0.22 μM vs 0.025 μM	Stabilized helicity	8
	TBAF-mediated thioacetalization	Selectivity	Linear peptide	AT ₂	selectivity over AT ₁ increased from 0.5-fold to 10-fold	Change of affinity strongly dependent on linker length;	9
Thioacetal	CH ₂ I ₂ -mediated thioacetalization		Disulfide	OXTR	6-fold decrease in affinity	only weak decrease in affinity, serum stability increased 2.5-fold	10
	CH ₂ I ₂ -mediated thioacetalization	Affinity and serum stability	Disulfide	IR	2-fold decrease in pAkt signalling, but strongly increased serum stability		11
Thiosthor	Scaffold	Activity, helicity	Linear vs stapled peptide	Mdm2/Mdmx	Mdm2: IC ₅₀ 57 nM vs 5.4 nM Mdmx: IC ₅₀ 1800 nM vs 14 nM	Increased cell permeability of stapled peptides	12
moether	Photo controllable scaffold	Activity, helicity	Linear vs trans vs cis	Bcl-xl	K _D 134 nM vs 825 nM vs 42 nM	Opportunity to activate apoptotic process under light control	13
C-C single bond	C(sp³)–H activation- mediated macrocyclization	Binding, stability	Linear peptide	Integrins	>100-fold increased proteolytic stability	When applied to RGD-containing peptides: binding to αvβ3 integrin- overexpressing cells strongly increased	14)
	RCM	Affinity	Linear peptide	elF4E	6-fold increase in affinity	Affinity dependent on ring size	15
Alkene	RCM	Activity, stability	Linear peptide	Bcl-xl	K _D 154 nM vs 69 nM; stability 60 fold improved	intramolecular H-bond mimetic	16
	RCM	Affinity, helicity	Linear peptide	p53 MDM2/X	K _i (MDM2) 14 nM vs 1 nM, K _i (MDX) 47 nM vs 7 nM		17

		Insulin Activity	Disulfide	IR	Cis-Isomer showed increased efficacy in mice compared to native insulin	Binding of trans-isomer to IR (A and B) 50-fold reduced	18
Alkyne	RCAM	Affinity	Linear peptide	Rab8a	>10-fold increase in affinity	Affinity strongly dependent on linker lenght	19
1,4-substituted	CuAAC	Affinity, helicity	Linear peptide	BCL9 β-catenin	K _i 0.6 μM vs 0.13 μM; Helicity 44% vs 90%	improved stability	20
1,2,3-triazole	CuAAC	Activity	Disulfide		Equipotent as the disulfide in rat model for neuropathic pain	Drastically increased plasma stability	21
	RuAAC	Affinity	Disulfide	UTR	Maintained affinity	1,4-substituted triazole analogues lost affinity	22
1,5-substituted 1,2,3-triazole	RuAAC	Inhibitory activity, hepatic stability	Disulfide	Set of proteases	Reduced inhibition 5-100-fold compared to disulfide; hepatic stability of triazoles increased >2 - >6-fold		23

Supplementary Table S3: Example reaction conditions used for in solution RCM for peptides. stochi. = stochiometric, TCE = 1,1,2-trichloroethane, TFE = 1,1,1-trifluoroethanol, rt = room temperature

Substrate conc.	Catalyst	Catalyst loading	Solvent	Т (°С)	other conditions	t	Yields	workup	Comment	Ref.
5 mM	Grubbs I	20%	CHCl ₃	25 °C		3 -4 h	85-90%			24
5 mM	Hoveyda-Grubbs I	2.50%	DCM	40 °C		20 h	85%			25
10 mM	Hoveyda-Grubbs I	5%	DCM	40 °C (reflux)		24 h	87%			26
2.5 mM	Grubbs II	stochi.	TCE/DMF				67%			27
7 mM	Grubbs I	20%	DCM	rt	dry, degassed	48 h	40%			28
0.6 mM	Grubbs II	10%	DCM	reflux	dry	24 h	9% (overall: SPPS, cleavage, macrolactamizstion, RCM)	Removed solvent	Gave specifically cis alkene	29
4 mM	Grubbs II	15-20%	DCM	rt		6-7.5 h	42-52%		Catalyst added in two portions, second portion after 2- 3 h	30
10 mM	Hoveyda-Grubbs II	20%	TFE/DCM (4:1)	rt		48 h	20-30%	Removed solvent, purified by HPLC		31

Substrate conc. ⁺	Catalyst	Catalyst loading	Additives (eq)	Solvent	т (°С)	Other conditions	t	Yields	Workup	Comment	Ref.
	Grubbs II	15%		DCM	100 °C		75 min				32
82 mM	Hoveyda- Grubbs II	20%		DCM	100 °C	μW (300 W)	1 h	29%		Was essential to change from chlorotritiyl to HMBA resin	33
	Hoveyda- Grubbs II	15%		DCM/DMF	100 °C	μW (120 W)	2 h	7 - 16%			34
5.5 mM	Grubbs II	18%	2,6- Dichlorotoluene (3.6 eq)	TCE	reflux	N ₂	16 h	45		Mixture of E/Z (9%/37%)	35
33.3 mM	Hoveyda- Grubbs*	200 g/mol (x2)		TCE	50 °C		overnight				36
13 mM	Grubbs I	40%		DCM	rt	Ar	48 h				37
24 mM	Grubbs II	20%	LiCl (0.8 eq.)	DCM/DMF (95/5)	100 °C	μW (100 W)	2 h	95%		RCM was unsuccesful on full length peptide, needed to be done on truncated version which was afterwards elongated, 3:1 E:2	38
33.3 mM	Grubbs II	10%	LiCl (4 eq.)	DCM:DMF (4:1)	40 °C, reflux	dry, degassed	48 h	22% (overall: SPPS, RCM, cleavage)	Washed with DMSO for 12 h after RCM, filtration, washed with DCM, MeOH		29
	Hoveyda- Grubbs II			DCE	50 °C		8 h		Washed with DMF, DCM		17
	Grubbs II	20%	LiCl	DCM	100 °C	μW (60 W)	1 h				39
24 mM	Grubbs II	20%	LiCl (0.8)	DCM:DMF (19:1 or 20:1)	100 °C	μW (80 - 100 W)	1 - 2 h	100%			40
	Hoveyda- Grubbs II	30%		DCM:DMF (4:1)	100 °C	μW (100 W)	2 h	26% (crude)			41
	Hoveyda- Grubbs II	20-35%		TFE:DCM (4:1)	rt		48 h	20-30% (overall, convsersion > 90%)	Wash with DMSO:DMF (1:1) overnight	Reaction on Novapeg resin required only 20% catalyst, on Wang resin 35%	31

Supplementary Table S4: Example reaction conditions used for on resin RCM for peptides. ⁺ = nominal concentration (resin loading/solvent volume), DCE = 1,2-dichloroethane, TCE = 1,1,2-trichloroethane, rt = room temperature, μW = microwave, * = not specified which generation.

Substrate conc.	Cu salt (eq)	Ascorbate (eq)	Additives (eq)	Solvent	т	Other conditions	time	Yield	Workup	Comment	Ref.
1 mM	CuSO ₄ x 5 H ₂ O (3)	6		NH_4CO_3 buffer (0.1 M)	rt	Ar	30 min		pH 2 (TFA), SPE (C18)		42
1.2 M (!)	CuBr (1)	-	DBU (3)	DCM	rt	dry, N ₂	12 h		Washed with 3 M HCl, extracted with DCM		43
0.775 mM	CuSO ₄ x 5 H ₂ O (14)	Large excess		H ₂ O: <i>t</i> BuOH (2:1)	rt		Overnight		Concentrated, lyophilise, C18 HPLC		44
0.5 mM	CuSO ₄ x 5 H ₂ O (14)	13		H ₂ O: <i>t</i> BuOH (2:1)	rt		1 h		HPLC (C12)		45
0.954 mM	CuSO ₄ x 5 H ₂ O (8.4)	8.45		H ₂ O: <i>t</i> BuOH (2:1)	rt		overnight		Concentrated, lyophilise, C18 HPLC (SPE)		46
1 mM	CuBr (0.2)	-	DBU (3)	PhCH₃	110 °C		16 h	70%		Cul gave substantial iodoatriazole adducts	47
0.15 mM	Cul.P(OEt) ₃ (0.31)	-	DIPEA (3)	DCM	rt	Protected from light	42 h	83%			48
0.3 mM	CuSO ₄ x 5 H ₂ O (4.4)	4.4	-	H ₂ O: <i>t</i> BuOH (2:1)	rt		Overnight				49
1 mM	Cu(MeCN) ₄][PF ₆] (1.8)	2.1	Tris- tri(methylazolyl)- amine (2.7)	10 mM Na-Phosphate, pH 8	rt	Protected from light	Overnight				50
10 mM	Cu(MeCN) ₄][PF ₆] (0.05)	-	TBTA (0.05)	DCM	55 °C		12 h	39-79%			51
0.8 mM	CuSO ₄ x 5 H ₂ O (4)	6	-	H ₂ O: <i>t</i> BuOH (1:1)	rt		Overnight				36
10 mg/mL	CuBr (0.01)	-	DBU (0.03)	DCM	rt		6 h				52
1 mM	Cul (2)	-	DIPEA (2), 2,6- lutidine (2)	MeCN	rt	Ar, degassed	12 h				53
0.5 mM	CuSO ₄ (1)	5	THTPA (1)	H ₂ O: <i>t</i> BuOH (1:1) or H ₂ O:TFE (1:1)	rt		< 1 h	13-51%			54
1 mg/mL	CuSO ₄ (1)	1	DIPEA (8)	H ₂ O	rt	Degassed	12 h				22
0.1 mM	Cu(MeCN) ₄][PF ₆] (0.95)	-		THF:MeOH (1:1)	40 °C	Degassed	20 h	64-83%			55
0.5 mM	CuSO ₄ (2)	10	THTPA (2)	DMF/H ₂ O (2:1)	rt		5 min				56,57
0.8 mg/mL	CuSO ₄ x 5 H ₂ O (1)	3	THTPA (1)	H ₂ O: <i>t</i> BuOH (1:1)	rt	N ₂ , degassed		52-92%	Diluted with H ₂ O, lyophilised, HPLC		58
1.5 mM	CuSO ₄ (10)	10	TBTA (10)	H ₂ O: <i>t</i> BuOH (1:1)	rt		12 h		HPLC		59
0.91 mg/mL	CuSO ₄ x 5 H ₂ O (1)	3	THTPA (1)	H ₂ O: <i>t</i> BuOH (1:1)	rt	N ₂	16 h				60
1 mg/mL	CuSO ₄ x 5 H ₂ O (1)	3	THTPA (1)	H ₂ O: <i>t</i> BuOH (1:1)	rt	N ₂	16 h				61
	CuSO ₄ x 5 H ₂ O (1)	3	THTPA (1)	H ₂ O: <i>t</i> BuOH (1:1)	rt	N ₂	15 min - 2 h				62

Supplementary Table S5: Example reaction conditions used for solution CuAAC for peptides. TFE = 1,1,1-trifluoroethanol, TBTA = tris[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]amine, THTPA = tris(3-hydroxypropyltriazolylmethyl)amine, rt = room temperature.

	CuSO ₄ x 5 H ₂ O (1)	3	THTPA (1)	H ₂ O: <i>t</i> BuOH (1:1)	rt	N ₂ , degassed	16 h				63
0.01 mM	CuSO ₄ (4)	4	-	buffer pH 8 (250 mM Na borate, 1M NaCl)	60 °C		30 min				64
1 mM	CuBr (0.8)	-	-	PhCH ₃	Reflux	Ar	Overnight	43%	Celite filtration, DCM wash of filter, flash column chromatography		65.
1.1 mM	Cul.P(OEt) ₃ (1.5)	-	-	DCM	rt	Protected from light	5 days	75%	Solvent removal, flash chromatography		66
1 mM	Cu(MeCN) ₄][PF ₆] (1.5)	-		PhCH _{3/} MeOH (4:1)	rt	N ₂	24 h	0-46%	Solvent removal, flash chromatography	Yield depended on chain length of employed azide	67
0.35 mM	CuSO ₄ (2)	10	THTPA (10)	H ₂ O	37 °C	N ₂	3 h	45-55%	Monitored by HPLC, purification by HPLC		23
1 mg/mL	CuSO ₄ x 5 H ₂ O (1)	1	DIPEA (8)	H ₂ O	rt	Ar, degassed	Overnight	7.5- 12.8% (overall)	Lyophilisation, HPLC prufication by HPLC		68
	CuSO ₄ x 5 H ₂ O (2)	3	THTPA (1) for some	H ₂ O: <i>t</i> BuOH (1:1)	rt	N ₂ ,degassed	overnight		SPE, HPLC purification		69
2 mM	CuSO ₄ x 10 H ₂ O (2.5)	10		H ₂ O: <i>t</i> BuOH (1:1.5)			overnight		Removal tBuOH, filtration, HPLC purifcation		70_
1 mM	CuBr (0.2)	-	DBU (3)	PhCH₃	reflux	Ar, degassed	16 h	36-56%	Celite filtration, DCM wash of filter, flash column chromatography	Head-to-tail, tetrapeptide	71
0.2 mM	Cul (2)	-	TBTA (2), DIPEA (2), 2,6-lutidine (2)	MeCN	rt	Ar, degassed	48 h		Removed solvent, HPLC purification	Head-to-tail, tetrapeptide	72
1 mM	Cul (0.33)	-	DIPEA (3), 2,6- lutidine (2)	MeCN:THF (4:1)	rt	Degassed	14 h	57-92%	Filtration, removal of solvent, HPLC purification	Head-to-tail, pentapeptide	73
	CuBr (1)	1	DIPEA (10), 2,6- lutidine (10)	DMF:H ₂ O	rt		18 h		Washed with DMF, DCM		74

Substrate conc. [†]	Cu salt (eq)	Ascorbate (eq	Additives (eq)	Solvent	т	Other conditions	Time	Yield	Workup	Ref.
15 μL/mg resin	Cul (2)	-	DIPEA (50 eq)	THF			16 h	76%		75
625 mL/mmol	Cul (0.5)	1	2,6-Lutidine (2 eq)	NMP/H ₂ O (4:1)			48 - 96 h	8.4%		76
20 mg/mL	CuBr (1)	1	2,6-Lutidine (10 eq), DIPEA (10 eq)	DMSO	rt	Degassed	16 h			77
	CuBr	yes	2,6-Lutidine, DIPEA	DMF/MeCN	rt		8 h	22% (overall)		78
	CuBr (1)	3	2,6-Lutidine (10 eq), DIPEA (10 eq)	DMF/MeCN (10/3)	rt	Degassed	6 h	20%- 75%		79
	Cul (2)	2	DIPEA (3)	DMF	rt		Overnigh t			36
	[Cu(CH ₃ CN) ₄] [PF ₆] (1)	-	TBTA (1), DIPEA (2)	DMF			24 h			80
	Cul (1.5)	7 (as ascorbic acid)	Piperidine (20 vol%)	DMF	rt	Light protected	15 h		Wash with 5% sodium diethyldithiocarbaamte, 5% DIEPA in DMF, MeOH, DMF, NMP	81

Supplementary Table S6: Example reaction conditions used for on-resin CuAAC for peptides. TBTA = tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine, [†] = nominal concentration (resin loading/solvent volume), rt = room temperature.

Supplementary Table S7: Example reaction conditions used for in solution RuAAC for peptides. cod = 1,5-cycloocatadien, rt = room temperature.

Substrate conc.	Catalyst	Catalyst loading	Solvent	т	Other conditions	Time	Yield	Workup	Comment	Ref.
1.9 mM	[Cp*RuCl]₄	3.75%	DMF	115 °C	μW (200 W)	30 min	10%	Removal of DMF in vacuo, extraction DCM/water, silica column chromatography followed by RP-8	Desired product only minor, major product correct m/z, but no symmetry in NMR> probably 1,4- analogue	82
5 mM	[Cp*RuCl] ₄	30%	THF/MeOH	50 °C	-	24 h	40%			83
5 mM	[Cp*RuCl] ₄	15%	THF/MeOH (95:5)	50 °C	N ₂	24 h	14-68%	Removal of solvent, flash chromatography		84
3.1 mM	Cp*RuCl(cod)	50%	DMF	80 °C	dry	18 h	3.4-7.0% (overall: SPPS, RuAAC, deprotection)	Addition of DCM, washed organic phase with H ₂ O+0.05% TFA, removal of solvent, redissolved in H ₂ O/MeCN (1:1)+0.05% TFA, lyophilised	Sidechain protected peptide	85

Substrate conc. [†]	Catalyst	Catalyst loading	Solvent	т	Other conditions	Time	Yield	Workup	Ref.
200 mM	Cp*RuCl(cod)	3.75%	DMF	60 °C	Dry, degassed, Ar	6 h		Wash with DMF, MeOH, DCM	22
< 12.5 mM	Cp*RuCl(cod)	30%	DMF	60 °C	μW (30 W)	5 h	2.1% (overall)	Wash with MeOH, 0.5% dietyhldithiocarbamate in DMF, DMF, DCM	68
25 mM	Cp*RuCl(cod)	15%	DMF	70 °C	Dry, degassed	1 h	8-21%	Monitored by IR, continued with Fmoc-deprotection	86
	Cp*RuCl(cod)	50%	DMF	60 °C	μW (30 W), N_2	3 h		Wash with MeOH, 2% dietyhldithiocarbamate in DMF, DMF	69
75 mM	$Cp*RuCl(PPh_3)_2$		DMF	65 °C	μW, degassed, Ar	2.5 h		Wash with DMF, Et ₂ O	70

Supplementary Table S8: Example reaction conditions used for on-resin solution RuAAC for peptides. + = nominal concentration (resin loading/solvent volume), cod = 1,5-cycloocatadien

1 R. Fasan, R. L. A. Dias, K. Moehle, O. Zerbe, J. W. Vrijbloed, D. Obrecht and J. A. Robinson, *Angew. Chemie - Int. Ed.*, 2004, **43**, 2109–2112.

- 2 N. E. Shepherd, H. N. Hoang, G. Abbenante and D. P. Fairlie, J. Am. Chem. Soc., 2005, 127, 2974–2983.
- 3 R. J. Clark, H. Fischer, L. Dempster, N. L. Daly, K. J. Rosengren, S. T. Nevin, F. A. Meunier, D. J. Adams and D. J. Craik, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 13767–13772.
- 4 A. Zipperer, M. C. Konnerth, C. Laux, A. Berscheid, D. Janek, C. Weidenmaier, M. Burian, N. A. Schilling, C. Slavetinsky, M. Marschal, M. Willmann, H. Kalbacher, B. Schittek, H. Brötz-Oesterhelt, S. Grond, A. Peschel and B. Krismer, *Nature*, 2016, **535**, 511–516.
- 5 H. Y. Lam, Y. Zhang, H. Liu, J. Xu, C. T. T. Wong, C. Xu and X. Li, J. Am. Chem. Soc., 2013, 135, 6272–6279.
- 6 W. Lian, P. Upadhyaya, C. A. Rhodes, Y. Liu and D. Pei, J. Am. Chem. Soc., 2013, 135, 11990–11995.
- 7 J. M. Smith, J. R. Frost and R. Fasan, *Chem. Commun.*, 2014, **50**, 5027–5030.
- 8 A. M. Leduc, J. O. Trent, J. L. Wittliff, K. S. Bramlett, S. L. Briggs, N. Y. Chirgadze, Y. Wang, T. P. Burris and A. F. Spatola, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 11273–11278.
- 9 S. Lindman, G. Lindeberg, P. A. Frändberg, F. Nyberg, A. Karlén and A. Hallberg, *Bioorganic Med. Chem.*, 2003, **11**, 2947–2954.
- 10 C. M. B. K. Kourra and N. Cramer, *Chem Sci*, 2016, **7**, 7007–7012.
- 11 N. Zheng, P. Karra, M. A. Vandenberg, J. H. Kim, M. J. Webber, W. L. Holland and D. H.-C. Chou, J. Med. Chem., 2019, 62, 11437–11443.
- 12 A. Muppidi, Z. Wang, X. Li, J. Chen and Q. Lin, *Chem. Commun.*, 2011, **47**, 9396–9398.
- 13 S. Kneissl, E. J. Loveridge, C. Williams, M. P. Crump and R. K. Allemann, *Chembiochem*, 2008, **9**, 3046–3054.
- 14 J. Tang, Y. He, H. Chen, W. Sheng and H. Wang, *Chem. Sci.*, 2017, **8**, 4565–4570.
- 15 J. M. Song, E. E. Gallagher, A. Menon, L. D. Mishra and A. L. Garner, Org. Biomol. Chem., 2019, 17, 6414–6419.
- 16 D. Wang, W. Liao and P. S. Arora, Angew. Chemie Int. Ed., 2005, 44, 6525–6529.
- 17 Y. S. Chang, B. Graves, V. Guerlavais, C. Tovar, K. Packman, K. H. To, K. A. Olson, K. Kesavan, P. Gangurde, A. Mukherjee, T. Baker, K. Darlak, C. Elkin, Z. Filipovic, F. Z. Qureshi, H. Cai, P. Berry, E. Feyfant, X. E. Shi, J. Horstick, D. A. Annis, A. M. Manning, N. Fotouhi, H. Nash, L. T. Vassilev and T. K. Sawyer, *Proc. Natl. Acad. Sci. U. S. A.*, 2013, **110**, E3445–E3454.
- 18 B. Van Lierop, S. Chee Ong, A. Belgi, C. Delaine, S. Andrikopoulos, N. L. Haworth, J. G. Menting, M. C. Lawrence, A. J. Robinson and B. E. Forbes, Sci. Rep., 2017, 7, 1–13.
- 19 P. M. Cromm, S. Schaubach, J. Spiegel, A. Fürstner, T. N. Grossmann and H. Waldmann, *Nat. Commun.*, 2016, 7, 11300.
- 20 S. A. Kawamoto, A. Coleska, X. Ran, H. Yi, C. Y. Yang and S. Wang, J. Med. Chem., 2012, 55, 1137–1146.
- 21 A. Gori, C. I. A. Wang, P. J. Harvey, K. J. Rosengren, R. F. Bhola, M. L. Gelmi, R. Longhi, M. J. Christie, R. J. Lewis, P. F. Alewood and A. Brust, *Angew. Chemie Int. Ed.*, 2015, 54, 1361–1364.
- 22 S. Pacifico, A. Kerckhoffs, A. J. Fallow, R. E. Foreman, R. Guerrini, J. Mcdonald, D. G. Lambert and A. G. Jamieson, Org. Biomol. Chem, 2017, 15, 4704–4710.
- A. M. White, S. J. de Veer, G. Wu, P. J. Harvey, K. Yap, G. J. King, J. E. Swedberg, C. K. Wang, R. H. P. Law, T. Durek and D. J. Craik, Angew. Chemie Int. Ed., 2020, 59, 11273–11277.
- 24 H. E. Blackwell and R. H. Grubbs, *Angew. Chemie Int. Ed.*, 1998, **37**, 3281–3284.
- 25 M. Poirier, N. Aubry, C. Boucher, J.-M. Ferland, S. Laplante and Y. S. Tsantrizos, J. Org. Chem., 2005, **70**, 10765–10773.
- 26 N. K. Yee, V. Farina, I. N. Houpis, N. Haddad, R. P. Frutos, F. Gallou, X.-J. Wang, X. Wei, R. D. Simpson, X. Feng, V. Fuchs, Y. Xu, J. Tan, L. Zhang, J. Xu, L. L. Smith-Keenan, J. Vitous, M. D.

Ridges, E. M. Spinelli, M. Johnson, K. Donsbach, T. Nicola, M. Brenner, E. Winter, P. Kreye and W. Samstag, J. Org. Chem., 2006, 71, 7133–7145.

- 27 H. T. Ten Brink, D. T. S. Rijkers and R. M. J. Liskamp, J. Org. Chem., 2006, 71, 1817–1824.
- 28 M. N. Islam, M. S. Islam, M. A. Hoque, T. Kato, N. Nishino, A. Ito and M. Yoshida, Bioorganic Med. Chem., 2014, 22, 3862–3870.
- 29 S. Jiang, P. Li, S.-L. Lee, C. Y. Lin, Y.-Q. Long, M. D. Johnson, R. B. Dickson and P. P. Roller, Org. Lett., 2007, 9, 9–12.
- 30 Ø. Jacobsen, J. Klaveness, O. Petter Ottersen, M. Reza Amiry-Moghaddam and P. Rongved, Org. Biomol. Chem., 2009, 7, 1599–1611.
- Y. E. Bergman, M. P. Del Borgo, R. D. Gopalan, S. Jalal, S. E. Unabia, M. Ciampini, D. J. Clayton, J. M. Fletcher, R. J. Mulder, J. A. Wilce, M. I. Aguilar and P. Perlmutter, Org. Lett., 2009, 11, 4438–4440.
- 32 M. P. C. Mulder, J. A. W. Kruijtzer, E. J. Breukink, J. Kemmink, R. J. Pieters and R. M. J. Liskamp, *Bioorganic Med. Chem.*, 2011, **19**, 6505–6517.
- P. Martín-Gago, R. Ramón, E. Aragón, J. Fernández-Carneado, P. Martin-Malpartida, X. Verdaguer, P. López-Ruiz, B. Colás, M. A. Cortes, B. Ponsati, M. J. Macias and A. Riera, *Bioorganic Med. Chem. Lett.*, 2014, 24, 103–107.
- 34 Z. Amso, R. Kowalczyk, Y.-E. Park, M. Watson, J.-M. Lin, D. S. Musson, J. Cornish and M. A. Brimble, Org. Biomol. Chem., 2016, 14, 6231–6243.
- 35 F. J. Dekker, N. J. De Mol, M. J. E. Fischer, J. Kemmink and R. M. J. Liskamp, Org. Biomol. Chem, 2003, 1, 3297–3303.
- 36 L. Frankiewicz, C. Betti, K. Guillemyn, D. Tourwé, Y. Jacquot and S. Ballet, J. Pept. Sci., 2013, 19, 423–432.
- 37 R. J. Platt, T. S. Han, B. R. Green, M. D. Smith, J. Skalicky, P. Gruszczyński, H. S. White, B. Olivera, G. Bulaj and J. Gajewiak, J. Biol. Chem., 2012, 287, 20727–20736.
- 38 B. Van Lierop, S. Chee Ong, A. Belgi, C. Delaine, S. Andrikopoulos, N. L. Haworth, J. G. Menting, M. C. Lawrence, A. J. Robinson and B. E. Forbes, *Sci. Rep.*, 2017, 7, 17239.
- 39 C. A. MacRaild, J. Illesinghe, B. J. Van Lierop, A. L. Townsend, M. Chebib, B. G. Livett, A. J. Robinson and R. S. Norton, J. Med. Chem., 2009, 52, 755–762.
- 40 S. Chhabra, A. Belgi, P. Bartels, B. J. van Lierop, S. D. Robinson, S. N. Kompella, A. Hung, B. P. Callaghan, D. J. Adams, A. J. Robinson and R. S. Norton, J. Med. Chem., 2014, 57, 9933– 9944.
- 41 R. Kowalczyk, S. H. Yang, M. A. Brimble, K. E. Callon, M. Watson, Y. E. Park and J. Cornish, *Bioorganic Med. Chem.*, 2014, 22, 3565–3572.
- 42 M. Horn, F. Reichart, S. Natividad-Tietz, D. Diaz and I. Neundorf, Chem. Commun., 2016, 52, 2261–2264.
- 43 P. M. Weerawarna, Y. Kim, A. C. Galasiti Kankanamalage, V. C. Damalanka, G. H. Lushington, K. R. Alliston, N. Mehzabeen, K. P. Battaile, S. Lovell, K.-O. Chang and W. C. Groutas, *Eur. J. Med. Chem.*, 2016, **119**, 300–318.
- 44 A. L. C. Isaad, A. M. Papini, M. Chorev and P. Rovero, J. Pept. Sci., 2009, **15**, 451–454.
- 45 V. Celentano, D. Diana, C. Di Salvo, L. De Rosa, A. Romanelli, R. Fattorusso and L. D. D'Andrea, *Chem. A Eur. J.*, 2016, **22**, 5534–5537.
- 46 C. Testa, M. Scrima, M. Grimaldi, A. M. D'Ursi, M. L. Dirain, N. Lubin-Germain, A. Singh, C. Haskell-Luevano, M. Chorev, P. Rovero and A. M. Papini, J. Med. Chem., 2014, 57, 9424– 9434.
- 47 V. D. Bock, R. Perciaccante, T. P. Jansen, H. Hiemstra and J. H. Van Maarseveen, Org. Lett., 2006, 8, 919–922.
- 48 Ø. Jacobsen, H. Maekawa, N.-H. Ge, C. H. G€ Orbitz, P. P. Rongved, O. P. Ottersen, M. Amiry-Moghaddam and J. Klaveness, J. Org. Chem, 2011, 76, 1228–1238.
- 49 S. Cantel, A. Le, C. Isaad, M. Scrima, J. J. Levy, R. D. Dimarchi, P. Rovero, J. A. Halperin, A. Maria D'ursi, A. M. Papini and M. Chorev, J. Org. Chem, 2008, 73, 5663–5674.
- 50 J. H. Park and M. L. Waters, *Org. Biomol. Chem.*, 2013, **11**, 69–77.
- 51 G. Chouhan and K. James, Org. Lett., 2013, 15, 1206–1209.
- 52 Y. Liu, L. Zhang, J. Wan, Y. Li, Y. Xu and Y. Pan, *Tetrahedron*, 2008, **64**, 10728–10734.
- 53 J. H. Van Maarseveen, W. S. Horne and M. R. Ghadiri, Org. Lett., 2005, 7, 4503–4506.
- 54 P. T. Tran, C. Ø. Larsen, T. Røndbjerg, M. De Foresta, M. B. A. Kunze, A. Marek, J. H. Løper, L.-E. Boyhus, A. Knuhtsen, K. Lindorff-Larsen and D. S. Pedersen, *Chem. A Eur. J.*, 2017, 23, 3490–3495.
- 55 M. Strack, É. Billard, D. Chatenet and W. D. Lubell, *Bioorganic Med. Chem. Lett.*, 2017, 27, 3412–3416.
- 56 G. J. J. Richelle, S. Ori, H. Hiemstra, J. H. van Maarseveen and P. Timmerman, *Angew. Chemie Int. Ed.*, 2018, **57**, 501–505.
- 57 G. J. J. Richelle, M. Schmidt, H. Ippel, T. M. Hackeng, J. H. van Maarseveen, T. Nuijens and P. Timmerman, *ChemBioChem*, 2018, **19**, 1934–1938.
- 58 J. legre, P. Brear, D. J. Baker, Y. S. Tan, E. L. Atkinson, H. F. Sore, D. H. O' Donovan, C. S. Verma, M. Hyvönen, H. Hyvönen and D. R. Spring, *Chem. Sci.*, 2019, **10**, 5056–5063.
- 59 L. Zhang, T. Navaratna, J. Liao and G. M. Thurber, *Bioconjug. Chem.*, 2015, 26, 329–337.
- 60 M. M. Wiedmann, Y. S. Tan, Y. Wu, S. Aibara, W. Xu, H. F. Sore, C. S. Verma, L. Itzhaki, M. Stewart, J. D. Brenton and D. R. Spring, Angew. Chemie Int. Ed., 2017, 56, 524–529.

- 61 Y. H. Lau, P. De Andrade, S.-T. Quah, M. Rossmann, L. Laraia, N. Sköld, S. Sköld, T. J. Sum, P. J. E. Rowling, T. L. Joseph, C. Verma, M. Hyvönen, H. Hyvönen, L. S. Itzhaki, A. R. Venkitaraman, C. J. Brown, D. P. Lane and D. R. Spring, *Chem. Sci.*, 2014, **5**, 1804–1809.
- 52 J. legre, N. S. Ahmed, J. S. Gaynord, Y. Wu, K. M. Herlihy, Y. S. Tan, M. E. Lopes-Pires, R. Jha, Y. H. Lau, H. F. Sore, C. Verma, D. H. O' Donovan, N. Pugh and D. R. Spring, *Chem. Sci.*, 2018, **9**, 4638–4643.
- 63 W. Xu, Y. H. Lau, G. Fischer, Y. S. Tan, A. Chattopadhyay, M. De La Roche, M. Hyvö, C. Verma, D. R. Spring and L. S. Itzhaki, *J. Am. Chem. Soc.*, 2017, **139**, 2245–2256.
- 64 Y. Onda, G. Bassi, A. Elsayed, F. Ulrich, S. Oehler, L. Plais, J. Scheuermann and D. Neri, Chem. A Eur. J., , DOI:10.1002/chem.202005423.
- 65 Q. Luo, Y. Tao, W. Sheng, J. Lu and H. Wang, *Nat. Commun.*, 2019, **10**, 1–9.
- 66 F. Tahoori, S. Balalaie, R. Sheikhnejad, M. Sadjadi and P. Boloori, *Amino Acids*, 2014, **46**, 1033–1046.
- 67 J. Zhang, J. Kemmink, D. T. S. Rijkers and R. M. J. Liskamp, Org. Lett., 2011, 13, 3438–3441.
- 68 M. Empting, O. Avrutina, R. Meusinger, S. Fabritz, M. Reinwarth, M. Biesalski, S. Voigt, G. Buntkowsky and H. Kolmar, Angew. Chemie Int. Ed., 2011, 50, 5207–5211.
- 69 S. R. Tala, A. Singh, C. J. Lensing, S. M. Schnell, K. T. Freeman, J. R. Rocca and C. Haskell-Luevano, ACS Chem. Neurosci., 2017, 9, 1001–1013.
- 70 S. Tomassi, A. M. Trotta, C. Ieranò, F. Merlino, A. Messere, G. Rea, F. Santoro, D. Brancaccio, A. Carotenuto, V. M. D'Amore, F. S. Di Leva, E. Novellino, S. Cosconati, L. Marinelli, S. Scala and S. Di Maro, *Chem. A Eur. J.*, 2020, **26**, 10113–10125.
- 71 V. D. Bock, D. Speijer, H. Hiemstra and J. H. Van Maarseveen, Org. Biomol. Chem., 2007, 5, 971–975.
- 72 W. S. Horne, C. A. Olsen, J. M. Beierle, A. Montero and M. R. Ghadiri, *Angew. Chemie Int. Ed.*, 2009, **48**, 4718–4724.
- 73 T. S. Hu, R. Tannert, H. D. Arndt and H. Waldmann, Chem. Commun., 2007, 3942–3944.
- 74 C. Testa, D. D'addona, M. Scrima, A. M. Tedeschi, A. M. D'ursi, C. Bernhard, F. Denat, C. Bello, P. Rovero, M. Chorev and A. M. Papini, *Pept. Sci.*, , DOI:10.1002/pep2.24071.
- 75 M. Roice, I. Johannsen and M. Meldal, *QSAR Comb. Sci.*, 2004, **23**, 662–673.
- 76 V. Goncalves, B. Gautier, A. Regazzetti, P. Coric, S. Bouaziz, C. Garbay, M. Vidal and N. Inguimbert, *Bioorg. Med. Chem. Lett.*, 2007, 17, 5590–5594.
- 77 S. Ingale and P. E. Dawson, Org. Lett., 2011, 13, 2822–2825.
- 78 B. B. Metaferia, M. Rittler, J. S. Gheeya, A. Lee, H. Hempel, A. Plaza, W. G. Stetler-Stevenson, C. A. Bewley and J. Khan, *Bioorganic Med. Chem. Lett.*, 2010, 20, 7337–7340.
- 79 R. A. Turner, A. G. Oliver and R. S. Lokey, *Org. Lett.*, 2007, **9**, 5011–5014.
- 80 C. Ngambenjawong, J. M. B. Pineda and S. H. Pun, *Bioconjug. Chem.*, 2016, 27, 2854–2862.
- 81 R. Kandler, S. Das and A. Nag, *RSC Adv.*, 2021, **11**, 4842–4852.
- 82 M. R. Krause, R. Goddard and S. Kubik, J. Org. Chem., 2011, 76, 7084–7095.
- 83 Y. Zhang, C. Xu, H. Y. Lam, C. L. Lee and X. Li, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 6657–6662.
- 84 W. Wu, Z. Zhang and L. S. Liebeskind, J. Am. Chem. Soc., 2011, 133, 14256–14259.
- 85 C. J. White and A. K. Yudin, *Nat. Chem.*, 2011, **3**, 509–524.
- 86 A. Knuhtsen, C. Whitmore, F. S. Mcwhinnie, L. Mcdougall, R. Whiting, B. O. Smith, C. M. Timperley, A. C. Green, K. I. Kinnear and A. G. Jamieson, Chem. Sci., 2019, 10, 1671–1676.