Supplemental Material

Risks and benefits of Percutaneous Coronary Intervention in Spontaneous Coronary Artery Dissection

Deevia Kotecha MBBS^{1*}, Marcos Garcia-Guimaraes MD^{1,2,3*}, Diluka Premawardhana MBBS^{1*}, Dario Pellegrini MD^{4,5}, Clare Oliver-Williams PhD¹, Vasiliki Boutziouka PhD¹, Alice Wood MBBS¹, Nalin Natarajan MBBS¹, Robert Jackson MBBS¹, Nathan Chan MBBS¹, Jan Ziaullah MBBS¹, Roby Rakhit MD⁶, Stephen P Hoole MD⁷, Thomas W Johnson PhD⁸, Jacek Kadziela MD⁹, Peter Ludman MD¹⁰, Nilesh J. Samani MD¹, Angela H.E.M. Maas MD⁴, Robert Jan Van Geuns MD^{4**}, Fernando Alfonso MD^{2**} and David Adlam DPhil^{1**}

^{*}Joint first authors, **Joint senior authors

¹ Department of Cardiovascular Sciences, and NIHR Leicester Biomedical Research Centre, Leicester, UK

² Department of Cardiology, Hospital Universitario de La Princesa, Madrid, Spain

³ Department of Cardiology, Hospital del Mar, Barcelona, Spain

⁴ Radboud University Medical Center, Department of Cardiology, Nijmegen, The Netherlands

⁵ ASST Papa Giovanni XXIII, Bergamo, Italy

⁶ Royal Free Hospital, London, UK

⁷ Royal Papworth Hospital and NIHR Cambridge Biomedical Research Centre, Cambridge, UK

⁸ Bristol Heart Institute, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, UK

⁹ Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland

¹⁰ Institute of Cardiovascular Sciences, University of Birmingham, UK

SUPPLEMENTARY METHODS

The UK, Dutch and Spanish SCAD registries

The UK, Dutch and Spanish SCAD registries are national observational registries which have been previously described¹⁻³. Each was established independently but under the leadership of the European Society of Cardiology Acute Cardiovascular Care Association SCAD Study Group the registries have been working together to increase the power of observational analyses which can be substantially enhanced in this way. All registries accept referrals of SCAD patients from clinicians and additionally patients can self-refer to the UK registry via a web recruitment portal. As these are consented registries, all patients included are inherently survivors of SCAD with most patients consented after hospital discharge. The registries collect parallel data on patient demographics, past medical history and details of the SCAD presentation. Imaging data collected include the index angiogram and imaging conducted to assess for extra-coronary arteriopathies and at the time of recurrent AMI.

Angiographic analysis

Angiographic analysis was conducted using Medis® Suite software with 3-dimensional quantitative angiography undertaken using Q Angio XA 3D software. Initial analysis was conducted to assess the vessel location, AHA coronary segments ⁴ and a modified Yip-Saw classification for the SCAD location. ⁵ Multi-vessel disease was defined as discontiguous SCAD locations affecting more than one coronary territory. Multi-segment disease was defined as a single dissection site affecting more than one AHA coronary segment. Proximal disease was defined as dissections involving at least one of AHA coronary segments 1, 5, 6, or 11. 3D QCA analysis was restricted to cases where valid measurement could be made.

Patients with TIMI 0 flow beyond the lesion were excluded. Stent displaced haematoma volume was estimated from the Q Angio XA 3D QCA function ⁶ which enables estimation of atherosclerotic plaque volume (here interpreted as haematoma volume) by subtracting measured lumen volume from a predicted 'normal' lumen volume based on projected vessel boundaries from the 3D vessel reconstruction. The estimated stent displaced volume was then calculated as:

$$Displaced\ haematoma\ volume = \frac{(Haematoma\ volume\ \times\ Stent\ Length)}{Lesion\ Length}$$

. References

- 1. Al-Hussaini A, Abdelaty A, Gulsin GS, Arnold JR, Garcia-Guimaraes M, Premawardhana D, Budgeon C, Wood A, Natarajan N, Mangion K, Rakhit R, Hoole SP, Johnson TW, Berry C, Hudson I, Gershlick AH, Ladwiniec A, Kovac J, Squire I, Samani NJ, Plein S, McCann GP and Adlam D. Chronic infarct size after spontaneous coronary artery dissection: implications for pathophysiology and clinical management. *Eur Heart J*. 2020.
- 2. Diez-Villanueva P, Garcia-Guimaraes MM, Macaya F, Masotti M, Nogales JM, Jimenez-Kockar M, Velazquez M, Lozano I, Moreu J, Avanzas P, Salamanca J and Alfonso F. Spontaneous Coronary Artery Dissection and Menopause. *Am J Cardiol*. 2021.
- 3. Smaardijk VR, Mommersteeg PMC, Kop WJ, Pellegrini D, van Geuns RJ and Maas A. Psychological and clinical characteristics of patients with spontaneous coronary artery dissection: A case-control study. *International journal of cardiology*. 2021;323:1-6.
- 4. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML and Roe BB. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. *Circulation*. 1975;51:5-40.
- 5. Yip A and Saw J. Spontaneous coronary artery dissection-A review. *Cardiovascular diagnosis and therapy*. 2015;5:37-48.
- 6. Kishi S, Magalhaes TA, Cerci RJ, Zimmermann E, Matheson MB, Vavere A, Tanami Y, Kitslaar PH, George RT, Brinker J, Miller JM, Clouse ME, Lemos PA, Niinuma H, Reiber JHC, Kofoed KF, Rochitte CE, Rybicki FJ, Di Carli MF, Cox C, Lima JAC and Arbab-Zadeh A. Comparative effectiveness of coronary artery stenosis and atherosclerotic plaque burden assessment for predicting 30-day revascularization and 2-year major adverse cardiac events. *Int J Cardiovasc Imaging*. 2020.

eTable 1: Association between patient, clinical and intervention characteristics and risk of serious complications in a SCAD cohort

		Unadjusted				Age, sex and ethnicity adjusted*			
		n	OR (95% CI)	P	n	OR (95% CI)	P		
Patient Characteristics									
Age at first SCAD event, per year		215	0.98 (0.94; 1.03)	0.474	n/a	n/a	n/a		
Ethnicity (White European vs non-White European)		213	0.63 (0.17; 2.37)	0.494	n/a	n/a	n/a		
Male vs Female		215	0.59 (0.07; 4.78)	0.623	n/a	n/a	n/a		
Pregnant female vs Non-pregnant female		203	1.33 (0.27; 6.42)	0.724	201	1.08 (0.19; 6.12)	0.933		
Grading of tortuosity for all vessels imaged, per unit		214	0.96 (0.81; 1.15)	0.698	213	0.96 (0.80; 1.15)	0.676		
Clinical Characteristics									
Type of myocardial infarction	STEMI vs NSTEMI	215	0.83 (0.36; 1.91)	0.655	213	0.80 (0.34; 1.85)	0.599		
Type of myocardiai infarction	Cardiac arrest vs NSTEMI		0.57 (0.12; 2.80)	0.492		0.57 (0.12; 2.87)	0.499		
Left main stem vessel affected		215	2.95 (0.86; 10.15)	0.086	213	2.84 (0.78; 10.36)	0.114		
Left anterior descending artery affect	eted	215	0.55 (0.24; 1.25)	0.154	213	0.49 (0.21; 1.16)	0.106		
Left circumflex artery affected		215	1.80 (0.75; 4.28)	0.185	213	1.88 (0.78; 4.53)	0.158		
Right coronary artery affected		215	1.94 (0.71;5.30)	0.194	213	2.02 (0.73; 5.61)	0.176		
	Mid vs proximal	215	0.53 (0.22; 1.28)	0.156	213	0.52 (0.21; 1.30)	0.160		

AHA coronary segment	Distal vs proximal		-	-		-	-
involved	Branch vs proximal		0.60 (0.18; 2.00)	0.402		0.59 (0.17; 2.09)	0.415
More than one vessel involved		215	2.68 (0.89; 8.15)	0.081	213	2.84 (0.92; 8.80)	0.070
More than one segment within the vessel involved		215	2.38 (1.07; 5.35)	0.034	213	2.38 (1.04; 5.42)	0.038
Yip-Saw Classification based on	Type 2 vs Type 1	215	1.66 (0.46; 6.04)	0.442	213	1.66 (0.45; 6.07)	0.447
-	Type 3 vs Type 1		2.09 (0.36; 12.08)	0.410		1.93 (0.33; 11.27)	0.463
appearance when imaged	Type 4 vs Type 1		0.14 (0.01; 1.39)	0.092		0.14 (0.01; 1.40)	0.093
Intervention Details							
Type of intervention	Balloon vs stent	215	0.11 (0.01; 0.86)	0.035	213	0.11 (0.01; 0.86)	0.035
Type of intervention	Wiring vs stent		0.38 (0.05; 3.07)	0.367		0.38 (0.05; 3.03)	0.358
Maximum stent diameter, per mm		141	5.40 (2.34; 12.50)	<0.001	140	5.42 (2.29; 12.79)	<0.001
Total number of stents, per additional stent		155	1.63 (1.21; 2.21)	0.002	154	1.68 (1.22; 2.30)	0.001
Total length of stents, per mm		142	1.02 (1.00; 1.03)	0.020	141	1.02 (1.00; 1.03)	0.014
Proximal diameter, per mm		168	0.96 (0.49; 1.88)	0.898	166	0.94 (0.46; 1.89)	0.853
Length of lesion, per mm		141	1.01 (0.99; 1.03)	0.488	139	1.01 (0.99; 1.03)	0.487
Volume of haematoma, per mm ³		136	1.00 (0.99; 1.01)	0.644	135	1.00 (0.99; 1.01)	0.645
TIMI flow	1 vs 0 (No flow)	215	0.96 (0.13; 6.98)	0.970	213	0.92 (0.12; 6.74)	0.933

2 vs 0 (No flow)	1.90 (0.41; 8.82)	0.415	1.75 (0.37-8.27)	0.478
3 (Good flow) vs 0 (No flow)	0.47 (0.12; 1.81)	0.269	0.44 (0.11; 1.73)	0.237

^{*} Each patient characteristic, clinical characteristic and intervention factor was included separately in a model adjusting for age, sex and ethnicity

ACE - Angiotensin-converting enzyme; ARB - Angiotensin II Receptor Blockers; DAPT – dual antiplatelet therapy; NSTEMI – Non-ST-Elevation Myocardial Infarction; SCAD - Spontaneous Coronary Artery Dissection; STEMI - ST-Elevation Myocardial Infarction; TIMI - Thrombolysis in myocardial infarction

eTable 2: Risk of any complication with complete data on all predictors in SCAD-PCI patients (n=106)

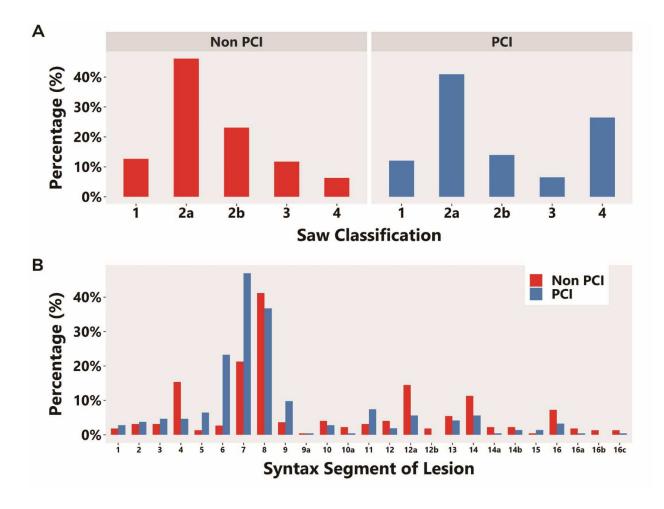
	Model 1 *		Model 2 *		
	OR (95% CI)	P	OR (95% CI)	P	
Age at first SCAD event, per year	-		1.05 (0.99; 1.11)	0.143	
Male vs Female	-		0.52 (0.06; 4.56)	0.559	
White European vs Not White European	-		1.03 (0.17; 6.17)	0.972	
AHA coronary segment involved					
Mid vs proximal	0.83 (0.32; 2.14)	0.696	0.97 (0.29; 3.18)	0.955	
Distal vs proximal	0.70 (0.22; 2.28)	0.550	1.64 (0.33; 8.02)	0.544	
Branch vs proximal	0.61 (0.17; 2.24)	0.460	1.89 (0.34; 10.42)	0.464	
More than one segment within the vessel involved	2.38 (1.06; 5.34)	0.036	1.62 (0.54; 4.86)	0.392	
Classification based on appearance when imaged					
Type 2 vs Type 1	4.17 (1.03; 16.83)	0.045	4.21 (0.88; 20.09)	0.072	
Type 3 vs Type 1	1.41 (0.16; 12.13)	0.753	1.99 (0.16; 24.46)	0.590	
Type 4 vs Type 1	1.23 (0.23; 6.59)	0.813	1.92 (0.29; 12.95)	0.502	
Maximum stent diameter, per cm	2.62 (1.28; 5.39)	0.009	1.91 (0.75; 4.86)	0.177	
Total number of stents, per additional stent	1.90 (1.26; 2.85)	0.002	1.62 (1.03; 2.56)	0.036	
Proximal diameter, per cm	1.93 (1.09; 3.42)	0.031	1.71 (0.84;3.49)	0.142	

Model 1: adjusted for age, sex and ethnicity.

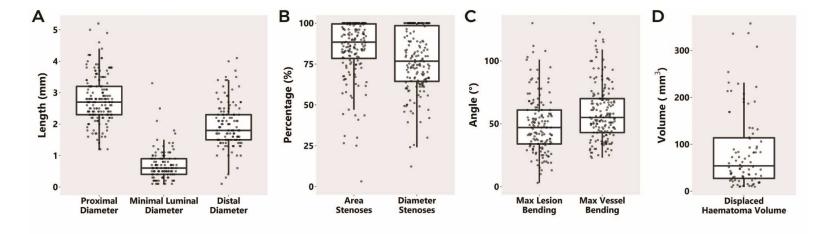
Model 2: also adjusted for variables significantly associated with the risk of any complication in Table 2 (AHA coronary segment involved, Classification based on appearance when imaged, maximum stent diameter, total number of stents, proximal diameter)

Intervention type was excluded as this cohort comprised individuals with stents due to the inclusion of maximum stent diameter and total number of stents

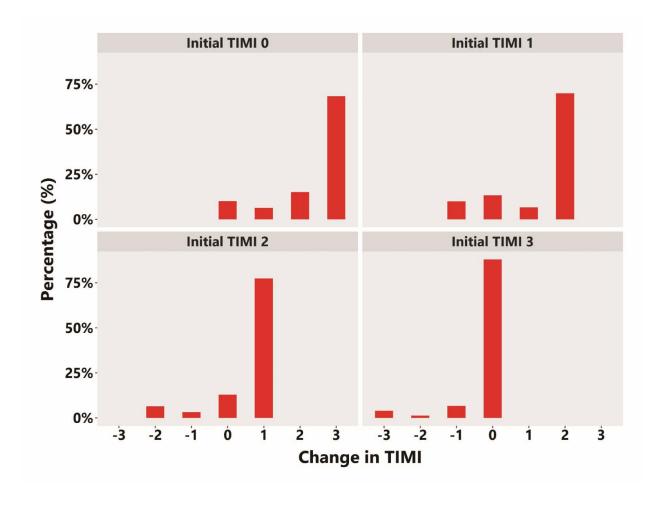
SCAD – Spontaneous coronary artery dissection


eTable 3: Risk of serious complications with complete data on all predictors in SCAD-PCI patients (n=140)

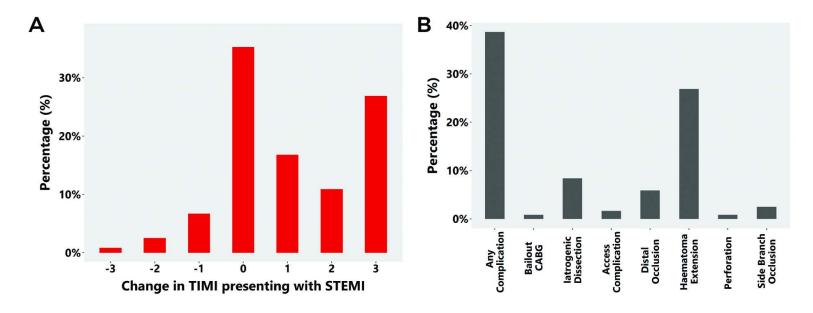
	Model 1 *		Model 2 *		
	OR (95% CI)	P	OR (95% CI)	P	
Age at first SCAD event, per year	-		1.03 (0.97; 1.10)	0.415	
Male vs Female	-		0.53 (0.04; 6.75)	0.623	
White European vs Not White European	-		0.28 (0.05; 1.52)	0.140	
Left main stem vessel affected	7.24 (1.56; 33.66)	0.012	1.81 (0.29; 11.23)	0.523	
More than one segment within the vessel	2.35 (0.88;6.30)	0.088	1.36 (0.44; 4.18)	0.7587	
involved					
Maximum stent diameter, per mm	5.42 (2.29; 12.79)	< 0.001	4.41 (1.69; 11.46)	0.002	
Total number of stents, per additional	1.48 (1.04; 2.11)	0.029	0.77 (0.35;1.73)	0.534	
stent					
Total length of stents, per mm	1.02 (1.00; 1.03)	0.014	1.02 (0.99; 1.05)	0.315	

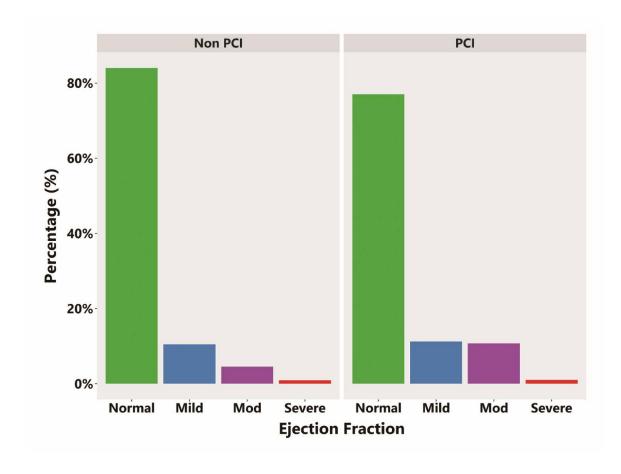

Model 1: adjusted for age, sex and ethnicity.

Model 2 also adjusted for variables significantly associated with the risk of any complication in Table 2


eFigure 1: A) Modified Yip-Saw classification type by clinical management, B) AHA coronary segment lesion by clinical management (n=436)

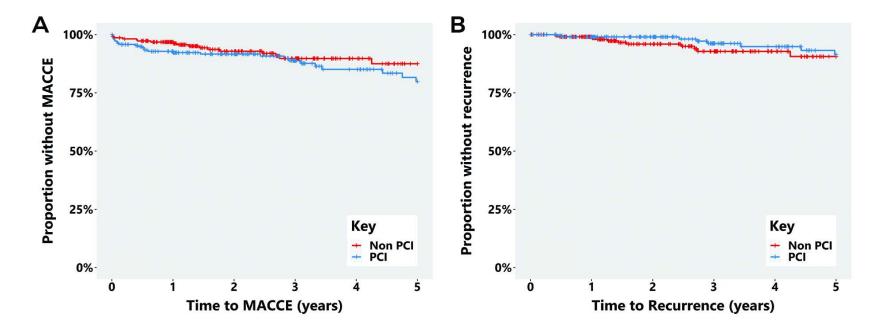
eFigure 2: SCAD-PCI lesion characteristics as assessed by 3D-QCA (n=215), including A) length, B) area and diameter of stenoses, C) maximum lesion and vessel bending, D) displaced haematoma volume.


eFigure 3: Change in TIMI grade flow by initial TIMI value in a SCAD-PCI cohort (n=215)


Initial TIMI 0 - n = 79, Initial TIMI 1 - n = 30, Initial TIMI 2 - n = 31, Initial TIMI 3 - n = 75

Supplemental material

eFigure 4: A) Changes in Thrombolysis in myocardial infarction (TIMI) flow for STEMI subset of SCAD-PCI patients (n=119) and B) PCI complications in the STEMI subset of SCAD-PCI cohort (n=119)


eFigure 5: Ejection fraction by clinical management

PCI: normal n=151, mild n=22, moderate n=21, severe n=2

Non-PCI: normal n=184, mild n=23, moderate n=10, severe n=2

eFigure 6: A) Kaplan-Meier plot of major adverse cardiovascular and cerebrovascular events (n=433), and B) recurrence (n=434) by intervention in a SCAD cohort

Proportional hazards model: MACCE p=0.3931, recurrence p=0.3087. Major Adverse Cardiovascular and Cerebrovascular Events (MACCE: death, stroke, myocardial infarction or revascularisation occurring at any point after discharge from the index SCAD event) and recurrence (a new angiographically confirmed SCAD occurring after discharge from the index episode and either anatomically or temporally separated from the first event). MACCE components - recurrent AMI (PCI 9.3%, 20/215, non-PCI 7.7%, 17/221); revascularisation (PCI 4.7%, non-PCI 1.4%); stroke (PCI 1.5%, non-PCI 0.7%); death (PCI 1.4%, non-PCI 0.5%))

eTable 4: Descriptive characteristics of the SCAD cohort, by national cohort

			Spain Netherlands			UK	
			(n=119)	(n=39)		(:	n=278)
Patient Characteristics							
Total (n %)		119	27.3%	39	8.9%	278	63.8%
Age at first SCAD event, y	rears (median, IQR)	52	(46-58)	50	(46-54)	46	(41-52)
Ethnicity (n %)	White European	108	91.5%	>34	>87.2%	263	95.0%
	Not White European	10	8.5%	<5	<12.8%	14	5.1%
C ((1)	Female	110	92.4%	>34	>87.2%	261	93.9%
Sex (n %)	Male	9	7.6%	<5	<12.8%	17	6.1%
D	Not pregnant (female)	>105	>95.5%	>30	>85.7%	240	88.8%
Pregnancy status (n %)	Pregnant (female)	<5	<4.5%	<5	<14.3%	21	5.6%
	Never smoker	72	(60.5%)	29	(74.4%)	185	(66.5%)
Smoking (n %)	Ex-smoker	15	(12.6%)	5	(12.8%)	79	(28.4%)
	Current smoker	32	(26.9%)	5	(12.8%)	14	(5.0%)
D' 1 . M 11'. (0)	No	>114	(>95.8%)	>34	(>87.2%)	>273	(>98.2%)
Diabetes Mellitus (n %)	Yes	<5	(<4.2%)	<5	(<12.8%)	<5	(<1.8%)
II	No	90	(75.6%)	23	(59.0%)	215	(77.3%)
Hypertension (n %)	Yes	29	(24.4%)	16	(41.0%)	63	(22.7%)
D 11 11 1 (M)	No	85	(71.4%)	33	(84.6%)	254	(91.4%)
Dyslipidaemia (n %)	Yes	34	(28.6%)	6	(15.4%)	24	(8.6%)
Clinical characteristics							
	NSTEMI	>50	43.7%	>20	56.4%	131	47.1%

Type of myocardial	STEMI	65	54.6%	14	35.9%	117	42.1%
infarction (n %)	Cardiac arrest	<5	5.9%	<5	<12.8%	30	10.8%
Left main stem vessel affected (n %)		<5	<4.2%	<5	<13.2%	10	3.6%
Left anterior descending arte	ery affected (n %)	63	52.9%	22	57.9%	182	65.5%
Left circumflex artery affect	red (n %)	38	31.9%	15	38.5%	78	28.1%
Right coronary artery affects	ed (n %)	19	16.0%	11	28.2%	57	20.5%
	Proximal	23	19.3%	6	15.4%	52	18.7%
AHA coronary segment	Mid	26	21.9%	7	18.0%	97	34.9%
involved (n %)	Distal	27	22.7%	15	38.5%	87	31.3%
	Branch	43	36.1%	11	28.2%	42	15.1%
More than one vessel involv	ed (n %)	9	7.6%	10	26.3%	32	11.5%
More than one segment in the vessel involved (n %)		28	23.5%	11	28.2%	104	37.4%
Tortuosity Index (median, IQR)		3	(0-5)	4	(3-6)	4	(2-6)
Yip-Saw Classification	Type 1	24	20.2%	<5	<12.8%	27	9.7%
based on appearance when	Type 2	66	55.4%	30	76.9%	175	62.9%
imaged (n %)	Type 3	12	10.1%	<5	<12.8%	26	9.4%
magea (ii 70)	Type 4	17	14.3%	<5	<12.8%	50	18.0%
Taking aspirin (n %)		110	93.2%	39	100.0%	266	97.1%
Taking DAPT (n %)		74	62.7%	32	84.2%	248	91.2%
Taking Beta-blocker (n %)		94	79.7%	26	66.7%	242	88.3%
Taking ACE inhibitors (n %)		58	49.2%	28	71.8%	218	79.3%
Taking statins (n %)		96	81.4%	25	64.1%	205	74.8%
Intervention Details							
Type of intervention (n %)	Conservative	59	49.6%	20	51.3%	142	51.1%

	Stent	45	37.8%	>10	>25.6%	98	35.3%
	Balloon	>10	<8.4%	5	12.8%	27	9.7%
	Wiring	<5	<4.2%	<5	<12.8%	11	4.0%
Maximum stent diameter, m	nm (median, IQR)	3	(2.5-3.5)	3	(2.5-3.0)	3	(2.5-3.5)
Total number of stents (median, IQR)		2	(1-2)	2	(1-3)	2	(1-3)
Total length of stents, cm (n	nedian, IQR)	38	(25-52)	37	(26-56)	51	(32.5-68)
Proximal diameter, mm (me	edian, IQR)	2.4	(1.95-2.70)	2.6	(2.28-3.13)	2.6	(2.20-3.10)
Length of lesion, mm (median, IQR)		32.9	(24.2-48.0)	39.7	(30.0-50.2)	38.8	(26.6-61.3)
Volume of haematoma, mm	Volume of haematoma, mm ³ (median, IQR)		(24.2-115.3)	59.6	(22.3-95.2)	61.9	(36.0-102.7)
	0 (No flow)	<5	<8.3%	0	0.0%	12	8.8%
Final TIMI grade flow (n	1	<5	<8.3%	<5	<26.3	7	5.2%
%)	2	8	13.3%	<5	<26.3	12	8.8%
	3 (Good flow)	46	76.7%	14	73.7%	105	77.2%
Outcomes							
Any complication (n %)		24	40.0%	6	30.0%	57	41.0%
Serious complication (n %)		10	16.7%	<5	<26.3%	15	11.0%
Time to MACCE (median, IQR)		1.10	(0.92-2.07)	1.79	(1.18-2.89)	3.01	(1.47-4.79)
MACCE (n %)		10	8.4%	5	12.8%	38	13.7%
Time to Recurrence (median, IQR)		1.11	(0.97-2.04)	1.96	(1.19-2.95)	3.09	(1.76-5.00)
Recurrence (n %)		5	4.3%	<5	<12.8%	21	7.6%

Cells with small counts of less than five have been replaced with "<5" to reduce the risk of identifying individuals from the data.