Supplementary Data

Design, Synthesis and Biological Evaluation of Combretastatin A-4 Sulfamate Derivatives as Potential Anti-Cancer Agents

Leilei Huang^a, Jinwen Huang^{a,b,c*}, Hui Nie^a, Yingzi Li^a, Lixing Song^a and Fanhong Wu^{a,b*}

^a Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China

^b Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai, China ^cKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, CAS, China

* Corresponding authors.

E-mail address: (J. W. H.) email: goldven@sit.edu.cn; (F. H. W.) email: wfh@sit.edu.cn.

Table of Contents	Page	
Experimental Section	S3-S10	
Structure activity relationship discussion on arylsulfatase and tubulin polymeriztion inhibition	S10	
HPLC purity data for Compounds 16a-16j, 17a-17d, 19a, 19b, 20	S11	
Selected ¹ H, ¹⁹ F and ¹³ C NMR Spectra	\$12-\$113	
Selected HRMS and HPLC Spectra	512-5115	
The antiproliferation effect of 16a,16i and CA-4 on six tumor cells	S113-S114	

Scheme 1. The role of steroid sulfatase in hormone regulation.

Experimental Section

Chemistry (general information). All solvents, starting materials and reagents were purchased from Tansoole and used directly without further purification. The reaction was monitored by thin layer chromatography (TLC) using a 0.25 mm pre-coated silica gel plate, and visualized under UV light. The products were purified by flash column chromatography on silica gel, structure characterization and purity assessment were judged by NMR, HRMS and HPLC. Nuclear magnetic resonance (NMR) spectra were collected on a Bruker 500 MHz spectrometer and analysed by MestReNova using residual solvent proton and carbon peaks as reference. High resolution mass spectrometery (HRMS) was recorded on a Waters GCT Premier mass spectrometer. The chemical name was automatically generated using ChemBioDraw Ultra 14.0.

Scheme 2. Synthetic Route of Combretastatin A-4 sulfamate Derivatives. Reagent and conditions: a) $Ph_3CCl(TrCl)$, THF, Et₃N, rt, 2h; b) *n*-BuLi, THF, -78°C, 30mins, then added 13/THF solution, -78-RT, overnight; c) 37% HCl (aq.), toluene, rt, 2h; d) NaH, DMF, RSO₂Cl (R = NH₂, NHMe, N(Me)₂), 0°C to RT, overnight; e) H₂(1 atm), 10% Pd/C, EtOH, rt, 3h.

Scheme 3. Synthetic Route of Combretastatin Sulfamide Derivatives. Reagent and conditions: a) *n*-BuLi, THF, -78°C, 30mins, then added **12e**/THF solution, -78°C-rt, overnight; b) Zn, CH₃COOH, 2h, rt; c) NaH, DMF, NH₂SO₂Cl, 0°C-rt, overnight; d) H₂(1 atm), 10% Pd/C, EtOH, rt, 3h.

General synthesis procedures for Compounds 13 *Representative example*: To a solution of the compound 12a (5.00 g, 32.9 mmol) and trityl chloride (11.00 g, 39.5 mmol) in dry tetrahydrofuran (THF, 20 mL), triethylamine (0.5 mL) was added dropwise, the reaction was stirred for about 2 hours at room temperature until TLC indicated the reaction was completed. Water was added to quench the reaction, extracted with ethyl acetate, the combined organic phase was dried over anhydrous sodium sulfate, filtered and concentrated, the residue was recrystallized in a solvent mixture of ethyl acetate and petroleum ether (1/2, v/v) to give the desired compound 13a (11.20 g).

4-methoxy-3-(trityloxy)benzaldehyde (**13a**): solid, mp 123-124 °C, yield 86%; ¹H NMR (500 MHz, CDCl₃): δ 9.57 (s, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.44-7.22 (m, 15H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.77 (d, *J* = 7.6 Hz, 1H), 3.68 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.8, 158.0, 147.0, 146.3, 145.8, 143.8, 130.6, 129.1, 128.9, 128.0, 127.9, 127.6, 127.4, 127.2, 126.7, 124.6, 122.9, 114.2, 111.1, 110.3, 92.0, 55.7; HR-MS: m/z calcd. for C₂₇H₂₂O₃: 394.1569, found 394.1567(M⁺).

4-(difluoromethoxy)-3-(trityloxy)benzaldehyde (**13b**): solid, 147-148°C, yield 85%; ¹H NMR (500 MHz, CDCl₃): δ 9.92 (s, 1H), 7.54 (s, 1H), 7.45 (d, *J* = 8.1 Hz, 2H), 7.29 (m, 15H), 6.64 (t, *J* = 72.5, 1H, OCF₂H); ¹⁹F NMR (470 MHz, CDCl₃): δ -81.04 (s), -81.26 (s); ¹³C NMR (125 MHz, CDCl₃): δ 146.9, 143.4, 143.2, 128.8, 128.4, 128.0, 128.0, 127.8, 127.3, 121.4 (t, *J* = 194.0, OCF₂H), 82.1; HR-MS: m/z calcd. for C₂₇H₂₀F₂O₃: 430.1380, found: 430.1382(M⁺).

4-ethoxy-3-(trityloxy)benzaldehyde (**13c**): solid, 141-142 °C, yield 88%; ¹H NMR (500 MHz, CDCl₃): δ 9.60 (s, 1H), 7.51 (d, *J* = 6.7 Hz, 6H), 7.40 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.35-7.20 (m, 9H), 7.19 (s, 1H), 6.72 (d, *J* = 8.4 Hz, 1H), 3.84 (q, *J* = 6.9 Hz, 2H), 1.36 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.9, 157.9, 146.0, 144.0, 129.4, 129.0, 127.6, 127.5, 127.0, 123.8, 111.8, 92.3, 64.2, 14.6; HR-MS: m/z calcd. for C₂₈H₂₄O₃: 408.1725, found: 408.1722(M⁺).

3-(trityloxy)benzaldehyde (**13d**): solid, 104-145 °C, yield 90%; ¹H NMR (500 MHz, CDCl₃): δ 9.74 (s, 1H), 7.36-7.27 (m, 15H), 7.24 (d, *J* = 7.1 Hz, 1H), 7.20 (s, 1H), 7.15 (t, *J* = 7.8 Hz, 1H), 6.98 (dd, *J* = 8.1, 1.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 192.1, 157.1, 147.0, 143.7, 137.0, 129.1, 129.0, 128.1, 128.0, 127.5, 127.4, 127.2, 123.0, 121.8, 91.3; HR-MS: m/z calcd for C₂₆H₂₀O₂, 364.1463, found: 364.1465(M⁺).

General synthesis procedures for Compounds 15 *Representative example*: To a pre-cooled (-78 °C) suspension of compound **14** (13.28 g, 25.4 mmol) in dry THF (200 mL) under nitrogen protection, was slowly dropped *n*-butyl lithium cyclohexane solution (1.6 M), the reaction was stirred for 1 hour. Then a solution of compound **13a** (10.00 g, 35.4 mmol) in dry THF (20 mL) was added dropwise to the reaction. Warmed to room temperature and stirred overnight. The solution was poured into ice water, and extracted

with ethyl acetate. The combined organic phase was concentrated *in vacuum*, the residued was redissolved in toluene (80 mL), 37 % HCl (20 mL) was added dropwise, and the solution was stirred for 2h at room temperature until TLC indicated the reaction was completed. Washed with water, the organic phase was dried over anhydrous sodium sulfate, filtered, the filtrate was concentrated *in vacuum*, the residue was purified by flash column chromatography on silica gel (Ethyl acetate-petroleum ether, 3:1) to give the desired compounds **15a** (2.63 g, 33 %) and **15b** (2.38 g,).

(*Z*)-2-methoxy-5-(3,4,5-trimethoxystyryl)phenol (**15a**): oil, yield 33%; ¹H NMR (500 MHz, CDCl₃): δ 6.90 (d, *J* = 1.5 Hz, 1H), 6.77 (dd, *J* = 8.3, 1.4 Hz, 1H), 6.71 (d, *J* = 8.3 Hz, 1H), 6.51 (s, 2H), 6.44 (d, *J* = 12.0 Hz, 1H), 6.39 (d, *J* = 12.0 Hz, 1H), 5.59 (brs, 1H, OH), 3.82 (d, *J* = 2.4 Hz, 6H), 3.67 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 152.9, 147.0, 145.9, 145.3, 132.8, 130.7, 129.6, 129.1, 128.0, 127.3, 121.2, 115.2, 110.5, 106.2, 61.0, 56.0; HR-MS: m/z calcd. for C₁₈H₂₀O₅: 316.1311, found: 316.1315(M⁺).

(*E*)-2-methoxy-5-(3,4,5-trimethoxystyryl)phenol (**15b**): solid, mp 106-107 °C, yield 30%; ¹H NMR (500 MHz, CDCl₃): δ 7.14 (d, *J* = 1.7 Hz, 1H), 6.97 (d, *J* = 8.3 Hz, 1H), 6.92 (d, *J* = 16.0 Hz, 1H), 6.88 (d, *J* = 16.0 Hz, 1H), 6.84 (d, *J* = 8.3 Hz, 1H), 6.71 (s, 2H), 5.61 (brs, 1H, OH), 3.92 (s, 9H), 3.86 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 153.2, 147.2, 146.1, 145.6, 133.0, 131.0, 129.8, 129.4, 128.3, 127.6, 121.4, 115.4, 110.7, 106.5, 61.2, 56.3; HR-MS: m/z calcd. for C₁₈H₂₀O₅: 316.1311, found: 316.1310(M⁺).

(*Z*)-2-(difluoromethoxy)-5-(3,4,5-trimethoxystyryl)phenol (**15c**): oil, yiled 35%; ¹H NMR (500 MHz, CDCl₃): δ 6.99 (d, *J* = 8.3 Hz, 1H), 6.94 (d, *J* = 1.4 Hz, 1H), 6.78 (dd, *J* = 8.3, 1.4 Hz, 1H), 6.58 (d, *J* = 12.0 Hz, 2H), 6.48 (d, *J* = 12.0 Hz, 2H), 6.40 (t, *J* = 74.0 Hz, 1H, OCF₂H), 6.09 (brs, 1H, OH), 3.80 (s, 3H), 3.64 (s, 6H); ¹⁹F NMR (470 MHz, CDCl₃): δ -81.09 (s); ¹³C NMR (125 MHz, CDCl₃): δ 152.9, 147.6, 137.3, 137.0, 136.3, 132.2, 130.7, 128.7, 121.3, 120.5, 118.2, 117.3, 116.1 (t, *J* = 260.0 Hz, OCF₂H), 106.2, 60.9, 55.9; HR-MS: m/z calcd. for C₁₈H₁₈F₂O₅: 352.1122, found: 352.1125(M⁺).

(*E*)-2-(difluoromethoxy)-5-(3,4,5-trimethoxystyryl)phenol (**15d**): solid, mp 121-122 °C, yield 37%; ¹H NMR (500 MHz, CDCl₃): δ 7.17 (s, 1H), 7.09 (d, *J* = 8.3 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 1H), 6.97 (d, *J* = 16.0 Hz, 1H), 6.90 (d, *J* = 16.0 Hz, 1H), 6.72 (s, 2H), 6.54 (t, *J* = 74.0 Hz, 1H, OCF₂H), 5.72 (brs, 1H, OH), 3.91(s, 6H), 3.87 (s, 3H); ¹⁹F NMR (470 MHz, CDCl₃): δ -80.27 (s); ¹³C NMR (125 MHz, CDCl₃): δ 153.5, 147.8, 136.4, 132.9, 129.5, 127.0, 120.3, 119.2, 118.5, 114.3 (t, *J* = 260.0 Hz, OCF₂H), 103.9, 61.1, 56.3; HR-MS: m/z calcd. for C₁₈H₁₈F₂O₅: 352.1122, found: 352.1126(M⁺).

(*Z*)-2-ethoxy-5-(3,4,5-trimethoxystyryl)phenol (**15e**): oil, yield 38%; ¹H NMR (500 MHz, CDCl₃): δ 6.93 (d, *J* = 1.1 Hz, 1H), 6.78 (dd, *J* = 8.5, 0.9 Hz, 1H), 6.72 (d, *J* = 8.2 Hz, 1H), 6.53 (s, 2H), 6.47 (d, *J* = 12.0 Hz, 1H), 6.41 (d, *J* = 12.0 Hz, 1H), 5.58 (brs, 1H, OH), 4.09 (q, *J* = 7.0 Hz, 2H), 3.84 (s, 3H), 3.70 (s, 6H), 1.43 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 191.2, 152.9, 151.4, 146.3, 130.5, 129.7, 129.0, 124.7, 121.2, 115.1, 114.1, 111.4, 111.0, 106.1, 64.9, 56.0; HR-MS m/z ESI-HRMS: m/z calcd. for C₁₉H₂₂O₅: 330.1467, found: 330.1471(M⁺).

(*E*)-2-ethoxy-5-(3,4,5-trimethoxystyryl)phenol (**15f**): solid, mp 117-118 °C, yield 40%; ¹H NMR (500 MHz, CDCl₃): δ 6.92 (d, *J* = 1.1 Hz, 1H), 6.78 (d, *J* = 9.0 Hz, 1H), 6.72 (d, *J* = 8.2 Hz, 1H), 6.53 (s, 2H), 6.46 (d, *J* = 16.0 Hz, 1H), 6.41 (d, *J* = 16.0 Hz, 1H), 5.59 (brs, 1H, OH), 4.12 (q, *J* = 7.0 Hz, 2H), 3.84 (s, 3H), 3.70 (s, 6H), 1.26 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 191.2, 152.9 , 151.4, 146.3, 130.5, 129.6, 129.0, 124.7, 121.2, 115.1, 114.1, 111.4, 111.0, 106.2, 65.0, 56.0; HR-MS: m/z calcd. for C₁₉H₂₂O₅, 330.1467, found: 330.1470(M⁺).

(*Z*)-3-(3,4,5-trimethoxystyryl)phenol (**15g**): oil, yield 36%; ¹H NMR (500 MHz, CDCl₃): δ 7.02 (t, *J* = 8.0 Hz, 1H), 6.84 (brs, 1H, OH), 6.75 (d, *J* = 7.4 Hz, 2H), 6.66-6.43 (m, 3H), 6.42 (s, 1H), 6.37 (d, *J* = 12.0 Hz, 1H), 3.74 (s, 3H), 3.55 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 156.1, 152.6, 138.8, 132.6, 130.2, 130.0, 129.8, 129.4, 120.9, 115.6, 114.3, 106.3, 60.8, 55.8; HR-MS: m/z calcd for C₁₇H₁₈O₄: 286.1205, found: 286.1206(M⁺).

(*E*)-3-(3,4,5-trimethoxystyryl)phenol (**15h**): solid, mp 91-93 °C, yield 38%; ¹H NMR (500 MHz, CDCl₃): δ 7.20 (t, *J* = 7.8 Hz, 1H), 7.07-7.00 (m, 2H), 6.96 (d, *J* = 16.0 Hz, 1H), 6.92 (d, *J* = 16.0 Hz, 1H), 6.79 (d, *J* = 7.9 Hz, 1H), 6.71 (s, 2H), 3.89 (d, *J* = 3.5 Hz, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 156.4, 153.3, 138.8, 137.6, 133.3, 129.8, 128.7, 128.1, 118.9, 114.9, 113.1, 103.7, 61.0, 56.1; HR-MS: m/z calcd for C₁₇H₁₈O₄: 286.1205, found: 286.1206(M⁺).

General synthesis procedures for Compounds 16a-16j, 19a and 19j *Representative example*: To a icebath cooled solution of 15a (1.00 g, 3.2 mmol) in dry N, N-dimethylformamide (DMF, 8 mL) was added sodiun hydride (0.15 g, 6.3 mmol), after stirred at 0 °C for 1 hour, a solution of amino-type sulfonyl chloride (0.82 g, 6.3 mmol) in DMF (5 mL) was added dropwise, then the reaction was warmed to room temperature and stirred overnight. The reaction was quenched with water, extracted with ethyl acetate, the combined organic layer was washed with brine and water, dried over anhydrous sodium sulfate, filtered, concentrated *in vacuum*, the residue was purified by flash column chromatography on silica gel (elute with ethyl acetate/petroleum ether, 3:1, v/v) to obtain the desired compound 16a (0.77 g).

(*Z*)-2-methoxy-5-(3,4,5-trimethoxystyryl)phenyl sulfamate (**16a**): solid, mp 116-117 °C, yield 62%; ¹H NMR (500 MHz, CDCl₃): δ 7.21 (s, 1H), 7.15 (d, *J* = 8.5 Hz, 1H), 6.85 (d, *J* = 8.5 Hz, 1H), 6.48 (d, *J* = 12.1 Hz, 1H), 6.43 (d, *J* = 12.1 Hz, 3H), 5.29 (s, 2H), 3.82 (d, *J* = 13.8 Hz, 6H), 3.68 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 153.1, 150.8, 138.9, 137.4, 132.5, 130.6, 130.3, 128.8, 128.3, 124.3, 112.8, 106.2, 61.0, 56.3, 56.1; HR-MS: m/z calcd. for C₁₈H₂₁NO₇S: 395.1039, found:395.1040(M⁺).

(*E*)-2-methoxy-5-(3,4,5-trimethoxystyryl)phenyl sulfamate (**16b**): solid, mp 169-171 °C,yield 60%; ¹H NMR (500 MHz, DMSO-d₆): δ 7.95 (s, 2H), 7.54 (s, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.19 (d, *J* = 16.0 Hz, 1H), 7.17 (s, 1H), 7.14 (d, *J* = 16.0 Hz, 1H), 6.91 (s, 2H), 3.83 (s, 9H), 3.67 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆): δ 153.1, 151.2, 139.2, 137.3, 132.8, 130.1, 127.4, 126.7, 125.4, 120.7, 113.6, 103.8, 60.1, 56.0, 55.9; HR-MS: m/z calcd. for C₁₈H₂₁NO₇S: 395.1039, found: 395.1041(M⁺).

(*Z*)-2-(difluoromethoxy)-5-(3,4,5-trimethoxystyryl)phenyl sulfamate (**16c**): solid, mp 161-163 °C, yield 63%; ¹H NMR (500 MHz, DMSO-d₆): δ 8.50 (s, 2H), 7.05 (d, *J* = 8.2 Hz, 1H), 7.01 (t, *J* = 75 Hz, OCF₂H, 1H), 6.92 (s, 1H), 6.72 (dd, *J* = 8.2, 1.4 Hz, 1H), 6.54 (s, 2H), 6.52 (d, *J* = 12.0 Hz, 1H), 6.49 (d, *J* = 12.0 Hz, 1H), 3.64 (s, 3H), 3.58 (s, 6H); ¹⁹F NMR (470 MHz, DMSO-d₆) δ -81.38 (s); ¹³C NMR (125 MHz, DMSO-d₆): δ 152.6, 148.6, 137.5, 136.9, 135.5, 131.7, 130.1, 128.7, 121.7, 119.9, 116.9, 116.6 (t, *J* = 262.5 Hz, OCF₂H), 106.2, 60.1, 55.5; HR-MS: m/z calcd for C₁₈H₁₉F₂NO₇S: 431.0850, found: 431.0849(M⁺).

(*E*)-2-(difluoromethoxy)-5-(3,4,5-trimethoxystyryl)phenyl sulfamate (**16d**): solid, mp 146-148 °C, yield 65%; ¹H NMR (500 MHz, DMSO-d₆): δ 8.27 (s, 2H), 7.68 (s, 1H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.27 (d, *J* = 16.0 Hz, 1H), 7.18 (d, *J* = 16.0 Hz, 1H), 7.09 (t, *J* = 75 Hz, OCF₂H, 1H), 6.95 (s, 2H), 3.84 (s, 6H), 3.68 (s, 3H); ¹⁹F NMR (470 MHz, DMSO-d₆): δ -81.33 (s); ¹³C NMR (125 MHz, DMSO-d₆): δ 153.2, 142.2, 141.2, 137.6, 135.6, 132.4, 129.9, 125.9, 125.1, 121.3, 120.9, 116.5 (t, *J* = 262.5 Hz, OCF₂H), 104.1, 60.1, 56.0; HR-MS: m/z calcd. for C₁₈H₁₉F₂NO₇S: 431.0850, found: 431.0848(M⁺).

(*Z*)-2-ethoxy-5-(3,4,5-trimethoxystyryl)phenyl sulfamate (**16e**): solid, mp 153-155 °C, yield 66%; ¹H NMR (500 MHz, CDCl₃): δ 7.21 (s, 1H), 7.14 (d, *J* = 8.6 Hz, 1H), 6.86 (d, *J* = 8.5 Hz, 1H), 6.49 (d, *J* = 12.0 Hz, 1H), 6.44 (d, *J* = 12.0 Hz, 3H), 5.15 (s, 2H), 4.10 (q, *J* = 6.9 Hz, 2H), 3.82 (s, 3H), 3.69 (s, 6H), 1.43 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 153.1, 150.0, 139.2, 137.5, 132.5, 130.7, 130.3, 128.8, 128.3, 124.5, 113.8, 106.2, 65.0, 61.1, 56.2, 14.8; HR-MS: m/z calcd. for C₁₉H₂₃NO₇S: 409.1195, found: 409.1193(M⁺).

(*E*)-2-ethoxy-5-(3,4,5-trimethoxystyryl)phenyl sulfamate (**16f**): solid, mp 172-174 °C, yield 70%; ¹H NMR (500 MHz, CDCl₃): δ 7.18 (s, 1H), 7.11 (d, *J* = 8.6 Hz, 1H), 6.96 (d, *J* = 8.5 Hz, 1H), 6.63 (d, *J* = 16.0 Hz,

1H), 6.58 (d, J = 16.0 Hz, 3H), 5.18 (s, 2H), 4.21 (q, J = 6.9 Hz, 2H), 3.93 (s, 3H), 3.71 (s, 6H), 1.48 (t, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 153.4, 150.3, 139.4, 137.8, 132.8, 130.9, 130.6, 129.1, 128.6, 124.8, 114.1, 106.5, 65.3, 61.3, 56.4, 15.1; HR-MS: m/z calcd for C₁₉H₂₃NO₇S, 409.1195, found: 409.1194(M⁺).

(*Z*)-3-(3,4,5-trimethoxystyryl)phenyl sulfamate (**16g**): solid, mp 108-110 °C, yield 68%; ¹H NMR (500 MHz, CDCl₃): δ 7.28 (s, 1H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.15 (s, 1H), 7.12 (d, *J* = 8.0 Hz, 1H), 6.55 (d, *J* = 12.0 Hz, 1H), 6.52 (d, *J* = 12.0 Hz, 1H), 6.40 (s, 2H), 5.36 (s, 2H), 3.77 (s, 3H), 3.63 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 152.9, 150.1, 139.4, 137.3, 132.3, 131.6, 130.7, 129.7, 128.7, 128.5, 127.8, 122.8, 122.3, 120.9, 106.4, 61.0, 56.1; HR-MS: m/z calcd. for C₁₇H₁₉NO₆S: 365.0933, found: 365.0936(M⁺).

(*E*)-3-(3,4,5-trimethoxystyryl)phenyl sulfamate (**16h**): solid, mp 136-138 °C, yield 67%; ¹H NMR (500 MHz, CDCl₃): δ 7.43 (s, 1H), 7.40 (s, 1H), 7.36 (s, 1H), 7.20 (d, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 16.0 Hz, 1H), 6.91 (d, *J* = 16.0 Hz, 1H), 6.69 (s, 2H), 5.28 (s, 2H), 3.87 (s, 6H), 3.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 153.5, 150.7, 139.6, 138.4, 132.6, 130.5, 130.2, 126.7, 125.4, 121.0, 119.7, 104.0, 61.1, 56.23; HR-MS: m/z calcd. for C₁₇H₁₉NO₆S: 365.0933, found: 365.0936(M⁺).

(*Z*)-2-methoxy-5-(3,4,5-trimethoxystyryl)phenyl methylsulfamate (**16i**): solid, mp 120-122 °C, yield 62%; ¹H NMR (500 MHz, CDCl₃): δ 7.16 (s, 2H), 6.87 (d, *J* = 9.0 Hz, 1H), 6.51 (d, *J* = 12.0 Hz, 1H), 6.47 (d, *J* = 12.0 Hz, 3H), 3.85 (s, 3H), 3.81 (s, 3H), 3.71 (s, 6H), 2.82 (d, *J* = 5.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 152.9, 145.9, 145.3, 137.2, 132.9, 130.7, 129.7, 129.1, 121.3, 115.2, 110.5, 106.2, 61.0, 56.1, 56.1; HR-MS: m/z calcd for C₁₉H₂₃NO₇S: 409.1195, found: 409.1196(M⁺).

(*Z*)-2-methoxy-5-(3,4,5-trimethoxystyryl)phenyl dimethylsulfamate (**16j**): solid, mp 103-105 °C, yield 61%; ¹H NMR (500 MHz, CDCl₃): δ 7.21 (s, 1H), 7.10 (s, 1H), 6.82 (d, *J* = 7.8 Hz, 1H), 6.42 (d, *J* = 12.0 Hz, 1H), 6.44 (s, 1H), 6.46 (d, *J* = 12.0 Hz, 1H), 6.47 (s, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.67 (s, 3H), 3.64(s, 3H), 2.88 (s, 3H), 2.86 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 153.1, 150.8, 139.0, 137.4, 132.5, 130.4, 130.1, 128.4, 124.0, 112.5, 105.9, 60.9, 56.1, 55.9, 38.6; HR-MS: m/z calcd. for C₂₀H₂₅NO₇S, 423.1354, found: 423.1352(M⁺).

(*Z*)-3,4,5-trimethoxy-4'-methoxy-3'-amino sulfamate stibene (**19a**): solid, mp 143-145 °C, yield 64%; ¹H NMR (500 MHz, CDCl₃): δ 7.38 (d, *J* = 1.7 Hz, 1H), 7.01 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.95 (s, 1H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.49 (d, *J* = 4.2 Hz, 4H), 4.75 (s, 2H), 3.82 (d, *J* = 2.4 Hz, 6H), 3.71 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 153.1, 148.2, 137.5, 133.1, 130.4, 129.6, 129.5, 126.5, 125.5, 119.9, 110.4, 106.6, 61.1, 56.3, 56.0; HR-MS: m/z calcd for C₁₈H₂₂N₂O₆S: 394.1199, found: 394.1197(M⁺).

(*E*)-3,4,5-trimethoxy-4'-methoxy-3'-amino sulfamate stibene (**19b**): solid, mp 159-161 °C, yield 69%; ¹H NMR (500 MHz, CDCl₃): δ 7.70 (s, 1H), 7.23 (d, *J* = 7.7 Hz, 1H), 7.02 (s, 1H), 6.94 (s, 2H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.71 (s, 2H), 4.87 (s, 2H), 3.89 (d, *J* = 11.0 Hz, 9H), 3.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 153.5, 148.9, 133.2, 131.1, 127.9, 127.2, 126.9, 123.5, 117.9, 111.0, 103.6, 61.1, 56.3, 56.1; HR-MS: m/z calcd. for C₁₈H₂₂N₂O₆S: 394.1199, found: 394.1195(M⁺).

General synthesis procedures for Compounds 17a-17d and 20 *Representative example*: To a solution compound 16a (0.50 g, 1.3 mmol) in absolute ethanol (10 mL), 10% Pd/C (0.12 g) was added, the reaction flask was vacuumed and recharged with hydrogen for three times, then stirred at room temperature for 3 hours until TLC indicated the hydrogenation reaction was completed. Filtered and concentrated to get the desired compound 17a (0.38 g).

2-methoxy-5-(3,4,5-trimethoxyphenethyl)phenyl sulfamate (**17a**): solid, mp 131-132 °C, yield 76%; ¹H NMR (500 MHz, CDCl₃): δ 7.15 (s, 1H), 7.02 (d, J = 10.0 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 6.33 (s, 2H), 5.28 (s, 2H), 3.83 (s, 3H), 3.80 (s, 9H), 2.82 (dd, J = 8.0, 3.8 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃): δ

153.1, 149.8, 138.9, 137.2, 136.3, 135.0, 128.0, 124.1, 113.1, 105.7, 60.9, 56.4, 56.2, 38.1, 36.9; HR-MS: m/z calcd for $C_{18}H_{23}NO_7S$: 397.1195, found: 397.1196(M⁺)..

2-(difluoromethoxy)-5-(3,4,5-trimethoxyphenethyl)phenyl sulfamate (**17b**): solid, mp 142-144 °C, yield 73%; ¹H NMR (500 MHz, DMSO-d₆): δ 8.17 (s, 2H), 7.38 (d, *J* = 7.0 Hz, 1H), 7.22 (s, 2H), 7.15 (t, *J* = 75 Hz, 1H), 6.55 (s, 2H), 3.74 (s, 3H), 3.61 (s, 6H), 2.94-2.87 (m, 2H), 2.84-2.78 (m, 2H); ¹⁹F NMR (470 MHz, DMSO-d₆) δ -81.36 (s); ¹³C NMR (125 MHz, DMSO-d₆): δ 152.7, 142.9, 141.6, 139.0, 136.9, 135.8, 126.0, 123.7, 120.7, 118.6, 116.5, 114.5, 105.7, 60.0, 55.8, 37.2, 36.5; HR-MS: m/z calcd. for C₁₈H₂₁F₂NO₇S: 433.1007, found: 433.1004(M⁺).

2-ethoxy-5-(3,4,5-trimethoxyphenethyl)phenyl sulfamate (**17c**): solid, mp 122-124 °C, yield 75%; ¹H NMR (500 MHz, DMSO-d₆): δ 7.87 (s, 2H), 7.29 (d, *J* = 7.2Hz, 1H), 7.10 (dd, 1H), 7.04 (d, *J* = 8.4 Hz, 1H), 6.54 (s, 2H), 4.04 (q, *J* = 6.9 Hz, 2H), 3.74 (s, 6H), 3.61 (s, 3H), 2.80 (d, *J* = 5.7 Hz, 4H), 1.32 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, DMSO-d₆): δ 152.7, 149.1, 147.8, 139.0, 137.2, 135.7, 133.9, 127.8, 127.6, 127.0, 126. 7, 123.21, 114.3, 105.7, 64.2, 60.0, 55.8, 37.5, 36.2, 14.6; HR-MS: m/z calcd. for C₁₉H₂₅NO₇S: 411.1352, found: 411.1352(M⁺)..

3-(3,4,5-trimethoxyphenethyl)phenyl sulfamate (**17d**): solid, mp 118-120 °C, yield 78%; ¹H NMR (500MHz, CDCl₃): δ 7.29 (s, 1H), 7.11 (s, 2H), 7.06 (s, 1H), 6.30 (s, 2H), 5.42 (s, 2H), 3.77 (d, *J* = 3.6 Hz, 9H), 2.87 (d, *J* = 8.0 Hz, 2H), 2.83 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 153.0, 150.2, 143.9, 137.2, 136.0, 129.7, 127.4, 122.2, 119.7, 105.6, 60.9, 56.1, 37.9, 37.6; HR-MS: m/z calcd. for C₁₇H₂₁NO₆S: 367.1090, found: 367.1091(M⁺)..

3,4,5-trimethoxy-4'-methoxy-3'-amino sulfamate diphenylethane (**20**): solid, mp 124-126 °C, yield 80%; ¹H NMR (500 MHz, CDCl₃) δ 7.32 (s, 1H), 7.03 (s, 1H), 6.89 (d, *J* = 8.1 Hz, 1H), 6.79 (d, *J* = 8.3 Hz, 1H), 6.36 (s, 2H), 5.02 (s, 2H), 3.79 (d, *J* = 6.9 Hz, 12H), 2.82 (d, *J* = 3.4 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 153.1, 147.8, 137.4, 136.2, 134.7, 132.1, 132.1, 126.5, 124.8, 120.6, 110.8, 105.7, 60.9, 56.2, 56.0, 38.3, 37.2; HR-MS: m/z calcd. for C₁₈H₂₄N₂O₆S: 396.1355, found: 396.1353(M⁺).

Synthesis of Compounds 18a, 18b Under nitrogen pretection, to a pre-cooled suspension of compound 12e (28.29 g, 55.2 mmol) in dry THF (300 mL), n-butyl lithium cyclohexane solution (1.6 M) was added dropwise, after stirred at -78 °C for 1 hour, a solution of compound 14 (10.00 g, 55.2 mmol) in dry THF (30 mL) was added ,then the reaction was warmed to room temperature and stirred overnight. The solution was poured into ice water, extracted with ethyl acetate, the combined organic phase was concentrated *in vacuum*, the residue was redissolved in acetic acid (20 mL), zinc powder (16.82 g, 255.2 mmol) was added portionwise, the reaction was stirred for 2 hours at room temperature. TLC indicated the reaction completed. The solution was diluted with ethyl acetate, the solid was filtered, the filtrate was washed with brine and saturated sodium bicarbonate solution and water, then dried over anhydrous sodium sulfate. Filtered and concentrated *in vacuum* to remove the solvent, the residue was purified by flash column chromatography on silica gel (eluted with ethyl acetate-petroleum ether, 3:1, v/v) to afford compounds 18a (2.17 g) and 18b (1.92 g).

(*Z*)-2-methoxy-5-(3, 4, 5-trimethoxystyryl) aniline (**18a**): oil,yield 30%; ¹H NMR (500 MHz, CDCl₃): δ 6.67 (s, 1H), 6.65 (s, 2H), 6.54 (s, 2H),6.43 (d, *J* = 12.0 Hz, 1H), 6.35 (d, *J* = 12.0 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.68 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 153.5, 147.5, 137.7, 136.4, 133.7, 130.5, 128.4, 126.4, 117.8, 112.3, 110.5, 103.4, 61.0, 56.2, 55.7; HR-MS: m/z calcd. for C₁₈H₂₁NO₄, 315.1471, found: 315.1470(M⁺).

(*E*)-2-methoxy-5-(3, 4, 5-trimethoxystyryl) aniline (**18b**): solid, mp 116-117 °C, yield 26%; ¹H NMR (500 MHz, CDCl₃) δ 6.92 (s, 1H), 6.88 (s, 1H), 6.86 (d, *J* = 4.7 Hz, 1H), 6.80 (d, *J* = 16.0 Hz, 1H), 6.73 (d, *J* = 16.0 Hz, 1H), 6.70 (s, 2H), 3.90 (s, 6H), 3.86 (d, *J* = 3.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 153.4,

147.4, 137.6, 136.4, 133.6, 130.4, 128.3, 126.4, 117.8, 112.3, 110.5, 103.4, 61.0, 56.1, 55.6; HR-MS: m/z calcd. for $C_{18}H_{21}NO_4$, 315.1471, found: 315.1472(M⁺).

Biological activity assay

In vitro antiproliferation activity test. The experiment was performed in Nanjing OGPharmaceutical Co., Ltd., Cancer cell lines were obtained from the American type Culture Collection (ATCT, Rockville, USA) and were cultured according to the supplier's instructions. Human lung cancer cell A549, human gastric cancer cell MGC-803, human breast cancer cell MCF-7 and human hepatoma cell HepG2 were cultured in RPMI 1640 medium containing 10 % fetal bovine serum, human colon cancer cell HCT-116, human cervical cancer cells HeLa and human gastric cancer cells MKN45 were maintained in Dulbecco's minimal essential medium (DMEM) containing 10 % fetal bovine serum and maintained at 37 °C and 5 % CO₂ incubators (SANYO, MCO-15AC). The cell proliferation inhibition test was performed using the EnoGeneCell Counting Kit-8 (CCK-8) Cell Viability Assay Kit, and the experiment was performed using a viable cell ratio of 90% or more. Cells were digested and counted to prepare a cell suspension at a concentration of 1×10^5 cells/mL. A 100 μ L cell suspension was added to each well in a 96-well plate (1×10⁴ cells per well) for 24 hours at 37 °C and 5 % CO₂ incubators, 100 μ L of the corresponding drug-containing medium was added to each well while the negative control group, the vehicle control group and the positive control group were set up with 5 wells in each group. The 96-well plate was placed at 37 °C and CO2 incubator for 72 hours, afterwards 10 µL of CCK-8 solution was added to each well. And the plates were incubated in the incubator for 4 hours, the OD values were determined at 450 nm with a spectrophotometric plate reader (Thermo scientific, MUTISKAN MK3). Each sample was test for three time at ten different concentration. The inhibitory rate was determined as follows: inhibitory% = $(OD_{sample}-OD_{blank})/(OD_{control}-OD_{blank}) \times 100\%$, and the IC50 value (inhibitory concentration for 50% of cells) was determined using the GraphPad Prism software.

In vitro sulfatase activity test. The steroid sulfatase was purchased from Sigma-Aldrich. The test compounds were weighted and dissolved in dimethylsulfoxide, then diluted with Tri-HCl buffer (0.1M, pH = 7.4) at 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000 and 10000 times. Steriod sulfatase and potassium *p*-nitrophenyl sulfate were directly dissolved in Tris-HCl buffer. To a 96-well plate was incubated with 40 μ L of the test sample, 50 μ L of aryl sulfatase and 50 μ L of potassium *p*-nitrophenyl sulfate for 5 minutes, the OD values were determined by a microplate reader at 405 nm. The blank control (no sulfatase) and standard control (no sample) were also test in same procedure by adding Tris-HCl buffer to make up the volume. Each sample was test for three time at ten different concentration. The inhibitory rate was determined as follows: inhibitory% ={1-(OD_{sample}-OD_{blank})/(OD_{control}-OD_{blank})}×100%, and the IC50 value was determined using the GraphPad Prism software.

In vitro tubulin polymerization assay. Pig brain microtubule protein was isolated by three cycles of temperature-dependent assembly/disassembly in 100 mM PIPES (pH 6.5), 1 mM MgSO4, 2 mM EGTA, 1 mM GTP and 1 mM 2-mercaptoethanol. In the first cycle of polymerization, glycerol and phenylmethylsulfonyl fluoride were added to 4 M and 0.2 mM, respectively. Homogeneous tubulin was prepared from microtubule protein by phosphocellulose (P11) chromatography. The purified proteins were stored in aliquots at -70 $^{\circ}$ C.

Tubulin (4.8 mg/ml) protein was mixed with different concentrations of compound in PEM buffer (100 mM PIPES, 1 mM MgCl₂, and 1 mM EGTA) containing 1 mM GTP and 5 % glycerol. Microtubule polymerization was monitored at 37 °C by light scattering at 340 nm using a SPECTRA MAX 190 (Molecular Device) spectrophotometer. The plateau absorbance values were used for calculations. Each sample was test for three time at ten different concentration. The inhibitory rate was determined as follows: inhibitory% ={1-(OD_{sample}-OD_{blank})/(OD_{control}-OD_{blank})}×100%, and the IC50 value (inhibitory concentration for 50% of cells) was determined using the GraphPad Prism software.

Molecular Docking

The crystal structure of tubulin-Combretastatin A4 complex (PDB: 5LYJ) and arylsulfatse-EMATE complex (PDB:1P49) were retrieved from the Research Collaboratory for Structural Bioinformatics (RCSB) protein data bank. Compound **16a** were constructed using the sketcher module in Sybyl and their minimum energy conformations were calculated using the minimize module of Sybyl. The force field was Tripos with an 8 Å cutoff for non-bonded interactions, and the atomic point charges were also calculated with Gasteiger-Huckel. Minimizations were achieved using the steepest descent method for the first 100 steps, followed by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method until the root-mean-square (RMS) of the gradient became < 0.005 kcal/(mol·Å). The Surflex-Dock module implemented in the Sybyl program was used for the docking studies. The colchicine binding-site of tubulin and EMATE binding-site of steriod sulfatase were used for the docking simulation, the original ligand (CA-4 and EMATE) in the crystal structure was used as control. Compound **16a** were docked into the binding site by an empirical scoring function and a patented search engine in Surflex-Dock, applied with the automatic docking. Other parameters were established by default in the software

Structure activity relationship discussion on arylsulfatase and tubulin polymeriztion inhibition

From the inhibitory activity results of 16a, 16b and 17a on arylsulfatase and tubulin, we can infer that the cis-isomer is better than trans-isomer and saturated bond linked analogues. The electronic effects of R group was studied by comparing the activity of compound 16a, 16c, 16e and 16g on both targets. The potency of 16c with difluoromethoxy group increased slightly relating to the electronic withdrawing effect of difluomethyl group, which indicate an electronic withdrawing group on this position is favorable for arylsulfatase inhibition while unfavorable for tubulin inhibition at the same time. The steric effects of R group was studied by the comparison of compound 16a, 16e and 16g. Compound 16a showed comparable potency on steroid sulfatase (IC₅₀ = 6.16 μ M) with EMATE (IC₅₀ = 5.01 μ M) and similar potency on cel with combretastatin A-4. 16g (R = H), removing the methoxyl group of 16a, showed the increasing inhibitory activity for sulfatase about ten times (IC₅₀ = 0.47 μ M), however the potency of 16g on cell dropped rapidly as it lost the potency on tubulin inhibition (IC₅₀ > 100 μ M). On the contrary, when the methoxyl of 16a was replaced with a little bulky ethoxyl group to give 16e (R = OEt), the potency on tubulin increased (IC₅₀ = 3.10μ M), although its potency on steroid sulfatase dramatically decreased (IC₅₀ = 90.19 μ M), the cell level activity is close with that of EMATE. These results indicate the steric effect at R position is favorable for tubulin inhibition but unfavorable for arylsulfatase inhibition. The substitution effect of the amino group of sulfamide was studied from 16i and 16j, the monomethylated and dimethylated 16a. By comparing with 16a, their potency on steroid sufatase inhibition were lost. however, their potency on tubulin polymerzation were different, monomethyl substitution (16i, $IC_{50} = 1.80$ uM) showed improved the potency with about 3 times, while dimethyl substition (16j, $IC_{50} = 12.50$ uM) illustrated the decreased potency about 2 times. This result indicates that the amino group of 16a probably has critical hydrogen bond interaction with the binding site of both targets, in other words, the steric hindrance factors caused by substitution on amino group can also affect activity. The lost contribution to cytotoxicity of **16i** on sulfatase inhibition was probably compensatrated by its improved potency on tubulin. In addition, 19a showed no activity on arylsulfatase, which implies that a hydrogen bond donor probably exists in the binding site. This is consistent with the fact that sulfatase only specific hydrolysis of sulphate instead of sulfamide. From the structure-activity-relationship analysis of 16(c-j) on arylsulfatase and tubulin inhibition and their contribution to anti-tumor activity, we can conclude that tubulin inhibition plays a dominant role over arylsulfatase inhibition in this kind dual inhibitor.

Equipment	Shimadzu LC-15C with double pump, UV detector				
Column	Shimadzu Wondasil C18-WR (150×4.6 mm, 5 µm particle size)				
Condition	CH ₃ CN(0.1% CF ₃ COOH) : H ₂ O(0.1% CF ₃ COOH) = 20 : 80 (v/v) as eluent, flow rate: 1.0 mL/min, detection wavelength: 276 nm. The purity was determined by area normalization.				
Results	Compd. No.	Retention time (min)	Relative purity (%)	Spectra (page)	
	16a	11.68	98.70	84 <mark>2</mark>	
	16b	9.161	99.88	S4 <mark>6</mark>	
	16c	9.916	95.66	8 <mark>51</mark>	
	16d	9.543	98.49	85 <mark>6</mark>	
	16e	9.446	98.23	S <mark>60</mark>	
	16f	9.522	99.82	S6 <mark>4</mark>	
	16g	9.193	96.00	S6 <mark>8</mark>	
	16h	9.184	99.58	87 <mark>2</mark>	
	16i	9.524	97.23	87 <mark>6</mark>	
	16j	10.29	95.77	8 <mark>80</mark>	
	17a	9.054	99.30	88 <mark>4</mark>	
	17b	9.202	96.76	88 <mark>8</mark>	
	17c	9.451	98.13	89 <mark>2</mark>	
	17d	9.060	93.79	89 <mark>6</mark>	
	19a	9.215	95.45	S10 <mark>4</mark>	
	19b	8.791	96.84	S10 <mark>8</mark>	
	20	8.703	95.16	811 <mark>2</mark>	

HPLC condition and the purity data of compounds 16a-16j, 17a-17d, 19a, 19b, 20.

Compound 13a. ¹H NMR CDCl₃, 500 MHz

Compound 13a. ¹³C NMR, CDCl₃, 125 MHz

Compound 13b. ¹H NMR, CDCl₃, 500 MHz

Compound 13b. ¹³C NMR, CDCl₃, 125 MHz

Compound 13c. ¹H NMR, CDCl₃, 500 MHz

Compound 13c. ¹³C NMR, CDCl₃, 125 MHz

Compound 13d. ¹H NMR, CDCl₃, 500 MHz

Compound 13d. ¹³C NMR, CDCl₃, 125 MHz

Compound 15a. ¹³C NMR, CDCl₃, 125 MHz

Compound 15b. ¹H NMR, CDCl₃, 500 MHz

Compound 15b. ¹³C NMR, CDCl₃, 125 MHz

Compound 15c. ¹H NMR, CDCl₃, 500 MHz

Compound 15c. ¹⁹F NMR, CDCl₃, 145 MHz

ò -100 f1 (ppm) -10 -70 -110 -120 -130 -140 -150 -160 -170 -190 -90 -180 -20-30 40 -50 -60 -80

Compound 15c. ¹³C NMR, CDCl₃, 125 MHz

Compound 15d. ¹H NMR, CDCl₃, 500 MHz

Compound 15d. ¹⁹F NMR, CDCl₃, 145 MHz

Compound 15d. ¹³C NMR, CDCl₃, 125 MHz

Compound 15e. ¹H NMR, CDCl₃, 500 MHz

Compound 15e. ¹³C NMR, CDCl₃, 125 MHz

Compound 15f. ¹H NMR, CDCl₃, 500 MHz

Compound 15f. ¹³C NMR, CDCl₃, 125 MHz

Compound 15g. ¹H NMR, CDCl₃, 500 MHz

Compound 15g. ¹³C NMR, CDCl₃, 125 MHz

Compound 15h. ¹H NMR, CDCl₃, 500 MHz

Compound 15h. ¹³C NMR, CDCl₃, 125 MHz

Compound 16a. ¹H NMR, CDCl₃, 500 MHz

Compound 16a. ¹³C NMR, CDCl₃, 125 MHz

Compound 16a. HRMS

HPLC Spectrum of compound 16a

峰表

检测器	A	Ch1	220nm
LIG VIJ HH		~	

峰#	保留时间	面积	高度	面积 %	高度 %
1	11.680	9829679	915884	98.972	99.307
2	12.219	17965	1645	0.181	0.178
3	18.946	84123	4746	0.847	0.515
总计		9931766	922274	100.000	100.000

Compound 16b. ¹H NMR, DMSO, 500 MHz

Compound 16b. ¹³C NMR, DMSO, 125 MHz

HR-MS Spectrum of Compound 16b

HPLC Spectrum of Compound 16b

1 检测器 A 通道1/276nm

峰表
高度

检测界 A	Ch1 276pm		+-10		
峰#	保留时间	面积	高度	面积%	高度 %
1	7.957	4050	347	0.025	0.021
2	8.823	2179	264	0.014	0.016
3	9.161	16077698	1668058	99.883	99.908
4	12.298	644	95	0.004	0.006
5	12.645	11966	826	0.074	0.049
总计		16096536	1669588	100.000	100.000

Compound 16c. ¹H NMR, DMSO, 500 MHz

Compound 16c. ¹⁹F NMR, DMSO, 145 MHz

Compound 16c. ¹³C NMR, DMSO, 125 MHz

HR-MS Spectrum of Compound 16c.

S54

HPLC Spectrum of compound 16c

1 检测器 A 通道1/276nm

峰表

检测器 A	Ch1 276nm				
峰#	保留时间	面积	高度	面积%	高度 %
1	8.814	8860	867	0.051	0.046
2	9.338	107015	13160	0.618	0.698
3	9.916	16561461	1803048	95.662	95.578
4	10.467	235658	22578	1.361	1.197
5	10.760	213206	24809	1.232	1.315
6	10.975	124078	14238	0.717	0.755
7	11.236	44303	5525	0.256	0.293
8	12.140	13396	1689	0.077	0.090
9	12.665	4414	545	0.025	0.029
总计		17312392	1886459	100.000	100.000

Compound 16d. ¹H NMR, DMSO, 500 MHz

Compound 16d. ¹⁹F NMR, DMSO, 145 MHz

Compound 16d. ¹³C NMR, DMSO, 125 MHz

HR-MS Spectrum of Compound 16d.

HPLC Spectrum of Compound 16d

1 检测器 A 通道1/276nm

峰表

检测器 A	Ch1 276nm		+++		
峰#	保留时间	面积	高度	面积 %	高度 %
1	8.020	15843	1021	0.161	0.087
2	9.197	56374	5447	0.572	0.467
3	9.543	9704265	1150511	98.488	98.603
4	9.904	40013	5433	0.406	0.466
5	10.572	9751	1341	0.099	0.115
6	11.084	9877	1100	0.100	0.094
7	11.458	8797	1023	0.089	0.088
8	12.067	159	20	0.002	0.002
9	12.517	2680	314	0.027	0.027
10	12.645	5453	603	0.055	0.052
总计		9853213	1166813	100.000	100.000

Compound 16e. ¹H NMR, CDCl₃, 500 MHz

Compound 16e. ¹³C NMR, CDCl₃, 125 MHz

HR-MS Spectrum of Compound 16e

1 检测器 A 通道1/276nm

峰表

检测器 A	Ch1 276nm				
峰#	保留时间	面积	高度	面积 %	高度 %
1	8.807	10538	990	0.302	0.236
2	9.186	6848	988	0.196	0.235
3	9.446	3425827	413356	98.226	98.363
4	10.898	26072	2694	0.748	0.641
5	11.082	11249	1390	0.323	0.331
6	11.303	7167	815	0.206	0.194
总计		3487701	420233	100.000	100.000

Compound 16f. ¹H NMR, CDCl₃, 500 MHz

Compound 16f. ¹³C NMR, CDCl₃, 125 MHz

HR-MS Spectrum of Compound 16f.

峰表

检测器 A	Ch1 276nm	+ K			
峰#	保留时间	面积	高度	面积%	高度%
1	8.808	10675	1159	0.093	0.091
2	9.522	11497680	1269609	99.823	99.816
3	12.670	9737	1175	0.085	0.092
总计		11518092	1271943	100.000	100.000
Compound 16g. ¹H NMR, CDCl₃, 500 MHz

Compound 16g. ¹³C NMR, CDCl₃, 125 MHz

HR-MS Spectrum of Compound 16g

S77

HPLC Spectrum of Compound 16g

峰表

检测器 A	Ch1 276nm		+10		
峰#	保留时间	面积	高度	面积 %	高度 %
1	6.344	12526	1068	0.107	0.080
2	6.682	414643	38084	3.538	2.862
3	7.244	32215	3347	0.275	0.252
4	8.654	2151	297	0.018	0.022
5	8.796	4645	441	0.040	0.033
6	9.193	11249758	1287105	95.999	96.726
7	12.644	2689	334	0.023	0.025
总计		11718626	1330675	100.000	100.000

Compound 16h. ¹H NMR, CDCl₃, 500 MHz

Compound 16h. ¹³C NMR, CDCl₃, 125 MHz

HR-MS Spectrum of Compound 16h

HPLC Spectrum of Compound 16h

1 检测器 A 通道1/276nm

检测器 A	Ch1 276nm		+10		
峰#	保留时间	面积	高度	面积 %	高度 %
1	7.210	2191	272	0.021	0.024
2	7.433	8018	813	0.078	0.071
3	8.553	541	67	0.005	0.006
4	8.897	4617	427	0.045	0.037
5	9.184	10221479	1143653	99.580	99.591
6	10.043	16395	1949	0.160	0.170
7	11.077	5398	600	0.053	0.052
8	12.651	5914	574	0.058	0.050
总计		10264552	1148355	100.000	100.000

峰表

HR-MS Spectrum of Compound 16i

HPLC Spectrum of Compound 16i

1 检测器 A 通道1/276nm

1-12 () 14 Hitt					
峰#	保留时间	面积	高度	面积 %	高度 %
1	8.264	8322	1039	0.094	0.10
2	8.766	9019	748	0.102	0.07
3	9.301	163247	21183	1.850	2.18
4	9.524	8578025	938128	97.230	96.859
5	10.801	35031	4162	0.397	0.430
6	11.535	6253	789	0.071	0.08
7	11.735	10326	1158	0.117	0.120
8	12.732	12142	1341	0.138	0.138
总计		8822365	968548	100.000	100.000

Compound 16j. ¹H NMR, CDCl₃, 500 MHz

Compound 16j. ¹³C NMR, CDCl₃, 125 MHz

HR-MS Spectrum of Compound 16j

HPLC Spectrum of Compound 16j

1 检测器 A 通道1/276nm

- 11	10			-
- 11	12	œ.,	_	
- v	4 -	÷.,	Л.	×.
	-		· •	~

检测器 A	Ch1 276nm		1.14		
峰#	保留时间	面积	高度	面积 %	高度 %
1	9.239	106616	9525	3.474	2.819
2	9.876	2591	244	0.084	0.072
3	10.290	2939479	325931	95.771	96.478
4	11.089	8162	695	0.266	0.206
5	11.412	4872	583	0.159	0.173
6	12.655	7568	850	0.247	0.252
总计		3069289	337829	100.000	100.000

Compound 17a. ¹³C NMR, CDCl₃, 125 MHz

HR-MS Spectrum of Compound 17a

the second second second

HPLC Spectrum of Compound 17a

1 检测器 A 通道1/276nm

峰表

检测器 A	Ch1 276nm			+-10	
峰#	保留时间	面积	高度	面积 %	高度 %
1	8.592	10131	1168	0.260	0.277
2	8.754	10999	1158	0.283	0.274
3	9.054	3862292	419207	99.301	99.301
4	12.657	6054	627	0.156	0.148
总计		3889476	422160	100.000	100.000

Compound 17b. ¹H NMR, DMSO, 500 MHz

Compound 17b. ¹³C NMR, DMSO, 125 MHz

HR-MS Spectrum of Compound 17b

1 检测器 A 通道1/276nm

峰表

检测器 A	Ch1 276nm		÷.	~	
峰#	保留时间	面积	高度	面积 %	高度 %
1	6.356	28395	2610	0.135	0.113
2	6.699	652399	64095	3.105	2.772
3	9.202	20328934	2245772	96.760	97.115
总计		21009728	2312477	100.000	100.000

Compound 17c. ¹H NMR, DMSO, 500 MHz

Compound 17c. ¹³C NMR, DMSO, 125 MHz

HR-MS Spectrum of Compound 17c

HPLC Spectrum of Compound 17c

1 检测器 A 通道1/276nm

-A.	10	-+-
10	æ	-70
- 844	-	AX.

检测器 A	Ch1 276nm				
峰#	保留时间	面积	高度	面积 %	高度 %
1	3.856	1930	140	0.093	0.060
2	7.207	1435	161	0.069	0.069
3	7.437	7933	843	0.383	0.358
4	7.964	1820	163	0.088	0.069
5	9.185	8642	1067	0.417	0.454
6	9.451	2032398	230837	98.134	98.196
7	10.903	10280	1205	0.496	0.512
8	12.653	6603	662	0.319	0.282
总计		2071042	235078	100.000	100.000

Compound 17d. ¹H NMR, CDCl₃, 500 MHz

Compound 17d. ¹³C NMR, CDCl₃, 125 MHz

HR-MS Spectrum of Compound 17d

HPLC Spectrum of Compound 17d

- 10	~x \	-	Ε.
- 111	47	-	7 .77
-	u po	-1	~

检测器 A	Ch1 276nm	+ K				
峰#	保留时间	面积	高度	面积 %	高度 %	
1	3.412	29600	2268	0.587	0.391	
2	6.973	35950	4149	0.713	0.715	
3	9.060	4728066	550993	93.794	94.945	
4	9.491	148428	12651	2.944	2.180	
5	10.295	45359	4046	0.900	0.697	
6	11.091	21860	2653	0.434	0.457	
7	12.670	31662	3567	0.628	0.615	
总计		5040925	580326	100.000	100.000	

Compound 18a. ¹H NMR, CDCl₃, 500 MHz

Compound 18b. ¹H NMR, CDCl₃, 500 MHz

Compound 18b. ¹³C NMR, CDCl₃, 125 MHz

Compound 19a. ¹H NMR, CDCl₃, 500 MHz

Compound 19a. ¹³C NMR, CDCl₃, 125 MHz

HR-MS Spectrum of Compound 19a

HPLC Spectrum of Compound 19a

检测器 A	Ch1 276nm		+ 14		
峰#	保留时间	面积	高度	面积 %	高度 %
1	6.362	35707	3313	0.138	0.130
2	6.706	1128465	111793	4.371	4.377
3	9.215	24643151	2437373	95.447	95.437
4	11.097	11438	1416	0.044	0.055
总计		25818762	2553896	100.000	100.000

峰表

Compound 19b. ¹H NMR, CDCl₃, 500 MHz

Compound 19b. ¹³C NMR, CDCl₃, 125 MHz

HR-MS Spectrum of Compound 19b

HPLC Spectrum of Compound 19b

1 检测器 A 通道1/276nm

检测器 A	Ch1 276nm	+1			
峰#	保留时间	面积	高度	面积 %	高度 %
1	5.480	16005	1114	0.135	0.083
2	7.235	16719	2121	0.141	0.157
3	7.803	9204	1523	0.077	0.113
4	8.057	61842	4631	0.520	0.343
5	8.306	13515	1366	0.114	0.101
6	8.791	11506218	1312769	96.838	97.293
7	9.215	131130	10057	1.104	0.745
8	9.456	85787	10902	0.722	0.808
9	12.670	41554	4810	0.350	0.356
总计		11881973	1349293	100.000	100.000

峰表

Compound 20. ¹³C NMR, CDCl₃, 125 MHz

HR-MS Spectrum of Compound 20

S137

HPLC Spectrum of Compound 20

1 检测器 A 通道1/276nm

峰表

检测器 A	Ch1 276nm		114		
峰#	保留时间	面积	高度	面积 %	高度 %
1	8.059	116890	10901	3.980	3.381
2	8.382	4646	528	0.158	0.164
3	8.703	2794785	308899	95.164	95.807
4	9.607	20484	2090	0.697	0.648
总计		2936806	322418	100.000	100.000

