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1 INTRODUCTION 

This supplementary technical appendix describes the mathematical model structure, parameterization, 

and statistical analysis of the accompanying paper in further detail. 

1.1  Model Framework 

The mathematical models for SARS-CoV-2 transmission dynamics presented in this study are network-

based transmission models in which uniquely identifiable relational contact dyads were simulated and 

tracked over time. This contact structure is represented through the use of temporal exponential-family 

random graph models (TERGMs). On top of this dynamic network simulation, the epidemic model 

represents demography (exits, and aging), interhost epidemiology (disease transmission), intrahost 

epidemiology (disease progression), and clinical epidemiology (disease diagnosis and treatment and 

prevention interventions). Individual attributes related to these processes are stored and updated in 

discrete time over the course of each epidemic simulation. 

1.2 Model Software 

The models in this study were programmed in the R and C++ software languages using the EpiModel 

[http://epimodel.org/] software platform for epidemic modeling. EpiModel was developed by the authors 

for simulating complex network-based mathematical models of infectious diseases.(1) EpiModel depends 

on Statnet [http://statnet.org/], a suite of software in R for the representation, visualization, and statistical 

analysis of complex network data.(2) 

EpiModel allows for a modular expansion of its built-in modeling tools to address novel research 

questions. We have developed a set of extension modules into a software package called 

EpiModelCOVID. This software is available for download, along with the scripts used in the execution of 

these models. The tools and scripts to run these models are contained in two GitHub repositories: 

• [http://github.com/EpiModel/EpiModelCOVID] contains the general extension software package. 

Installing this using the instructions listed at the repository homepage will also load in EpiModel and 

the other dependencies. 

• [http://github.com/EpiModel/COVIDCruiseShip] contains the scripts to execute the models and to run 

the statistical analyses provided in the manuscript. 

1.3 Core Model Specifications 

We started with a network size of 3711 persons on the Diamond Princess Cruise Ship. Age was 

represented as a continuous attribute, with initial distributions drawn from empirical distributions: 

passengers averaged 69 years old (interquartile range: 62–73) and crew averaged 36 years old 

(interquartile range: 29–43). The network size was allowed to decrease with departures related to 

mortality. We used a two-stage simulation framework, first calibrating the model to diagnosed cases on 

the ship (Stage 1), and then simulating the reference and counterfactual intervention scenarios for 30 
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days in most scenarios. The time unit used throughout the simulations was one day. Unless otherwise 

noted, all rate-based parameters listed below are to be interpreted as the rate per day and all duration-

based estimates are to be interpreted as the duration in days. 

2 NETWORKS OF SOCIAL CONTACTS 

We modeled networks of three interacting types of network contacts relations: passenger to passenger, 

passenger to crew, and crew to crew. We first describe the methods conceptually, including the 

parameters used to guide the model and their derivation, and then present the formal statistical modeling 

methods. Consistent with our parameter derivations, all contacts are defined as those in which respiratory 

exposure is expected to occur at least once. 

2.1  Conceptual Representation of Networks 

Our modeling methods aim to preserve certain features of the cross-sectional and dynamic network 

structure as observed in our primary data, while also allowing for mean contact durations to be targeted 

to those reported for different groups and relational types. Our methods do so within the context of 

changing population size (due to deaths and departures from the population) and changing composition 

by attributes such as age. 

This model involved representing three types of contact networks at two distinct time points. The three 

networks represented passenger-passenger, passenger-crew, and crew-crew contacts. We modeled 

these as three overlapping networks with a shared node set but differing edges (instead of one large 

network) to provide maximal flexibility in model parameterization and intervention design. The three 

modeled networks were also doubled to represent a “pre-lockdown” and “post-lockdown” composition. 

Although the core network features remained the same, the density and determinants of the network 

structure varied between these time points. 

Conceptually, the 6 network models are defined as follows: 

• Passenger-Passenger Network 

o Pre-Lockdown 

§ Contacts between passengers, with most contacts occurring with passenger in same 

cabin. Average daily degree of 5. 

§ Contacts prohibited with crew members in this network. 

o Post-Lockdown 

§ All passenger-passenger contacts limited to within-cabin. Same within-cabin daily 

degree (average degree of 1) but no contacts with passengers outside of cabin.  

§ Contacts prohibited with crew members in this network. 

• Passenger-Crew Network 

o Pre-Lockdown 

§ Contacts between passengers and crew, with an average daily degree of 8. 
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§ 50% of contacts restricted to passenger-crew pairs within same ship sector.  

§ No contacts within person type permitted. 

o Post-Lockdown 

§ Contacts limited to 2 daily visits to each cabin (for cleaning and meal services)  

§ 98% of contacts restricted to passenger-crew pairs within the same ship sector.  

• Crew-Crew Network 

o Pre-Lockdown 

§ Contacts between crew, with an average daily degree of 10. 

§ Contacts prohibited with passengers in this network. 

o Post-Lockdown 

§ Contacts between crew, with an average daily degree of 2. 

§ 98% of contacts restricted to crew-crew pairs within same ship sector.  

§ Contacts prohibited with passengers in this network. 

Algorithmically, we implemented the swap of network models from pre-lockdown to post-lockdown by 

implementing a deterministic time step at which the appropriate network model was selected as input for 

the simulation.  

2.2  Statistical Representation of Contact Networks 

Exponential-family random graph models (ERGMs) provide a foundation for statistically principled 

simulation of local and global network structure given a set of target statistics from empirical data. Social 

contacts were modeled using modeled using cross-sectional ERGMs.(3) This allowed for more flexibility 

in relational dissolution than temporal ERGMs, in which this is a stochastic process. Repeated contacts 

within the same dyads (e.g., passenger cabinmates) were allowed through mixing constraints in the 

cross-sectional network composition.  

Formally, our statistical models for relational dynamics can be represented as a set of six equations for 

the conditional log odds (logits) of relational existence at time t: 

!"#$% &'()!",$%&' = 1,	)!",$( ./  = 0))*1 &#))(3)/ passenger-passenger, pre-lockdown 

!"#$% &'()!",$+&' = 1,	)!",$( ./  = 0))*1 &#))(3)/ passenger-passenger, post-lockdown 

!"#$% &'()!",$%&' = 1,	)!",$( ./  = 0),*1 &#),(3)/ passenger-crew, pre-lockdown 

!"#$% &'()!",$+&' = 1,	)!",$( ./  = 0),*1 &#),(3)/ passenger-crew, post-lockdown 

!"#$% &'()!",$%&' = 1,	)!",$( ./  = 0,,*1(#,,(3). crew-crew, pre-lockdown 

!"#$% &'()!",$+&' = 1,	)!",$( ./  = 0,,*1(#,,(3). crew-crew, post-lockdown 

where: 

• )!",$ = the relational status of persons i and j at time t (1 = in relationship/contact, 0 = not). 
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• )!",$(  = the network complement of i,j at time t, i.e. all relations in the network other than i,j. 

• #(3) = vector of network statistics in each model (the empirical statistics defined in the tables 

above). 

• 0 = vector of parameters in the model. 

For #(3) and 0, the subscript indicates the contact network type. For )!",$ the subscript differentiates the 

pre- and post-lockdown times corresponding to day 15. The recursive dependence among the 

relationships renders the model impossible to evaluate using standard techniques; we use MCMC in 

order to obtain the maximum likelihood estimates for the	0	vectors given the #(3) vectors. 

Converting the statistics into our fully specified network models consists of the following steps: 

1. Construct a cross-sectional network of 3711 persons with no contacts (an empty network). 

2. Assign persons demographics (age) based on ship census data, as well as a passenger type 

(corresponding to passenger or crew). For passengers, individuals were assigned a cabin 

number (and thus cabin mate). Both passengers and crew were assigned a sector on the ship to 

which the cabin and crew were assigned. 

3. Calculate the target statistics (i.e., the expected count of each statistic at any given moment in 

time) associated with the terms in the existence model. 

4. Estimate the coefficients for the existence model that represent the maximum likelihood estimates 

for the expected cross-sectional network structure. 

Steps 1–4 occur within the EpiModel software and used the ERGM methods therein. They are completed 

efficiently by the use of an approximation in Step 4 (4). During the subsequent model simulation, we use 

the method of Krivitsky (5) to adjust the coefficient for the first term in each model at each time step, in 

order to preserve the same expected mean degree (relationships per person) over time in the face of 

changing network size and nodal composition. At all stages of the project, simulated partnership networks 

were checked to ensure that they indeed retained the expected cross-sectional structure and relational 

durations throughout the simulations. 

3 MODEL CALIBRATION 

We used Bayesian approaches to define a select set of model parameters with uncertain values, 

construct prior distributions for those parameters, and fit the model to diagnosed SARS-CoV-2 case data 

to estimate the posterior distributions of those parameter values. 

3.1  Calibration Methods 

We used Approximate Bayesian Computation with sequential Monte Carlo sampling (ABC-SMC) 
methods (6, 7) to calibrate \ parameters in which there was measurement uncertainty in order to match 
the diagnosed cases. The details of ABC depend on the specific algorithm used, but in this case, ABC-
SMC proceeded as follows. 
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For each candidate parameter, 0, to be estimated, we: 
1. Sampled a candidate 0! from a prior distribution 5(0) 
2. Simulated the epidemic model with candidate value, 0!.  
3. Tested if a distance statistic, 6 (e.g., the difference between observed HIV prevalence and model 

simulated prevalence) was greater than a tolerance threshold, 7. 
a. If 6 > 	7 then discard 

b. If 6 < 	7 then add the candidate 0! to the posterior distribution of 0.  

4. Sample the next sequential candidate, 0!-&, either independently from 5(0) (if 3a) or from 0! plus 
a perturbation kernel with a weight based on the current posterior distribution (if 3b). 

3.2 Justification of Calibration to Cumulative Incidence Data 
We calibrated the model to match the target statistics the cumulative positive SARS-CoV-2 diagnoses 
on the Diamond Princess ship. Given the potential for overestimating the precision of fitted parameters 
when using cumulative incidence data (8, 9), we experimented with fitting the model to both raw daily 
cases and cumulative daily cases. While we appreciate the theoretical advantages of fitting to raw cases 
suggested in this literature, the procedures were not practical here for four reasons.  

First, daily case counts were low because the underlying target population on the ship was small. This is 
in contrast with the modeling work in King (8) and Towers (9), where the target population was country 
wide and the daily case counts numbered in the hundreds or thousands. Attempting to calibrate our 
model to raw case counts simply failed because of the noisiness of the data and algorithms.  

Second, the observed cases on the Diamond Princess were a function of diagnosis campaigns with 
relatively wide temporal fluctuation (i.e., there were waves of diagnoses on certain days). This was in 
contrast to the Ebola case data in King and Towers, where the diagnoses were more slowly ramping up 
as the outbreak progressed. If we fit to the daily cases in our model, we could end up overfitting our 
screening rate parameters versus our more parsimonious approach of calibrating periods of screening 
rates as they increased over the outbreak (see Supplemental Table 1). 

Third, in contrast to the compartmental models featured in King and the statistical time-series models in 
Towers, our individual-based models have inherently more model stochasticity as a function of model 
structure. Thus, our model prediction intervals reflect the additional uncertainty involved in stochastic 
outbreaks in small population settings. 

Finally, in contrast to both King and Towers, our primary goal was not parameter estimation (e.g., both of 
those papers used models to estimate R0) but counterfactual intervention scenario projection. Of course, 
the uncertainty of our projections is related to the precision of the parameter estimates, but in a much 
more indirect way than the direct parameter estimation experiments of King and Towers. 
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3.3 Calibration Results 
We calibrated the model to cumulative daily counts (see Supplemental Figure 1) using calibration prior 
distributions in Supplemental Table 1. Overall, the model fit well to the cumulative data as well as the 
raw daily case counts. The estimates of the posterior distribution medians and 95% credible intervals 
are provided in Supplemental Table 1. For primary analyses, we used the maximum likelihood estimates 
(medians) from the posterior estimates for model selection purposes. For sensitivity analyses 
(Supplemental Figures 3–5), we sampled from across the posterior distribution to evaluate the 
correlation between these estimated parameters and cumulative incidence.   

3.4 Post-Calibration Sensitivity Analyses 
To evaluate the sensitivity of the primary outcome (cumulative incidence) to the fitted parameters, we 
conducted a probabilistic sensitivity analysis by sampling from the full posterior distributions of each 
parameter. This involved drawing from the posterior distributions 10,000 times and recording the 
cumulative incidence with each parameter set. The bivariate comparisons between each sampled 
parameter and the outcome are visualized in Supplemental Figures 3–5. The model outcomes are more 
closely correlated with the infection probability and contact intensity parameters than the screening rate 
parameters in these bivariate comparisons. 

To numerically quantify the independent relationships, we fit a multivariable metamodel with linear 
regression, with the 10,000 simulations as individual observations. This regression model estimated the 
relationship between cumulative incidence and symptomatic screening at day 26, asymptomatic 
screening at day 26, the per-contact infection probability, and the per-dyad exposure intensity. We 
found no statistically significant relationships with symptomatic screening at day 26 (32.9 fewer cases 
per 1 unit increase in the screening rate; 95% CI: -167.3, 101.5; p = 0.63) or asymptomatic screening at 
day 26 (144.9 more cases per 1 unit increase in the screening rate; 95% CI: -38.7, 328.6; p = 0.12). 
However, the infection probability (103.3 more cases per 1 percentage point increase in the parameter; 
95% CI: 99.8, 106.8; p < 0.001) and contact intensity (208.9 more cases per one unit increase in the per-
dyad exposures per day; 95% CI: 204.4, 213.6; p < 0.001) were strongly associated with cumulative 
incidence. This multivariable metamodel approach to sensitivity analysis suggests that the intervention 
results generally may be sensitive to the calibrated parameters related to the force of infection.  
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SUPPLEMENTAL FIGURES 
 
Supplemental Figure 1. Comparison of model calibration to cumulative diagnoses to raw (daily) case counts. As noted above, the daily case counts were noisy 
due to small population size and temporally varying screening campaigns on the ship, so we elected to calibrate to cumulative diagnoses instead with the caveat 
that our precision may be overestimated.  
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Supplemental Figure 2. COVID-19 transmission and disease progression is represented as transitions from an exposed latent state to either a symptomatic 
(clinical) or asymptomatic (subclinical) pathway. Transmissibility is reduced within the asymptomatic pathway. Disease-induced mortality occurs within the 
infectious, symptomatic state only.  
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Supplemental Figure 3. Sensitivity analysis of relationship between symptomatic screening rates in three periods and cumulative SARS-CoV-2 incidence.  
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Supplemental Figure 4. Sensitivity analysis of relationship between asymptomatic screening rate in two periods and cumulative SARS-CoV-2 incidence.  
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Supplemental Figure 5. Sensitivity analysis of relationship between infection probability per contact and cumulative incidence and contact intensity (number of 
exposures per day per dyad) and cumulative SARS-CoV-2 incidence.  
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SUPPLEMENTAL TABLES 
 

Supplemental Table 1. Calibrated Model Parameters 

Parameter Uniform Prior Bounds Posterior Median (95% Credible 
Intervals) 

Transmission probability 
per contact 5% – 15% 11.1% (7.4%, 14.2%) 

Passenger-Passenger 
within Dyad Exposures  1 – 9 5.12 (2.31, 7.88) 

Screening Rates 
(Symptomatic Cases) 

Days 1–15: 0 
Days 16–20: 0.1 – 0.3 
Days 21–25: 0.1 – 0.3 
Days 26–31: 0.7 – 0.9 

Days 1–15: 0 
Days 16–20: 0.154 (0.102, 0.264) 
Days 21–25: 0.193 (0.109, 0.278) 
Days 26–31: 0.818 (0.715, 0.893) 

Screening Rates 
(Asymptomatic Cases) 

Days 1–15: 0 
Days 16–20: 0 
Days 21–25: 0.01 – 0.3 
Days 26–31: 0.05 – 0.15 

Days 1–15: 0 
Days 16–20: 0 
Days 21–25: 0.018 (0.010, 0.032) 
Days 26–31: 0.219 (0.159, 0.278) 
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Supplemental Table 2. Primary Model Parameters 

Parameter Value Source 

Transmission probability per contact 11% Kraay 2020 (10); 
Fitted 

Relative reduction in transmission with PPE 40% Chu 2020 (11) 

Passenger-Passenger Daily Mean Degree, Pre-
Lockdown 5 Rocklov 2020 (12); 

Xue 2020 (13) 

Passenger-Passenger Proportion of Network Degree 
within Cabin, Pre-Lockdown 20% Moriarty 2020 (14); 

Assumed 

Passenger-Passenger Daily Mean Degree, Post-
Lockdown 1 Moriarty 2020 (14); 

Rocklov 2020 (12) 

Passenger-Passenger Proportion of Network Degree 
within Cabin, Post-Lockdown 100% Moriarty 2020 (14); 

Assumed 

Passenger-Crew Daily Mean Degree, Pre-Lockdown 8 Rocklov 2020 (12); 
Xue 2020 (13) 

Passenger-Crew Proportion of Network Degree 
within Same Sector, Pre-Lockdown 50% Moriarty 2020 (14); 

Assumed 

Passenger-Crew Daily Mean Degree, Post-Lockdown 2 Moriarty 2020 (14); 
Rocklov 2020 (12) 

Passenger-Crew Proportion of Network Degree 
within Same Sector, Post-Lockdown 98% Moriarty 2020 (14); 

Assumed 

Crew-Crew Daily Mean Degree, Pre-Lockdown 10 Rocklov 2020; Xue 
2020 

Crew-Crew Daily Mean Degree, Post-Lockdown 2 Moriarty 2020; 
Rocklov 2020 

Crew-Crew Proportion of Network Degree within 
Same Sector, Post-Lockdown 98% Moriarty 2020 (14); 

Assumed 

Passenger-Passenger within Dyad Exposures  5.1 per day Fitted 

Passenger-Crew within Dyad Exposures 1 per day Assumed 

Crew-Crew within Dyad Exposures 1 per day Assumed 

Within Dyad Exposure Rate Reduction Following 
Positive Diagnosis 0.1 multiplier Moriarty 2020 (14); 

Chu (11); Assumed 

Proportion Symptomatic  

10–19 years: 40% 
20–29 years: 25% 
30–39 years: 37% 
40–49 years: 42% 
50–59 years: 51% 
60–69 years: 59% 
70–79 years: 72% 
80+ years: 76% 

Davies 2020 (15) 

Duration of Latent Period 4 days Davies 2020 (15) 

Duration of Preclinical Infectious Period 1.5 days Davies 2020 (15) 

Duration of Clinical Infectious Period 3.5 days Davies 2020 (15) 
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Duration of Subclinical Infectious Period 5 days Davies 2020 (15) 

Natural Mortality Rate Yearly age-specific rate 0 
to 100 years 

Global Burden of 
Disease (16) 

COVID-Related Mortality (Multiplier on natural 
mortality) 180 Manually calibrated  

Screening Rates (Symptomatic Cases) 

Days 1–15: 0 
Days 16–20: 0.162 
Days 21–25: 0.191 
Days 26–31: 0.817 

Fitted 

Screening Rates (Asymptomatic Cases) 

Days 1–15: 0 
Days 16–20: 0 
Days 21–25: 0.019 
Days 26–31: 0.216 

Fitted 

PCR Test Sensitivity 80% Lopman 2020 (17) 

Number of Ship Passengers 2,666 Moriarty 2020 (14) 

Number of Crew 1,045 Moriarty 2020 (14) 
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Supplemental Table 3. Impact of Network Isolation Timing, With and Without Personal Protective Equipment (PPE), on COVID-19 Incidence and Mortality at 1 Month 

Scenario 

Cumulative Incidence Cumulative Mortality 

Total NIA1 PIA2 Total NDA3 PDA4 

Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) 

Base Isolation Scenario      

Day 15 (with PPE) 948.0 (388.0, 1534.2) – – 10.0 (3.0, 20.0) – – 

Varying Network Isolation Time (with PPE) 

Day 1 15.0 (5.0, 32.0) 931.5 (928.0, 935.0) 98.4 (98.3, 98.4) 0.0 (0.0, 1.0) 10.0 (10.0, 10.0) 100.0 (100.0, 100.0) 

Day 5 38.0 (12.0, 80.0) 909.0 (903.5, 914.0) 96.0 (95.9, 96.1) 0.0 (0.0, 2.0) 10.0 (10.0, 10.0) 100.0 (100.0, 100.0) 

Day 10 221.0 (91.0, 418.1) 715.0 (704.0, 726.0) 76.0 (75.4, 76.5) 2.0 (0.0, 7.0) 8.0 (8.0, 8.0) 77.8 (77.8, 78.6) 

Day 20 2225.5 (1328.0, 2866.1) -1265.2 (-1287.5, -1243.0) -132.2 (-135.6, -128.6) 23.0 (11.0, 36.0) -13.0 (-13.0, -13.0) -127.3 (-133.3, -122.2) 

Day 25 3205.5 (2410.6, 3465.0) -2224.0 (-2239.0, -2208.0) -232.6 (-235.9, -228.8) 31.0 (18.0, 43.0) -20.0 (-21.0, -20.0) -200.0 (-209.1, -196.4) 

None 3522.0 (3298.0, 3600.0) -2557.0 (-2567.5, -2547.0) -269.4 (-271.6, -267.3) 32.0 (19.0, 45.0) -22.0 (-22.0, -21.0) -212.5 (-220.0, -208.3) 

Varying Network Isolation Time (no PPE) 

Day 1 28.0 (8.0, 67.0) 918.0 (912.5, 923.0) 97.0 (96.9, 97.1) 0.0 (0.0, 2.0) 10.0 (10.0, 10.0) 100.0 (100.0, 100.0) 

Day 5 62.0 (19.0, 136.1) 881.0 (874.5, 887.5) 93.3 (93.2, 93.5) 0.0 (0.0, 3.0) 9.0 (9.0, 10.0) 100.0 (100.0, 100.0) 

Day 10 315.5 (121.0, 560.1) 625.5 (614.0, 638.0) 66.5 (65.8, 67.2) 3.0 (0.0, 8.0) 7.0 (7.0, 7.0) 72.7 (71.4, 75.0) 

Day 15 1112.5 (490.0, 1755.1) -151.5 (-171.5, -132.5) -16.0 (-18.4, -13.8) 11.0 (3.0, 22.0) -1.0 (-1.0, 0.0) -6.7 (-9.1, 0.0) 

Day 20 2336.0 (1402.0, 2928.1) -1380.5 (-1400.5, -1358.5) -144.0 (-147.4, -140.5) 23.0 (11.0, 37.0) -13.0 (-13.0, -13.0) -129.7 (-133.4, -124.0) 

Day 25 3228.0 (2520.6, 3481.0) -2254.5 (-2271.0, -2240.0) -236.0 (-239.4, -232.7) 31.0 (17.0, 45.0) -21.0 (-22.0, -21.0) -209.5 (-216.7, -200.0) 

None 3520.0 (3255.9, 3603.0) -2556.5 (-2566.0, -2547.5) -269.5 (-271.8, -267.0) 32.0 (19.0, 45.0) -22.0 (-22.0, -21.0) -214.8 (-222.2, -210.0) 
1 Number of infections averted relative to base scenario     
2 Percent of infections averted relative to base scenario     
3 Number of COVID-related deaths averted relative to base scenario     
4 Percent of COVID-related deaths averted relative to base scenario     
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Supplemental Table 4. Directionality of Transmission and Contact Intensity Reductions, with Day 15 Network Lockdown and PPE, on COVID-19 Incidence 
at 1 Month 

Scenario 

Total Passenger to Passenger Passenger to Crew Crew to Passenger Crew to Crew 

Cumulative Incidence Cuml. Incid. Cuml. Incid. Cuml. Incid. Cuml. Incid. 

Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) 

With Contact Intensity Reductions, Network Lockdown, and PPE at Day 15 

Base Scenario      

No Intensity Reduction 933.5 (366.0, 1556.2) 551.0 (213.9, 941.0) 163.0 (66.0, 265.0) 124.0 (46.0, 211.0) 93.0 (33.0, 175.0) 

Varying Passenger-Passenger Contact Intensity 

50% Reduction 862.5 (353.9, 1454.0) 488.0 (203.9, 843.0) 155.0 (67.0, 257.0) 124.5 (47.0, 216.0) 93.5 (29.0, 174.0) 

90% Reduction 765.5 (316.9, 1348.0) 401.0 (164.9, 727.0) 145.5 (63.0, 248.0) 122.0 (44.0, 214.0) 90.0 (31.0, 173.0) 

100% Reduction 749.0 (297.9, 1255.1) 381.0 (155.9, 677.0) 147.5 (61.0, 241.0) 126.0 (44.0, 208.0) 93.0 (32.0, 168.0) 

Varying Passenger-Crew Contact Intensity 

50% Reduction 849.0 (352.9, 1379.1) 545.0 (230.0, 868.0) 125.5 (54.0, 203.0) 87.0 (31.0, 158.1) 90.0 (31.0, 168.0) 

90% Reduction 787.0 (332.9, 1346.1) 535.5 (227.0, 899.0) 96.0 (41.0, 173.0) 62.0 (17.0, 130.0) 87.0 (30.0, 170.0) 

100% Reduction 744.0 (325.0, 1274.1) 519.5 (225.9, 865.0) 86.0 (37.0, 152.0) 55.0 (17.0, 117.0) 84.0 (29.0, 167.0) 

Varying Crew-Crew Contact Intensity 

50% Reduction 897.0 (379.9, 1471.2) 542.0 (220.8, 904.0) 161.0 (70.0, 254.0) 120.0 (48.0, 203.1) 74.0 (23.0, 142.0) 

90% Reduction 899.0 (404.0, 1529.2) 558.0 (255.0, 943.2) 165.0 (78.0, 274.0) 118.0 (47.0, 206.0) 61.0 (17.0, 132.0) 

100% Reduction 895.5 (362.9, 1459.1) 558.0 (218.0, 909.1) 162.0 (68.0, 263.0) 115.0 (44.0, 200.0) 55.0 (15.0, 119.0) 

With Contact Intensity Reductions and PPE at Day 1, and No Network Lockdown 

Base Scenario      

No Intensity Reduction 3222.0 (2839.9, 3385.0) 2311.0 (2091.0, 2402.0) 472.0 (387.9, 526.0) 151.0 (116.0, 191.0) 280.0 (205.0, 335.0) 

Varying Passenger-Passenger Contact Intensity 

50% Reduction 1623.5 (783.9, 2241.0) 1012.0 (489.9, 1389.0) 232.5 (110.0, 322.0) 186.5 (85.0, 273.0) 194.0 (81.0, 288.0) 

90% Reduction 206.0 (44.0, 471.0) 38.0 (9.0, 85.0) 35.0 (8.0, 75.0) 68.5 (12.0, 170.0) 63.0 (11.0, 150.0) 

100% Reduction 109.0 (14.0, 301.1) 0.0 (0.0, 0.0) 19.0 (3.0, 48.0) 46.0 (4.0, 133.0) 42.0 (3.0, 125.0) 
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Varying Passenger-Crew Contact Intensity 

50% Reduction 2925.0 (2454.8, 3144.1) 2358.0 (2047.9, 2470.0) 298.0 (216.0, 352.0) 48.0 (30.0, 69.0) 218.0 (131.0, 292.0) 

90% Reduction 2526.0 (2092.9, 2709.0) 2375.0 (1995.9, 2507.0) 75.0 (46.0, 99.0) 2.0 (0.0, 7.0) 68.5 (23.0, 126.0) 

100% Reduction 2375.5 (2042.9, 2498.0) 2375.5 (2042.9, 2498.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 

Varying Crew-Crew Contact Intensity 

50% Reduction 3111.5 (2658.0, 3295.0) 2319.0 (2059.8, 2414.0) 518.0 (397.0, 584.0) 131.0 (97.0, 166.0) 139.0 (90.0, 178.0) 

90% Reduction 3030.0 (2580.8, 3203.0) 2331.0 (2040.8, 2423.0) 555.0 (403.9, 632.0) 116.0 (87.0, 148.0) 26.0 (14.0, 40.0) 

100% Reduction 3000.5 (2621.9, 3192.0) 2324.0 (2077.8, 2428.1) 558.5 (429.9, 650.0) 114.0 (86.0, 143.0) 0.0 (0.0, 0.0) 
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Supplemental Table 5. Impact of Varying Intensity of Diagnosis-Based Case Isolation, with Asymptomatic Screening Starting at Day 15, Stratified by Network Lockdown and 
PPE Use, on COVID-19 Incidence and Mortality at 1 Month 

Scenario 

Cumulative Incidence Cumulative Mortality 

Total NIA1 PIA2 Total NDA3 PDA4 

Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) 

Network Lockdown and PPE at Day 15 

100% Isolation 928.0 (416.9, 1545.1) 10.0 (-8.5, 30.5) 1.1 (-0.9, 3.3) 10.0 (3.0, 21.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 

90% Isolation (Base) 943.0 (411.8, 1556.0) 0.0 (-20.5, 19.5) 0.0 (-2.2, 2.1) 10.0 (3.0, 21.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 

75% Isolation 958.5 (431.0, 1525.1) -5.5 (-23.5, 14.0) -0.6 (-2.6, 1.4) 10.0 (3.0, 20.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 

50% Isolation 953.0 (414.9, 1548.0) -16.5 (-35.5, 2.0) -1.8 (-3.8, 0.2) 10.0 (2.0, 21.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 

25% Isolation 974.5 (410.0, 1583.0) -30.0 (-49.5, -9.0) -3.2 (-5.3, -0.9) 10.0 (3.0, 21.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 

No Isolation 960.5 (426.9, 1588.0) -28.0 (-45.5, -8.0) -3.0 (-4.9, -0.9) 10.0 (3.0, 21.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 

No Network Lockdown or PPE 

100% Isolation 3499.0 (3251.0, 3591.0) 18.0 (14.0, 22.0) 0.5 (0.4, 0.6) 32.0 (19.0, 46.0) 0.0 (-1.0, 0.0) 0.0 (-2.9, 0.0) 

90% Isolation (Base) 3516.0 (3288.9, 3603.0) – – 31.0 (19.0, 44.0) – – 

75% Isolation 3544.0 (3373.0, 3617.0) -27.0 (-30.5, -23.0) -0.8 (-0.9, -0.7) 32.0 (21.0, 46.0) -1.0 (-1.0, 0.0) -2.9 (-3.4, 0.0) 

50% Isolation 3578.0 (3420.0, 3632.0) -59.0 (-62.5, -56.0) -1.7 (-1.8, -1.6) 33.0 (20.0, 46.0) -1.0 (-1.0, -1.0) -3.2 (-3.9, -2.7) 

25% Isolation 3601.0 (3492.9, 3644.0) -81.0 (-84.0, -79.0) -2.3 (-2.4, -2.2) 32.0 (19.0, 46.0) -1.0 (-2.0, -1.0) -3.3 (-5.1, -2.9) 

No Isolation 3621.0 (3514.9, 3656.0) -100.0 (-103.0, -97.0) -2.8 (-2.9, -2.8) 33.0 (20.0, 45.0) -1.0 (-2.0, -1.0) -3.3 (-5.3, -2.8) 
1 Number of infections averted relative to base scenario     
2 Percent of infections averted relative to base scenario     
3 Number of COVID-related deaths averted relative to base scenario     
4 Percent of COVID-related deaths averted relative to base scenario     
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Supplemental Table 6. Impact of Timing of Mass Asymptomatic Screening and Diagnosis-Based Case Isolation, with No Network Lockdown and Stratified by PPE Use, on 
COVID-19 Incidence and Mortality at 1 Month 

Scenario 

Cumulative Incidence Cumulative Mortality 

Total NIA1 PIA2 Total NDA3 PDA4 

Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) 

Varying Timing of Mass Screening (Never PPE) 

Day 1 2286.0 (0.0, 3421.0) 1403.5 (1396.0, 1409.0) 38.0 (37.9, 38.1) 7.0 (0.0, 24.0) 29.0 (28.0, 29.0) 81.2 (80.6, 81.8) 

Day 5 2621.5 (16.0, 3353.1) 1070.5 (1067.0, 1074.0) 29.0 (28.9, 29.1) 9.0 (0.0, 23.0) 27.0 (27.0, 27.0) 75.6 (75.0, 76.0) 

Day 10 2917.0 (1787.8, 3310.1) 775.0 (772.5, 777.5) 21.0 (20.9, 21.1) 13.0 (4.0, 25.0) 23.0 (22.0, 23.0) 63.6 (62.9, 64.1) 

Day 15 2944.5 (2256.8, 3176.1) 746.0 (744.0, 748.0) 20.2 (20.2, 20.3) 18.0 (8.0, 32.0) 18.0 (17.0, 18.0) 50.0 (48.6, 50.0) 

Day 20 3102.5 (2588.8, 3360.1) 590.0 (588.0, 591.5) 16.0 (15.9, 16.0) 30.0 (16.0, 45.0) 6.0 (6.0, 7.0) 17.1 (16.1, 18.4) 

Day 25 3607.0 (3360.9, 3668.0) 85.0 (84.0, 86.0) 2.3 (2.3, 2.3) 36.0 (24.0, 50.0) 0.0 (-1.0, 0.0) 0.0 (-2.5, 0.0) 

Never (Reference) 3692.0 (3679.0, 3699.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 36.0 (25.0, 49.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 

Varying Timing of Mass Screening (Always PPE) 

Day 1 1629.5 (0.0, 3013.0) 2012.0 (1998.0, 2023.0) 55.3 (55.0, 55.4) 5.0 (0.0, 20.0) 27.0 (27.0, 28.0) 85.2 (84.5, 85.7) 

Day 5 1856.5 (12.0, 2837.4) 1776.0 (1766.0, 1784.5) 48.8 (48.6, 49.0) 6.0 (0.0, 19.0) 26.0 (26.0, 27.0) 81.0 (80.5, 81.5) 

Day 10 2240.5 (1058.0, 2815.1) 1395.0 (1387.0, 1402.0) 38.3 (38.2, 38.5) 10.0 (2.0, 20.0) 23.0 (23.0, 23.0) 70.6 (70.0, 71.1) 

Day 15 2372.0 (1585.6, 2755.0) 1267.5 (1262.0, 1273.0) 34.8 (34.7, 34.9) 15.0 (5.0, 27.0) 18.0 (17.0, 18.0) 54.3 (53.5, 55.0) 

Day 20 2656.0 (1980.9, 3033.0) 983.5 (977.5, 988.5) 27.0 (26.9, 27.2) 26.0 (12.0, 40.0) 7.0 (7.0, 8.0) 22.2 (20.9, 23.3) 

Day 25 3354.0 (2831.8, 3537.1) 285.5 (282.0, 290.0) 7.8 (7.8, 7.9) 33.0 (20.0, 47.0) 0.0 (0.0, 1.0) 0.0 (0.0, 2.5) 

Never (Reference) 3643.0 (3563.0, 3669.0) – – 33.0 (20.0, 45.0) – – 
1 Number of infections averted relative to base scenario  

   
2 Percent of infections averted relative to base scenario  

   
3 Number of COVID-related deaths averted relative to base scenario  

   
4 Percent of COVID-related deaths averted relative to base scenario  
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