Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Borane-Catalyzed Selective Dihyrosilylation of Terminal Alkynes: Reaction

Development and Mechanistic Insight

Guoqiang Wang,[‡] Xiaoshi Su,[‡] Liuzhou Gao,[‡] Xueting Liu, Guoao Li and Shuhua Li*

Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

[‡]These authors contributed equally to this work.

*Corresponding Author: shuhua@nju.edu.cn

Table of Contents

1.	General Information	3
2.	Experimental Details for the Monohydrosilylation of Terminal Alkyne	3
	2.1 Optimization Studies	3
	2.2 Monohydrosilylation of aliphatic terminal alkyne 1t	5
	2.3 Gram-Scale Synthesis of Vinylsilane with Phenylacetylene	6
	2.4 Gram-Scale Synthesis of Vinylsilane with 1-Phenylpropyne	7
3.	Experimental Details for the Synthesis of Geminal Bis(silanes) 4	8
	3.1 General Procedure for the Borane-Catalyzed Dihyrosilylation of Terminal Alkynes	8
	3.2 Characterization Data of Geminal Bis(silanes) 4	8
4.	Experimental Details for the Reactivities of Other Hydrosilanes	20
	4.1 Dihydrosilylation of Phenylacetylene with Et ₂ SiH ₂	21
	4.2 Selective Dihydrosilylation of Phenylacetylene with $Et_2SiH_2/PhSiH_3$ Combination	21
	4.3 Selective Dihydrosilylation of Phenylacetylene with $EtMe_2SiH_2/BuSiH_3$ Combination .	22
	4.4 Selective Dihydrosilylation of Phenylacetylene with EtMe ₂ SiH/Et ₂ SiH ₂ Combination	23
5.	Gram-Scale Synthesis of Geminal Bis(silane) 4aac	23
6.	Robustness test: Glove-Box-free Synthesis	24
7.	Product Transformation	24
	7.1 Synthesis of Unsymmetrical Geminal Bis(silane) 6	25
	7.2 Synthesis of Unsymmetrical Geminal Bis(silane) 7	25
	7.3 Synthesis of Unsymmetrical Geminal Bis(silane) 8	26
8.	Control Experiments and KIE Studies	27
	8.1 Control experiments	27
	8.2 Effect of hydrosilanes on the hydrosilylation of vinylsilane	29
	8.3 KIE Studies	31
9.	Computational Investigations	33
	9.1 Computational Details	33
	9.2 B(C_6F_5) ₃ -catalyzed dihydrosilylation of phenylacetylene with Me ₃ SiH and PhSiH ₃	34
	9.3 <i>cis</i> -Hydrosilylation pathway of phenylacetylene	35
	9.4 1,1-Carboboration reaction of phenylacetylene with $B(C_6F_5)_3$	36
	9.5 Theoretical investigation on the effect of hydrosilanes	37
	9.6 Kinetic isotope effect calculations	38
11	I. Energies and Cartesian Coordinates of the Optimized Structures	79
12	2. References	99

1. General Information

Unless otherwise noted, all reactions were carried out with standard Schlenk techniques under argon or in an argon-filled glove-box. $B(C_6F_5)_3$ was purchased from TCI and used without purification. Other commercial chemicals were purchased from Acros, Sigma-Aldrich, J&K, and Alfa Aesar Chemical Companies and used as received. Anhydrous CH_2CI_2 was purchased from J&K and used as received (water < 30 ppm, J&KSeal). Analytical thin-layer chromatography (TLC) was performed on silica gel 60 F_{254} aluminum sheets from Qingdao Haiyang Chemical Co., Ltd. Flash chromatography was performed on aluminum oxide (200–300 mesh, neutral, Shanghai Wusi Chemical Co., Ltd) or silica gel (200–300 mesh, Qingdao Haiyang Chemical Co., Ltd).

¹H, ¹³C, and ¹⁹F NMR spectra were recorded in CDCl₃ on a Bruker AVANCE Avance III 400 instrument. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance as the internal standard (CDCl₃: 7.26 ppm for ¹H NMR, and 77.16 ppm for ¹³C NMR). Data are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet), coupling constants (Hz) and integration. Infrared spectra were recorded on a ThermoFisher Nicolet iS5 FTIR using neat thin-film technique. High-resolution mass spectra (HRMS) were recorded on the Thermo Quest Finnigan LCQDECA system equipped with an APCI or ESI ionization source and a TOF detector mass spectrometer.

2. Experimental Details for the Monohydrosilylation of Terminal Alkyne

2.1 Optimization Studies

General procedure. In an argon-filled glovebox, $B(C_6F_5)_3$ (10 mg, 0.02 mmol, 5 mol%), hydrosilane (0.48 mmol, 1.2 equiv), 1,2,3,4,5,6-hexamethylbenzene (32 mg, 0.2 mmol, 0.5 equiv, as an internal standard) and dichloromethane (1.0 mL) were added to an oven-dried reaction vial. The reaction vial was capped, removed from the glovebox, and stirred at varied temperatures. Phenylacetylene **1a** (41 mg, 0.4 mmol, 1.0 equiv) was then added to the reaction solution over a period of 5 min. After indicated time, an aliquot (approximately 50 µL) of the reaction solution was then directly transferred to an NMR tube and CDCl₃ (0.4 mL) was added. The conversion was determined by ¹H NMR by the integration of the remaining phenylacetylene and internal standard. The results are tabulated in Table S1.

Dk —		R^1	B(C ₆ F ₅) ₃ (5 mol%)	R ¹
Pn——	=H +	R^2 SI-H - R ₃	CH ₂ Cl ₂ , 5 h, T (^o C)	$Ph R^3$
1		2		3
entry	hydrosilanes	T (°C)	conversion (%) ^b	yield (%) ^b
1	EtMe ₂ SiH	r.t	69%	31%
2	EtMe ₂ SiH	5 °C	84%	58%
3	EtMe ₂ SiH	–20 °C	93%	81%
4 ^c	EtMe ₂ SiH	–40 °C	>95%	81%
5	EtMe₂SiH	−40 °C	>95%	84% (81%) ^a
6	Et₃SiH	-40 °C	37%	<5%
7	PhMe₂SiH	-40 °C	86%	46%
8	PhMeSiH ₂	-40 °C	60%	20%
9	Et_2SiH_2	-40 °C	>95%	55%
10	Ph_2SiH_2	-40 °C	50%	ND
11	$PhSiH_3$	-40 °C	48%	ND

Table S1. Optimization of Reaction Conditions.^a

^aReaction conditions: **1a** (0.4 mmol, 1.0 equiv), hydrosilane (0.48 mmol, 1.2 equiv), $B(C_6F_5)_3$ (0.02 mmol), in dichloromethane (1.0 mL). ^bConversions and yields were determined by NMR analysis with 1,2,3,4,5,6-hexamethylbenzene as an internal standard. ^cFor 16 h. ^dIsolated yield of analytically pure material after flash chromatography on silica gel. ND = Not detected.

2.2 Monohydrosilylation of aliphatic terminal alkyne 1t

2.2.1 Synthetic Procedure

A reaction vial was charged with $B(C_6F_5)_3$ (20.5 mg, 0.04 mmol, 10 mol%), CH_2CI_2 (1 mL), ethyl dimethylsilane (42 mg, 0.48 mmol, 1.2 equiv) in a argon filled-glove box. The solution was cooled to -40

°C and then 6-chlorohex-1-yne **1w** (47 mg, 0.4 mmol, 1.0 equiv) was added *via* syringe over a period of 5 min. The reaction mixture was stirred at –40 °C for 5 hours. After which, diethyl ether (4 mL) and water (1 mL) was added to the reaction mixture, and the organic phase was separated. The aqueous layer was extracted with diethyl ether (2×2 mL). The organic layers were combined, and dried over anhydrous sodium sulfate and filtered. After removal of the solvent under reduced pressure, the crude material was purified by flash column chromatography on silica gel (petroleum ether 40–60 °C) to afford the desired product **3wa** (43.2 mg, 53%).

2.2.2 Characterization Data of (Z)-(6-Chlorohex-1-en-1-yl)(ethyl)dimethylsilane (3ta)

SiMe₂Et CL

3ta C₁₀H₂₁ClSi M = 204.81 g/mol

¹**H NMR** (CDCl₃, 400 MHz): δ 6.30 (dt, *J* = 14.4, 7.3 Hz, 1H), 5.49 (dt, *J* = 14.0, 1.3 Hz, 1H), 3.54 (t, *J* = 6.7 Hz, 2H), 2.15 (qd, *J* = 7.4, 1.4 Hz, 2H), 1.83–1.75 (m, 2H), 1.57–1.50 (m, 2H), 0.94 (t, *J* = 7.9 Hz, 3H), 0.57 (q, *J* = 8.0 Hz, 2H), 0.09 (s, 6H). ¹³C{¹H} **NMR** (CDCl₃, 100 MHz): δ 148.6, 128.7, 45.1, 32.9, 32.4, 27.1, 8.5, 7.6, -1.9. **IR (film)**: 2965, 2843, 1054, 1032, 1012, 913, 743 cm⁻¹. **HRMS (ESI)** calculated for C₁₀H₂₁ClSi⁺ [M+H]⁺ 205.1179; Found: 205.1183.

2.3 Gram-Scale Synthesis of Vinylsilane with Phenylacetylene

2.3.1 Synthetic Procedure

A reaction vial was charged with $B(C_6F_5)_3$ (128 mg, 0.25 mmol, 5.0 mol%), CH_2Cl_2 (1 mL), EtMe₂SiH (457 mg, 5.2 mmol, 1.04 equiv) in an argon-filled glove box. The solution was cooled to -40 °C and then phenylacetylene (510 mg, 5 mmol, 1.0 equiv) was slowly added via syringe over a period of 20 min. The reaction mixture was stirred at -40 °C for 5 hours. Diethyl ether (4 mL) and water (1 mL) was slowly added to the reaction mixture, and the organic phase was separated. The aqueous layer was extracted twice with diethyl ether (3×3 mL). Then, the organic layers were combined, and dried over anhydrous sodium sulfate and filtered. After removal of the solvent under reduced pressure, the crude material was purified by flash column chromatography on silica gel (petroleum ether 40–60 °C) to afford **3aa** (0.77 g, 81%).

3aa C₁₂H₁₈Si M = 190.36 g/mol

¹**H NMR** (CDCl₃, 400 MHz): δ 7.41 (d, *J* = 15.2 Hz, 1H), 7.36–7.24 (m, 5H), 5.83 (d, *J* = 15.2 Hz, 1H), 0.90 (t, *J* = 7.9 Hz, 3H), 0.55 (q, *J* = 7.9 Hz, 2H), 0.02 (s, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 147.2, 140.4, 131.9, 128.2, 120.0, 127.4, 8.6, 7.5, –1.9 ppm. **IR** (film): 3058, 3024, 2955, 2910, 2874, 1682, 1592, 1492, 1457, 1377, 779, 699, 662 cm⁻¹. **HRMS** (ESI): calculated for C₁₂H₁₉Si⁺ [M+H]⁺ 191.1256; found 191.1250.

2.4 Gram-Scale Synthesis of Vinylsilane with 1-Phenylpropyne

2.4.1 Synthetic Procedure

A reaction vial was charged with $B(C_6F_5)_3$ (10.2 mg, 0.25 mol%), CH_2Cl_2 (1 mL), ethyl dimethylsilane (0.774 g, 8.8 mmol) in a argon filled-glove box. Then 1-phenylpropyne **1x** (0.928 g, 8 mmol) was added *via* syringe, and the reaction mixture was stirred at room temperature for 24 hours. After which, diethyl ether (4 mL) and water (1 mL) was added to the reaction mixture, and the organic phase was separated. The aqueous layer was extracted with diethyl ether (3×3 mL). The organic layers were combined, and dried over anhydrous sodium sulfate and filtered. After removal of the solvent under reduced pressure, the crude material was purified by flash column chromatography on silica gel (petroleum ether 40–60 °C) to afford the desired product **3xa** (1.45 g, 89%).

2.4.2 Characterization Data of (Z)-Ethyldimethyl(1-phenylprop-1-en-2-yl)silane (3ua)

Me SiMe₂Et Ph

3ua C₁₃H₂₀Si M = 204.38 g/mol

¹**H NMR** (CDCl₃, 400 MHz): δ 7.31–7.16 (m, 6H), 1.97 (d, *J* = 1.7 Hz, 3H), 0.86 (t, *J* = 7.9 Hz, 3H), 0.47 (q, *J* = 7.7 Hz, 2H), -0.09 (s, 6H). ¹³**C**{¹**H**} **NMR** (CDCl₃, 100 MHz): δ 142.1, 140.9, 139.5, 128.7, 127.8,

126.7, 25.6, 8.1, 7.6, –2.4. **IR (film)**: 3058, 3022, 2952, 2911, 2874, 1593, 1490, 1441, 816, 775, 698, 638 cm⁻¹. **HRMS (ESI)** calculated for $C_{13}H_{21}Si^+$ [M+H]⁺ 205.1413; Found: 205.1411.

3. Experimental Details for the Synthesis of Geminal Bis(silanes) 4

3.1 General Procedure for the Borane-Catalyzed Dihyrosilylation of Terminal Alkynes

A reaction vial was charged with 10 mol% of $B(C_6F_5)_3$ (unless otherwise noted), CH_2Cl_2 (1 mL), EtMe₂SiH (53 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (65 mg, 0.6 mmol, 1.5 equiv) in an argon-filled glove box. The solution was cooled to -20 °C and then the corresponding alkyne **1** was slowly added *via* syringe over a period of 5 min. After stirring at -20 °C overnight, the reaction mixture was quenched by saturated sodium bicarbonate solution (1 mL) under -20 °C, and then diluted by diethyl ether (4 mL). The organic phase was separated, and the aqueous layer was extracted twice with diethyl ether (4 mL). Then, the organic layers were combined, and dried over anhydrous sodium sulfate, and filtered. After removal of the solvent under reduced pressure, the crude material was purified by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford the desired product **4**.

3.2 Characterization Data of Geminal Bis(silanes) 4

3.2.1 Ethyldimethyl(2-phenyl-1-(phenylsilyl)ethyl)silane (4aac)

SiMe₂Et SiH₂Ph

4aac C₁₈H₂₆Si₂ M = 298.58 g/mol

Prepared from phenylacetylene **1a** (41 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C_6F_5)₃ (20.5 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4aac** as a colorless oil (109 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.38–7.34 (m, 2H), 7.33–7.30 (m, 1H), 7.28–7.25 (m, 2H), 7.23–7.18 (m, 2H), 7.15–7.12 (m, 3H), 4.36 (dd, *J* = 5.6, 2.8 Hz, 1H), 4.27 (dd, *J* = 5.6, 3.9 Hz, 1H), 2.95 (dd, *J* = 14.3, 5.9 Hz, 1H), 2.74 (dd, *J* = 14.2, 9.2 Hz, 1H), 0.90 (t, *J* = 7.9 Hz, 3H), 0.74–0.68 (m, 1H), 0.52 (qd, *J* = 7.9, 1.7 Hz, 2H), -0.01 (s, 3H), -0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.5, 135.5, 133.3, 129.4, 128.7, 128.3, 127.9, 125.9, 32.9, 10.7, 7.5, 7.1, –3.4, –3.6 ppm. IR (film):

3066, 3026, 2910, 2874, 2131, 1507, 1454, 1249, 1134, 1115, 1035, 970, 938, 984, 859, 833, 777, 698 cm⁻¹. **HRMS** (ESI): calculated for $C_{18}H_{27}Si_2^+$ [M+H]⁺: 299.1646; found 299.1650.

3.2.2 Ethyl(2-(2-fluorophenyl)-1-(phenylsilyl)ethyl)dimethylsilane (4bac)

SiMe₂Et

4bac C₁₈H₂₅FSi₂ M = 316.57 g/mol

Prepared from 1-ethynyl-2-fluorobenzene **1b** (48 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (20.5 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4bac** as a colorless oil (114 mg, 90% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.39–7.23 (m, 5H), 7.16–7.06 (m, 2H), 6.96 (t, *J* = 7.1 Hz, 1H), 6.95–6.86 (m, 1H), 4.36 (dd, *J* = 5.4, 2.6 Hz, 1H), 4.28–4.24 (m, 1H), 2.99 (dd, *J* = 14.2, 5.9 Hz, 1H), 2.76 (dd, *J* = 14.2, 9.8 Hz, 1H), 0.91 (t, *J* = 7.9 Hz, 3H), 0.84–0.78 (m, 1H), 0.57–0.50 (m, 2H), 0.01 (s, 3H), –0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.3 (d, *J* = 244.6 Hz), 135.4, 133.1, 130.9 (d, *J* = 4.9 Hz), 130.3 (d, *J* = 15.3 Hz), 129.4, 127.9, 127.7 (d, *J* = 8.1 Hz), 123.8 (d, *J* = 3.2 Hz), 115.3 (d, *J* = 22.3 Hz), 26.4, 9.2, 7.5, 7.00, –3.6, –3.7 ppm. ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ –117.6 ppm. IR (film): 3068, 3050, 2953, 2910, 2874, 2132, 1584, 1489, 1455, 1428, 1250, 1226, 1115, 1039, 855, 736 cm⁻¹. HRMS (APCI): calculated for C₁₈H₂₄FSi₂⁺⁺ [M–H]⁺⁺: 315.1395; found 315.1396.

3.2.3 Ethyl(2-(3-fluorophenyl)-1-(phenylsilyl)ethyl)dimethylsilane (4cac)

SiMe₂Et SiH₂Ph

4cac $C_{18}H_{25}FSi_2$ M = 316.57 g/mol

Prepared from 1-ethynyl-3-fluorobenzene **1c** (48 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (20.5 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4cac** as a colorless oil (102 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.27 (m, 5H), 7.18–7.12 (m, 1H), 6.9 (d, *J* = 7.8 Hz, 1H), 6.86–6.80 (m, 2H), 4.30–4.26 (m, 1H), 4.28 (dd, *J* = 5.4, 4.2 Hz, 1H), 2.95 (dd, *J* = 14.3, 5.5 Hz, 1H), 2.77–2.70 (m, 1H), 0.93 (t, *J* = 8.0 Hz, 3H), 0.76–0.66 (m, 1H), 0.59–0.51 (m,

2H), 0.02 (s, 3H), 0.01 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.9 (d, *J* = 245.4 Hz), 146.1 (d, *J* = 6.9 Hz), 135.4, 133.0, 129.7 (d, *J* = 8.3 Hz), 129. 5, 127.9, 124.3, 115.6 (d, *J* = 20.9 Hz), 112.8 (d, *J* = 21.1 Hz), 32.8, 10.6, 7.5, 7.1, -3.5, -3.6 ppm. ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -113.9 ppm. IR (film): 3068, 2954, 2910, 2874, 2132, 1614, 1588, 1487, 1449, 1251, 1115, 1035, 857, 779, 716 cm⁻¹. HRMS (APCI): calculated for C₁₈H₂₄FSi₂⁻⁺ [M–H]⁺⁺: 315.1395; found 315.1399.

3.2.4 Ethyl(2-(4-fluorophenyl)-1-(phenylsilyl)ethyl)dimethylsilane (4dac)

SiMe₂Et SiH₂Ph

4dac C₁₈H₂₅FSi₂ M = 316.57 g/mol

Prepared from 1-ethynyl-4-fluorobenzene **1d** (48 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (20.5 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4dac** as a colorless oil (99 mg, 79% yield). **1H NMR** (400 MHz, CDCl₃): δ 7.37–7.31 (m, 3H), 7.29–7.24 (m, 2H), 7.05 (dd, *J* = 8.5, 5.5 Hz, 2H), 6.86 (t, *J* = 8.7 Hz, 2H), 4.36 (dd, *J* = 5.5, 2.6 Hz, 1H), 4.25 (dd, *J* = 5.5, 4.2 Hz, 1H), 2.93 (dd, *J* = 14.3, 5.8 Hz, 1H), 2.70 (dd, *J* = 14.3, 9.4 Hz, 1H), 0.91 (t, *J* = 7.9 Hz, 3H), 0.70–0.64 (m, 1H), 0.53 (q, *J* = 7.8 Hz, 2H), 0.01 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz,CDCl₃): δ 161.4 (d, *J* = 243.2 Hz), 139.1 (d, *J* = 2.7 Hz), 135.4, 133.1, 129.9 (d, *J* = 7.8 Hz), 129.5, 127.9, 114.9 (d, *J* = 21.1 Hz), 32.3, 11.0, 7.5, 7.1, -3.5, -3.6 ppm. ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ – 117.8 ppm. IR (film): 3068, 2953, 2910, 2874, 2131, 1600, 1508, 1428, 1249, 1156, 1115, 1035, 861, 824 cm⁻¹. HRMS (APCI): calculated for C₁₈H₂₄FSi₂⁻⁺ [M–H]⁺⁺: 315.1395; found 315.1398.

3.2.5 (2-(2-Chlorophenyl)-1-(phenylsilyl)ethyl)(ethyl)dimethylsilane (4eac)

SiMe₂Et SiH_Pl 4eac C₁₈H₂₅CISi₂ M = 333.02 g/mol

Prepared from 1-chloro-2-ethynylbenzene **1e** (54 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% $B(C_6F_5)_3$ (20.5 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4eac** as a colorless oil (56 mg, 42% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.27 (m, 3H), 7.24–7.16 (m,

4H), 7.08–7.02 (m, 2H), 4.38 (dd, J = 5.3, 2.4 Hz, 1H), 4.28–4.24 (m, 1H), 3.11 (dd, J = 14.1, 5.9 Hz, 1H), 2.82 (dd, J = 14.1, 10.3 Hz, 1H), 1.05–0.97 (m, 1H), 0.92 (t, J = 7.9 Hz, 3H), 0.59–0.52 (m, 2H), 0.02 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 140.6, 135.3, 134.1, 133.1, 131.0, 129.7, 129.3, 127.8, 127.5, 126.5, 31.2, 8.2, 7.5, 7.0, –3.5, –3.7 ppm. IR (film): 3067, 3000, 2953, 2873, 2131, 1570, 1471, 1443, 1250, 1114, 1051, 856, 749 cm⁻¹. HRMS (APCI): calculated for C₁₈H₂₆ClSi₂⁺ [M+H]⁺: 333.1256; found 333.1253.

3.2.6 (2-(3-Chlorophenyl)-1-(phenylsilyl)ethyl)(ethyl)dimethylsilane (4fac)

4fac C₁₈H₂₅ClSi₂ M = 333.02 g/mol

Prepared from 1-chloro-3-ethynylbenzene **1f** (54 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (20.5 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4fac** as a colorless oil (104 mg, 78% yield). **1H NMR** (400 MHz, CDCl₃): δ 7.38–7.25 (m, 5H), 7.13–7.08 (m, 3H), 6.98 (dt, *J* = 5.9 Hz, 1H), 4.36 (dd, *J* = 5.6, 2.6 Hz, 1H), 4.28–4.25 (m, 1H), 2.93 (dd, *J* = 14.3, 5.8 Hz, 1H), 2.70 (dd, *J* = 14.3, 9.5 Hz, 1H), 0.93 (t, *J* = 7.9 Hz, 3H), 0.72-0.67 (m, 1H), 0.55 (q, *J* = 8.0 Hz, 2H), 0.03 (s, 3H), 0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.5, 135.4, 134.1, 132.9, 129.5, 128.8, 127.9, 126.8, 126.1, 32.8, 10.6, 7.5, 7.0, -3.5, -3.6 ppm (two *Ar*-C resonances are overlapped). **IR** (film): 3068, 3000, 2953, 2910, 2873, 2131, 1596, 1456, 1446, 1250, 1115, 1025, 858, 831, 719 cm⁻¹. **HRMS** (APCI): calculated for C₁₈H₂₆ClSi₂⁺ [M+H]⁺: 333.1256; found 333.1247.

3.2.7 (2-(4-Chlorophenyl)-1-(phenylsilyl)ethyl)(ethyl)dimethylsilane (4gac)

CI SiMe₂Et SiH₂Ph

4gac C₁₈H₂₅ClSi₂ M = 333.02 g/mol

Prepared from 1-chloro-4-ethynylbenzene **1g** (54 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (20.5 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4gac** as a colorless oil (106 mg, 79% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.34 (t, *J* = 6.1 Hz, 3H), 7.28–7.24

(m, 2H), 7.14 (d, J = 8.3 Hz, 2H), 7.02 (d, J = 8.3 Hz, 2H), 4.36 (dd, J = 5.6, 2.6 Hz, 1H), 4.27–4.24 (m, 1H), 2.92 (dd, J = 14.3, 5.8 Hz, 1H), 2.69 (dd, J = 14.3, 9.5 Hz, 1H), 0.92 (t, J = 7.9 Hz, 3H), 0.70–0.64 (m, 1H), 0.54 (q, J = 7.7 Hz, 2H), 0.02 (s, 3H), 0.01 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\overline{0}$ 141.9, 135.4, 133.0, 131.6, 130.0, 129.5, 128.4, 127.9, 32.4, 10.8, 7.5, 7.1, –3.5, –3.6 ppm. IR (film): 3068, 3000, 2953, 2910, 2873, 2131, 1489, 1428, 1249, 1115, 1025, 816 cm⁻¹. HRMS (APCI): calculated for C₁₈H₂₆ClSi₂⁺ [M+H]⁺: 333.1256; found 333.1259.

3.2.8 (2-(4-Bromophenyl)-1-(phenylsilyl)ethyl)(ethyl)dimethylsilane (4hac)

4hac C₁₈H₂₅BrSi₂ M = 377.47 g/mol

Prepared from 1-bromo-4-ethynylbenzene **1h** (72 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (20.5 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4hac** as a colorless oil (98 mg, 67% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.36–7.30 (m, 3H), 7.28–7.23 (m, 4H), 6.95 (d, *J* = 8.3 Hz, 2H), 4.35 (dd, *J* = 5.5, 2.6 Hz, 1H), 4.26–4.21 (m, 1H), 2.89 (dd, *J* = 14.3, 5.7 Hz, 1H), 2.66 (dd, *J* = 14.3, 9.5 Hz, 1H), 0.91 (t, *J* = 7.9 Hz, 3H), 0.70–0.62 (m, 1H), 0.58–0.48 (m, 2H), 0.00 (s, 3H), –0.01 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 142.4, 135.4, 132.9, 131.3, 130.4, 129.5, 127.9, 119.6, 32.5, 10.8, 7.5, 7.0, –3.5, –3.6 ppm. **IR** (film): 3067, 2999, 2952, 2909, 2873, 2131, 1589, 1486, 1456, 1428, 1249, 1115, 1094, 1025, 816 cm⁻¹. **HRMS** (APCI): calculated for C₁₈H₂₆BrSi₂⁺ [M+H]⁺: 377.0751; found 377.0752.

3.2.9 Ethyldimethyl(1-(phenylsilyl)-2-(3-(trifluoromethyl)phenyl)ethyl)silane (4iac)

4iac C₁₉H₂₅F₃Si₂ M = 366.57 g/mol

Prepared from 1-ethynyl-3-(trifluoromethyl)benzene **1i** (68 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 20 mol% $B(C_6F_5)_3$ (41 mg, 0.08 mmol, 0.2 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4iac**

as a colorless oil (76 mg, 52% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.37–7.21 (m, 9H), 4.37 (dd, *J* = 5.5, 2.5 Hz, 1H), 4.27–4.24 (m, 1H), 3.01 (dd, *J* = 14.4, 5.7 Hz, 1H), 2.77 (dd, *J* = 14.4, 9.7 Hz, 1H), 0.93 (t, *J* = 7.9 Hz, 3H), 0.76 – 0.69 (m, 1H), 0.55 (q, *J* = 7.9 Hz, 2H), 0.03 (s, 3H), 0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 144.3, 135.3, 132.8, 132.1, 130.6 (q, *J* = 3.7 Hz), 129.5, 128.7, 127.9, 125.4 (q, *J* = 3.7 Hz), 124.3 (q, *J* = 272.3 Hz) 122.8 (q, *J* = 3.9 Hz), 32.9, 10.6, 7.5, 7.0, –3.5, –3.6 ppm. ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ –62.60 ppm. IR (film): 3069, 2954, 2911, 2875, 2133, 1595, 1449, 1332, 1251, 1165, 1089, 831, 718 cm⁻¹. HRMS (APCI): calculated for C₁₉H₂₄F₃Si₂⁺⁺ [M–H]⁺⁺: 365.1363; found 365.1371.

3.2.10 Ethyldimethyl(1-(phenylsilyl)-2-(o-tolyl)ethyl)silane (4jac)

SiMe₂Et SiH₂Ph Me 4jac C₁₉H₂₈Si₂ M = 312.60 g/mol

Prepared from 1-ethynyl-2-methylbenzene **1j** (46 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (21 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4jac** as a colorless oil (110 mg, 88% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.33–7.27 (m, 3H), 7.25–7.20 (m, 2H), 7.16–7.13 (m, 1H), 7.06–7.04 (m, 3H), 4.36 (dd, *J* = 5.6, 2.7 Hz, 1H), 4.25–4.27 (m, 1H), 2.97 (dd, *J* = 14.5, 5.9 Hz, 1H), 2.74 (dd, *J* = 14.5, 10.1 Hz, 1H), 2.23 (s, 3H), 0.92 (t, *J* = 7.9 Hz, 3H), 0.80–0.75 (m, 1H), 0.60–0.52 (m, 2H), 0.03 (s, 3H), 0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 141.2, 136.0, 135.3, 133.4, 130.4, 129.4, 129.3, 127.8, 126.2, 125.8, 30.5, 19.6, 8.7, 7.6, 7.1, –3.5, –3.6 ppm. **IR** (film): 3067, 3050, 2952, 2911, 2873, 2131, 1607, 1486, 1428, 1249, 1115, 1036, 857, 832, 716 cm⁻¹. **HRMS** (ESI): calculated for C₁₉H₂₉Si₂+ [M+H]⁺: 313.1802; found 313.1799.

3.2.11 Ethyldimethyl(1-(phenylsilyl)-2-(m-tolyl)ethyl)silane (4kac)

4 Kac $C_{19}H_{28}Si_2$ M = 312.60 g/mol

Prepared from 1-ethynyl-3-methylbenzene **1k** (46 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% $B(C_6F_5)_3$ (21 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column

chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4kac** as a colorless oil (101 mg, 81% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.38–7.30 (m, 3H), 7.28–7.23 (m, 2H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 7.9 Hz, 2H), 6.90 (s, 1H), 4.36 (dd, *J* = 5.6, 2.6 Hz, 1H), 4.26 (dd, *J* = 5.6, 4.0 Hz, 1H), 2.92 (dd, *J* = 14.2, 5.7 Hz, 1H), 2.70 (dd, *J* = 14.2, 9.4 Hz, 1H), 2.25 (s, 3H), 0.91 (t, *J* = 7.9 Hz, 3H), 0.72–0.68 (m, 1H), 0.56–0.50 (m, 2H), 0.01 (s, 3H), –0.01 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 143.3, 137.8, 135.5, 133.5, 129.5, 129.4 128.2, 127.8, 126.6, 125.7, 32.9, 21.5, 10.6, 7.5, –3.5, –3.6 ppm. **IR** (film): 3067, 3050, 2952, 2911, 2873, 2131, 1607, 1486, 1428, 1249, 1115, 1036, 857, 832, 716 cm⁻¹. **HRMS** (APCI): calculated for C₁₉H₂₉Si₂⁺ [M+H]⁺: 313.1802; found 313.1792.

3.2.12 Ethyldimethyl(1-(phenylsilyl)-2-(p-tolyl)ethyl)silane (4lac)

M = 312.60 g/mol

Prepared from 1-ethynyl-4-methylbenzene **1I** (46 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (21 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4lac** as a colorless oil (101 mg, 62% yield). **1H NMR** (400 MHz, CDCl₃): δ 7.39–7.25 (m, 5H), 7.05–7.01 (m, 4H), 4.37 (dd, *J* = 5.4, 2.6 Hz, 1H), 4.30–4.26 (m, 1H), 2.94 (dd, *J* = 14.1, 5.9 Hz, 1H), 2.72 (dd, *J* = 14.3, 9.2 Hz, 1H), 2.31 (s, 3H), 0.92 (t, *J* = 7.7 Hz, 3H), 0.76–0.67 (m, 1H), 0.57–0.51 (m, 2H), 0.01 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 140.4, 135. 5, 135.3, 133.4, 129.3, 128.9, 128.6, 127.8, 32.5, 21.1, 10.8, 7.6, 7.1, –3.4, –3.6 ppm. **IR** (film): 3087, 3048, 2952, 2911, 2873, 2131, 1514, 1484, 1428, 1377, 1249, 1115, 1036, 859 cm⁻¹. **HRMS** (ESI): calculated for C₁₉H₂₉Si₂⁺ [M+H]⁺: 313.1802; found 313.1800.

3.2.13 (2-(4-(Tert-butyl)phenyl)-1-(phenylsilyl)ethyl)(ethyl)dimethylsilane (4mac)

4mac C₂₂H₃₄Si₂ M = 354.68 g/mol

Prepared from 1-(tert-butyl)-4-ethynylbenzene **1m** (63 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 20 mol% $B(C_6F_5)_3$

(41 mg, 0.08 mmol, 0.2 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4mac** as a colorless oil (100 mg, 71% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.30–7.27 (m, 3H), 7.25–7.19 (m, 4H), 7.06 (d, *J* = 8.2 Hz, 2H), 4.37 (dd, *J* = 5.5, 2.4 Hz, 1H), 4.28 (dd, *J* = 5.5, 4.0 Hz, 1H), 2.95 (dd, *J* = 14.2, 5.4 Hz, 1H), 2.70 (dd, *J* = 14.2, 9.7 Hz, 1H), 1.30 (s, 9H), 0.92 (t, *J* = 7.9 Hz, 3H), 0.75–0.65 (m, 1H), 0.55 (qd, *J* = 7.8, 2.5 Hz, 2H), 0.02 (s, 3H), 0.01 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 148.8, 140.4, 135.4, 133.5, 129.3, 128.4, 127.8, 125.2, 34.5, 32.5, 31.6, 10.9, 7.6, 7.0, –3.5, –3.7 ppm. **IR** (film): 3067, 3051, 2956, 2907, 2873, 2130, 1514, 1428, 1267, 1249, 1114, 1035, 821, 778, 698 cm⁻¹. **HRMS** (APCI): calculated for C₂₂H₃₅Si₂⁺ [M+H]⁺: 355.2272; found 355.2267.

3.2.14 (2-([1,1'-Biphenyl]-4-yl)-1-(phenylsilyl)ethyl)(ethyl)dimethylsilane (**4nac**)

 $C_{24}H_{30}Si_2$ M = 374.67 g/mol

Prepared from 4-ethynyl-1,1'-biphenyl **1n** (71 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (21 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4nac** as a colorless oil (91 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.62–7.58 (m, 2H), 7.49–7.43 (m, 4H), 7.40–7.32 (m, 4H), 7.30–7.25 (m, 2H), 7.23–7.20 (m, 2H), 4.44 (td, *J* = 5.8, 2.4 Hz, 1H), 4.37–4.32 (m, 1H), 3.05 (dt, *J* = 14.1, 5.2 Hz, 1H), 2.81 (ddd, *J* = 14.5, 9.5, 5.1 Hz, 1H), 0.97 (td, *J* = 7.9, 5.5 Hz, 3H), 0.85–0.74 (m, 1H), 0.65–0.59 (m, 2H), 0.08 (s, 3H), 0.07 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 142.6, 141.3, 138.9, 135.4, 133.3, 129.3, 129.1, 128.8, 127.9, 127.1, 127.0, 32.7, 10.9, 7.6, 7.1, -3.4, -3.6 ppm (two *Ar-C* resonances are overlapped). IR (film): 3066, 3052, 3026, 2999, 2952, 2909, 2872, 2130, 1601, 1487, 1428, 1285, 1249, 1115, 1035, 860, 825 cm⁻¹. HRMS (ESI): calculated for C₂₄H₃₁Si₂⁺ [M+H]⁺: 375.1959; found 375.1961.

3.2.15 Ethyldimethyl(1-(phenylsilyl)-2-(4-(trimethylsilyl)phenyl)ethyl)silane (**4oac**)

TMS SiMe₂Et SiH₂Ph

4oac C₂₁H₃₄Si₃ M = 370.76 g/mol

Prepared from (4-ethynylphenyl)trimethylsilane **1o** (70 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (21 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **40ac** as a colorless oil (115 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, *J* = 8.0 Hz, 2H), 7.30–7.25 (m, 3H), 7.24–7.19 (m, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 4.36 (dd, *J* = 5.5, 2.5 Hz, 1H), 4.27 (dd, *J* = 5.6, 4.0 Hz, 1H), 2.96 (d, *J* = 14.2, 5.4 Hz, 1H), 2.71 (d, *J* = 14.2, 9.7 Hz, 1H), 0.91 (t, *J* = 7.9 Hz, 3H), 0.73–0.67 (m, 1H), 0.55 (qd, *J* = 7.8, 2.4 Hz, 2H), 0.24 (s, 9H), 0.01 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.1, 138.5, 136.4, 134.4, 130.3, 129.2, 128.8, 33.9, 11.7, 8.6, 8.0, 0.12, –2.5, –2.6 ppm (two *Ar-C* resonances are overlapped). **IR** (film): 3067, 3052, 2954, 2910, 2874, 2131, 1599, 1428, 1248, 1108, 1035, 839 cm⁻¹. **HRMS** (ESI): calculated for C₂₁H₃₅Si₃⁺ [M+H]⁺: 371.2041; found 371.2043.

3.2.16 Ethyldimethyl(1-(phenylsilyl)-2-(3-((triisopropylsilyl)oxy)phenyl)ethyl)silane (4pac)

Prepared from (3-ethynylphenoxy)triisopropylsilane **1p** (110mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (21 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4pac** as a colorless oil (138 mg, 73% yield). **1H NMR** (400 MHz, CDCl₃): δ 7.42 (d, *J* = 6.5 Hz, 2H), 7.36–7.25 (m, 3H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.72–6.66 (m, 3H), 4.35 (dd, *J* = 5.6, 2.9 Hz, 1H), 4.28 (dd, *J* = 5.6, 3.7 Hz, 1H), 2.87 (dd, *J* = 14.2, 6.0 Hz, 1H), 2.69 (dd, *J* = 14.2, 8.9 Hz, 1H), 1.28–1.19 (m, 3H), 1.10 (s, 12H), 1.09 (s, 6H),0.89 (t, *J* = 7.9 Hz,3H), 0.70–0.65 (m, 1H), 0.54–0.45 (m, 2H), -0.02 (s, 3H), -0.03 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 156.1, 145.1, 135.5, 133.3, 129.5, 129.2, 127.9, 121.4, 120.2, 117.4, 32.8, 18.1, 12.8, 10.5, 7.5, 7.1, -3.4, -3.6 ppm. IR (film): 2945, 2866, 2129, 1599, 1583, 1484, 1275, 1157, 854 cm⁻¹. HRMS (ESI): calculated for C₂₇H₄₆OSi₃Na⁺ [M+Na]⁺: 493.2749; found 493.2739.

3.2.17 (2-(4-((triisopropylsilyl)oxy)phenyl)ethane-1,1-diyl)bis(phenylsilane) (4qcc)

Prepared from (4-ethynylphenoxy)triisopropylsilane **1q** (110mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% $B(C_6F_5)_3$ (21 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4qcc** as a colorless oil (53 mg, 27% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.45 (dd, *J* = 7.9, 1.4 Hz, 4H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.30 (t, *J* = 7.1 Hz, 4H), 6.93 (d, *J* = 8.5 Hz, 2H), 6.73 (d, *J* = 8.5 Hz, 2H), 4.35 (dd, *J* = 6.2, 3.4 Hz, 2H), 4.32 (dd, *J* = 6.2, 3.5 Hz, 2H), 2.82 (d, *J* = 7.8 Hz, 2H), 1.27–1.18 (m, 3H), 1.04–0.98, 1.10 (s, 12H), 1.08 (s, 8H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 154.4, 135.7, 134.7, 132.0, 129.8, 129.6, 128.0, 119.8, 32.9, 18.1, 12.8, 7.1 ppm. **IR** (film): 2944, 2866, 2107, 1601, 1503, 1263, 1013, 906, 837 cm⁻¹. **HRMS** (ESI): calculated for C₂₉H₄₂OSi₃Na⁺ [M+Na]⁺: 513.2436; found 513.2435.

3.2.18 (2-(4,4-Dimethylthiochroman-6-yl)ethane-1,1-diyl)bis(phenylsilane) (4rcc)

Prepared from (4-ethynylphenyl)trimethylsilane **1r** (81 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 20 mol% B(C₆F₅)₃ (41 mg, 0.08 mmol, 0.2 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4rcc** as a colorless oil (25 mg, 15% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.44–7.21 (m, 4H), 7.40–7.35 (m, 2H), 7.31 (t, *J* = 7.1 Hz, 4H), 7.06 (d, *J* = 1.9 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.78 (d, *J* = 8.0, 1.9 Hz, 1H), 4.40 (dd, *J* = 6.1, 3.2 Hz, 2H), 4.36 (dd, *J* = 6.1, 3.7 Hz, 2H), 3.01–2.98 (m, 2H), 1.93–1.89 (m, 2H), 1.05–0.99 (m, 1H), 1.23 (s, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 141.9, 138.1, 135.6, 131.9, 129.8, 129.1, 128.0, 126.9, 126.7, 126.5, 37.9, 33.7, 33.0, 30.3, 23.2, 7.1 ppm. **IR** (film): 3067, 2952, 2873, 2130, 1589, 1505, 1488, 1240, 870, 831, 691 cm⁻¹. **HRMS** (ESI): calculated for C₂₅H₃₁SSi₂⁺ [M+H]⁺: 419.1680; found 419.1680.

3.2.19 (2-(4,4-Dimethylthiochroman-6-yl)-1-(phenylsilyl)ethyl)(ethyl)dimethylsilane (**4rac**)

 $C_{23}H_{34}SSi_2$ M = 398.75 g/mol

Prepared from (4-ethynylphenyl)trimethylsilane **1r** (81 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 20 mol% B(C₆F₅)₃ (41 mg, 0.08 mmol, 0.2 equiv) by *adding the PhSiH₃ in 5 hours' delay after the initial EtMe*₂SiH *addition*. Purification by flash column chromatography on silica gel using petroleum ether (40–60 °C) to afford bis(silane) **4rac** as a colorless oil (68 mg, 42% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.34–7.29 (m, 3H), 7.26–7.23 (m, 2H), 7.09 (d, *J* = 1.8 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.78 (d, *J* = 8.0, 1.8 Hz, 1H), 4.35 (dd, *J* = 5.5, 2.4 Hz, 1H), 4.26 (dd, *J* = 5.4, 4.1 Hz, 1H), 3.01–2.98 (m, 2H), 2.88 (dd, *J* = 14.2, 5.8 Hz, 1H), 2.65 (dd, *J* = 14.2, 9.5 Hz, 1H), 1.99–1.85 (m, 2H), 1.24 (s, 3H), 1.23 (s, 3H), 0.91 (t, *J* = 7.9 Hz, 3H), 0.67–0.62 (m, 1H), 0.53 (dd, *J* = 7.8, 2.5 Hz, 2H), 0.0 (s, 3H), -0.1 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 141.7, 139.2, 135.4, 133.3, 129.3, 128.7, 127.9, 126.9, 126.6, 126.5, 38.1, 33.0, 32.9, 30.4, 23.2, 10.9, 7.6, 7.1, -3.4, -3.6 ppm. **IR** (film): 3068, 2952, 2873, 2131, 1589, 1505, 1488, 1240, 859, 831, 691 cm⁻¹. **HRMS** (ESI): calculated for C₂₃H₃₄NaSSi₂⁺ [M+Na]⁺: 421.1812; found 421.1816.

3.2.20 Ethyldimethyl(2-(naphthalen-2-yl)-1-(phenylsilyl)ethyl)silane (**4sac**)

Prepared from 2-ethynylnaphthalene **1s** (61 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% B(C₆F₅)₃ (21 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4sac** as a colorless oil (88 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.85–7.77 (m, 1H), 7.74 (t, *J* = 7.4 Hz, 2H), 7.58 (s, 1H), 7.50–7.45 (m, 2H), 7.41–7.36 (m, 2H), 7.33–7.28 (m, 2H), 7.24–7.19 (m, 2H), 4.45 (dd, *J* = 5.7, 2.7 Hz, 1H), 4.37 (dd, *J* = 5.8, 3.9 Hz, 1H), 3.18 (dd, *J* = 14.3, 5.5 Hz, 1H), 2.96 (dd, *J* = 14.3, 9.4 Hz, 1H), 0.99 (t, *J* = 7.9 Hz, 3H), 0.95–0.83 (m, 1H), 0.67–0.58 (m, 2H), 0.10 (s, 3H), 0.09 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 140.9, 135.5, 133.6, 133.2, 132.2, 129.4, 127.9, 127.8, 127.7, 127.6, 127.4, 126.8, 125.9, 125.2, 33.2, 10.6, 7.6, 7.1, –3.4, –3.5 ppm. IR (film): 3051, 2952, 2909, 2872, 2131, 1599, 1507, 1428, 1248, 1116, 1035, 937, 878, 742, 698 cm⁻¹. HRMS (APCI): calculated for C₂₂H₂₉Si₂⁺ [M+H]⁺: 349.1802; found 349.1802.

4tac C₁₆H₂₄SSi₂ M = 304.59 g/mol

Prepared from 3-ethynylthiophene **1t** (43 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 20 mol% B(C₆F₅)₃ (41 mg, 0.08 mmol, 0.2 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4tac** as a colorless oil (26 mg, 21% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.39 (m, 2H), 7.38–7.33 (m, 1H), 7.30 (d, *J* = 7.3 Hz, 2H), 7.16 (dd, *J* = 4.7, 3.2 Hz, 1H), 6.87–6.84 (m, 2H), 4.38 (dd, *J* = 5.7, 2.7 Hz, 1H), 4.28 (dd, *J* = 5.7, 4.0 Hz, 1H), 2.95 (dd, *J* = 14.7, 5.8 Hz, 1H), 2.80 (dd, *J* = 14.7, 9.1 Hz, 1H), 0.92 (t, *J* = 7.9 Hz, 3H), 0.73–0.63 (m, 1H), 0.54 (qd, *J* = 7.9, 1.7 Hz, 2H), 0.01 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.9, 135.5, 133.3, 129.5, 128.4, 127.9, 125.5, 120.6, 27.5, 10.2, 7.6, 7.0, –3.5, –3.7 ppm. **IR** (film): 3067, 2952, 2909, 2873, 2131, 1456, 1428, 1249, 1115, 1035, 857, 832, 719 cm⁻¹. **HRMS** (APCI): calculated for C₁₆H₂₅SSi₂⁺ [M+H]⁺: 305.1210; found 305.1218.

3.2.22 Ethyl(2-(4-ethylphenyl)-1-(phenylsilyl)ethyl)dimethylsilane (4uac)

SiMe₂Et

4uac $C_{20}H_{30}Si_2$ M = 326.63 g/mol

Prepared from *1-(4-ethynylphenyl)ethanone* **1u** (29 mg, 0.2 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 53 mg, 0.6 mmol, 3 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 3 equiv) in the presence of 10 mol% B(C₆F₅)₃ (10.4 mg, 0.02 mmol, 0.1 equiv). Purification by flash column chromatography on silica gel using petroleum ether (40–60 °C) to afford bis(silane) **4uac** as a colorless oil (35 mg, 55% yield). **1H NMR** (400 MHz, CDCl₃): δ 7.35–7.29 (m, 3H), 7.26–7.22 (m, 2H), 7.06–7.01 (m, 4H), 4.35 (dd, *J* = 5.6, 2.6 Hz, 1H), 4.27 (dd, *J* = 5.6, 3.9 Hz, 1H), 2.93 (dd, *J* = 14.2, 5.7 Hz, 1H), 2.71 (dd, *J* = 14.2, 9.4 Hz, 1H), 2.59 (q, *J* = 7.6 Hz, 2H), 1.21 (t, *J* = 7.6 Hz, 3H), 0.91 (t, *J* = 7.9 Hz, 3H), 0.72–0.66 (m, 1H), 0.53 (ddd, *J* = 10.8, 7.9, 2.4 Hz, 2H), -0.00 (s, 3H), -0.01 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 141.9, 140.6, 135.5, 133.5, 129.3, 128.6, 127.8, 127.8, 32.6, 28.6, 15.9, 10.8, 7.5, 7.1, –3.5, –3.6 ppm. IR (film): 2955, 2873, 2128, 1512, 1248, 1008, 857, 816, 732 cm⁻¹. HRMS (ESI): calculated for C₂₀H₃₀NaSi₂⁺ [M+Na]⁺: 349.1778; found 349.1778.

4vac C₁₈H₃₄Si₂ M = 306.64 g/mol

Prepared from oct-1-yne **1v** (44 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 20 mol% B(C₆F₅)₃ (41 mg, 0.08 mmol, 0.2 equiv) by performing the reaction at –40 °C for 5 h, and then stirring at room temperature for 24 h. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4vac** as a colorless oil (100 mg, 82% yield). ¹H **NMR** (400 MHz, CDCl₃): δ 7.58 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.40–7.32 (m, 3H), 4.39 (dd, *J* = 5.7, 2.9 Hz, 1H), 4.28 (dd, *J* = 5.2, 4.2 Hz, 1H), 1.62–1.41 (m, 2H), 1.31–1.17 (m, 10H), 0.91 (t, *J* = 7.9 Hz, 3H), 0.87 (t, *J* = 7.0 Hz, 3H), 0.54 (qd, *J* = 7.8, 3.1 Hz, 2H), 0.31–0.21 (m, 1H), 0.01 (s, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 135.5, 134.1, 129.5, 128.0, 32.3, 31.9, 29.8, 29.2, 26.9, 22.8, 14.3, 8.1, 7.6, 7.2, –3.3, –3.5 ppm. **IR** (film): 3068, 2955, 2873, 2129, 1506, 1485, 1428, 1249, 1115, 858, 715, 698 cm⁻¹. **HRMS** (ESI): calculated for C₁₈H₃₅Si₂⁺ [M+H]⁺: 307.2272; found 307.2270.

3.2.24 (6-Chloro-1-(phenylsilyl)hexyl)(ethyl)dimethylsilane (4wac)

Prepared from 6-chlorohex-1-yne **1w** (46 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH (**2a**, 54 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ (**2c**, 64 mg, 0.6 mmol, 1.5 equiv) in the presence of 20 mol% B(C₆F₅)₃ (41 mg, 0.08 mmol, 0.2 equiv) by performing the reaction at -40 °C for 5 h, and then stirring at room temperature for 24 h. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4wac** as a colorless oil (64 mg, 51% yield). **1H NMR** (400 MHz, CDCl₃): δ 7.57 (dd, *J* = 7.7, 1.7 Hz, 2H), 7.39–7.32 (m, 3H), 4.39 (dd, *J* = 5.6, 2.9 Hz, 1H), 4.28 (dd, *J* = 5.6, 4.3 Hz, 1H), 3.45 (t, *J* = 6.7 Hz, 2H), 1.71–1.57 (m, 3H), 1.52–1.46 (m, 1H), 1.41–1.29 (m, 4H), 0.91 (t, *J* = 7.9 Hz, 3H), 0.54 (qd, J = 7.9, 2.2 Hz, 2H), 0.26 (ddd, *J* = 8.3, 4.5, 3.0 Hz, 1H), -0.01 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 135.5, 133.9, 129.6, 128.1, 45.2, 32.5, 31.5, 27.0, 26.9, 8.1, 7.6, 7.2, –3.4, –3.5 ppm. **IR** (film): 3 3068, 2953, 2873, 2128, 1519, 1428, 1248, 1115, 941, 858, 778, 717 cm⁻¹. **HRMS** (ESI): calculated for C₁₆H₃₀ClSi₂⁺ [M+H]⁺: 313.1569; found 313.1572.

4. Experimental Details for the Reactivities of Other Hydrosilanes

4.1 Dihydrosilylation of Phenylacetylene with Et₂SiH₂

4.1.1 Synthetic procedure

Prepared from phenylacetylene **1a** (41 mg, 0.4 mmol, 1.0 equiv), Et_2SiH_2 **2b** (106 mg, 1.2 mmol, 3 equiv) in the presence of 10 mol% $B(C_6F_5)_3$ (20.5 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **5abb** as a colorless oil (97 mg, 87% yield).

4.1.2 Characterization data of (2-Phenylethane-1,1-diyl)bis(diethylsilane) (5abb)

5abb C₁₆H₃₀Si₂ M = 278.59 g/mol

¹**H NMR** (400 MHz, CDCl₃): δ 7.28–7.23 (m, 2H), 7.21–7.15 (m, 3H), 3.70 (h, *J* = 3.5 Hz, 2H), 2.81 (d, *J* = 7.7 Hz, 2H), 0.99–0.92 (m, 12H), 0.65–0.45 (m, 9H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 143.9, 128.5, 128.3, 125.9, 32.7, 8.8, 8.7, 7.7, 3.6, 3.1 ppm. **IR** (film): 3084, 3026, 2954, 2911, 2874, 2100, 1603, 1494, 1455, 1414, 1238, 1135, 1010, 811, 746, 697 cm⁻¹. **HRMS** (APCI): calculated for C₁₆H₃₁Si₂⁺ [M+H]⁺: 279.1959; found 279.1955.

4.2 Selective Dihydrosilylation of Phenylacetylene with Et₂SiH₂/PhSiH₃ Combination

4.2.1 Synthetic procedure

Prepared from phenylacetylene **1a** (41 mg, 0.4 mmol, 1.0 equiv), Et_2SiH_2 **2b** (53 mg, 0.6 mmol, 1.5 equiv) and PhSiH₃ **2c** (64 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% $B(C_6F_5)_3$ (21 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral

aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4abc** as a colorless oil (74 mg, 62% yield).

4.2.2 Characterization data of diethyl(2-phenyl-1-(phenylsilyl)ethyl)silane (**4abc**)

¹**H NMR** (CDCl₃, 400 MHz): δ 7.45 (d, *J* = 7.8 Hz, 2H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.31 (t, *J* = 7.2 Hz, 2H), 7.23 (d, *J* = 7.1 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 3H), 4.38 (dd, *J* = 5.8, 3.0 Hz, 1H), 4.33 (dd, *J* = 5.8, 4.0 Hz, 1H), 3.77 (h, *J* = 3.2 Hz, 1H), 2.92 (dd, *J* = 14.2, 7.3 Hz, 1H), 2.85 (dd, *J* = 14.2, 8.1 Hz, 1H), 0.97 (t, *J* = 7.9 Hz, 6H), 0.85 (tq, *J* = 7.1, 3.6 Hz, 1H), 0.59 (pd, *J* = 7.9, 3.4 Hz, 4H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 143.1, 135.6, 132.8, 129.6, 128.7, 128.4, 127.9, 125.1, 33.5, 8.7, 7.6, 3.2, 2.8 ppm. **IR** (film): 3084, 3025, 2953, 2932, 2889, 2872, 2130, 1494, 1454, 1428, 1115, 1036, 935, 857, 767, 697 cm⁻¹. **HRMS** (APCI): calculated for $C_{18}H_{27}Si_2^+$ [M+H]⁺: 299.1646; found 299.1645.

4.3 Selective Dihydrosilylation of Phenylacetylene with EtMe₂SiH₂/BuSiH₃ Combination

4.3.1 Synthetic procedure

Prepared from phenylacetylene **1a** (41 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH **2a** (53 mg, 0.6 mmol, 1.5 equiv) and BuSiH₃ **2d** (53 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% $B(C_6F_5)_3$ (21 mg, 0.04 mmol, 0.1 equiv) according to the general procedure. Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4add** as a colorless oil (97 mg, 81% yield for **4add**).

Note: in the case of EtMe₂SiH₂/BuSiH₃ Combination, A slightly amount symmetric dihydrosilylation product was detected, the yield of **4add** was estimated based on the ratio of unsymmetric and symmetric in ¹H NMR spectrum.

4.3.2 Characterization data of diethyl(2-phenyl-1-(phenylsilyl)ethyl)silane (4aad)

4aad C₁₆H₃₁Si₂ M = 279.59 g/mol

¹**H NMR** (CDCl₃, 400 MHz): δ 7.28–7.24 (m, 2H), 7.19–7.15 (m, 3H), 3.69–3.60 (m, 2H), 2.96 (dd, *J* = 14.1, 5.3 Hz, 1H), 2.84 (d, *J* = 8.0 Hz, 0.08H, characteristic peak for the symmetric hydrosilylation product with BuSiH₃ or EtMe₂SiH₂ was detected in the ¹H NMR spectrum), 2.61 (dd, *J* = 14.1, 10.3 Hz, 1H), 1.26–1.15 (m, 4H), 0.94 (t, *J* = 7.9 Hz, 3H), 0.80 (t, *J* = 7.0 Hz, 3H), 0.55 (ddd, *J* = 9.9, 7.9, 1.4 Hz, 2H), 0.46–0.43 (m, 1H), 0.39–0.30 (m, 2H), 0.03 (s, 3H), 0.02 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): 143.9, 128.6, 128.4, 125.9, 33.3, 27.9, 25.9, 13.8, 9.7, 9.0, 7.6, 6.9, –3.6, –3.7 ppm. IR (film): 2954, 2922, 2854, 2116, 1494, 1454, 1248, 1031, 986, 897 cm⁻¹. HRMS (APCI): calculated for C₁₆H₃₁NaSi₂⁺ [M+Na]⁺: 301.1778; found 301.1782.

4.4 Selective Dihydrosilylation of Phenylacetylene with EtMe₂SiH/Et₂SiH₂ Combination

4.4.1 Synthetic procedure

Prepared from phenylacetylene **1a** (41 mg, 0.4 mmol, 1.0 equiv), EtMe₂SiH **2a** (54 mg, 0.6 mmol, 1.5 equiv) and Et₂SiH₂ **2b** (53 mg, 0.6 mmol, 1.5 equiv) in the presence of 10 mol% $B(C_6F_5)_3$ (21 mg, 0.04 mmol, 0.1 equiv). *Note: the Et₂SiH₂ was added in 5 hours' delay after the initial EtMe₂SiH addition.* Purification by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford bis(silane) **4aab** as a colorless oil (90 mg, 81% yield).

4.4.2 Characterization data of (1-(diethylsilyl)-2-phenylethyl)(ethyl)dimethylsilane (4aab)

SiMe₂Et SiHEt

4aab C₁₆H₃₀Si₂ M = 278.59 g/mol

¹**H NMR** (400 MHz, CDCl₃): δ 7.27–7.16 (m, 5H), 3.71–3.66 (m, 1H), 2.86 (dd, *J* = 14.1, 6.1 Hz, 1H), 2.70 (dd, *J* = 14.1, 8.9 Hz, 1H), 0.96 (t, *J* = 7.9 Hz, 3H), 0.91–0.86 (m, 6H), 0.63–0.29 (m, 7H), 0.01 (s, 3H), -0.01 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 144.4, 128.5, 128.3, 125.8, 32.1, 10.6, 9.1,

8.8, 7.6, 7.5, 4.1, 3.5, -2.9, -3.1 ppm. **IR** (film): 3026, 2952, 2873, 2098, 1516, 1454, 1422, 1248, 1009, 831, 771, 697 cm⁻¹. **HRMS** (APCI): calculated for $C_{16}H_{31}Si_2^+$ [M+H]⁺: 279.1959; found 279.1959.

5. Gram-Scale Synthesis of Geminal Bis(silane) 4aac

Synthetic procedure: In an argon-filled glovebox, a 25 mL Schlenk tube was charged with $B(C_6F_5)_3$ (511 mg, 1.0 mmol, 10 mol%), CH_2Cl_2 (5 mL), $EtMe_2SiH$ (1.10 g, 12.5 mmol, 1.25 equiv) and PhSiH_3 (1.62 g, 15.0 mmol, 1.5 equiv). The solution was cooled to -20 °C, and then phenylacetylene **1a** (1.02 g, 10 mmol, 1.0 equiv) diluted with 1 mL CH_2Cl_2 was slowly added *via* syringe over a period of 10 min. After stirring at -20 °C for 30 h, the reaction mixture was quenched by saturated sodium bicarbonate solution (5 mL) under -20 °C, and then diluted by diethyl ether (5 mL). The organic phase was separated, and the aqueous layer was extracted with diethyl ether (10 mL x 2). Then, the organic layers were combined, and dried over anhydrous sodium sulfate, and filtered. After removal of the solvent under reduced pressure, the crude material was purified by flash column chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford the desired product **4aac** (2.7 g, 90% yield).

6. Robustness test: Glove-Box-free Synthesis

Synthetic procedure: In a 5 mL Schlenk tube was charged with $B(C_6F_5)_3$ (52 mg, 0.1 mmol, 10 mol%), CH_2CI_2 (1 mL), EtMe_2SiH (0.132 g, 1.5 mmol, 1.5 equiv) and PhSiH₃ (0.162 g, 1.5 mmol, 1.5 equiv). All the chemicals were added in the open atmosphere without the exclusion of air or moisture, The solution was cooled to -20 °C, and then phenylacetylene **1a** (0.102 g, 1.0 mmol, 1.0 equiv) was slowly added *via* syringe over a period of 10 min. After stirring at -20 °C for 20 h, the reaction mixture was quenched by saturated sodium bicarbonate solution (5 mL) under -20 °C, and then diluted by diethyl ether (2 mL). The organic phase was separated, and the aqueous layer was extracted with diethyl ether (3 mL x 2). Then, the organic layers were combined, and dried over anhydrous sodium sulfate, and filtered. After removal of the solvent under reduced pressure, the crude material was purified by flash column

chromatography on neutral aluminum oxide using petroleum ether (40–60 °C) to afford the desired product **4aac** (0.274 g, 90% yield).

7. Product Transformation

- 7.1 Synthesis of Unsymmetrical Geminal Bis(silane) 6
- 7.1.1 Synthetic procedure

To a suspension of $[RuCl_2(p-cymene)]_2$ (12 mg, 0.01 mmol, 2 mol %) in MeOH (0.5 mL), 1,1-bis(silane) **4aac** (2.0 mmol, 596.0 mg) was added at 0 °C (ice bath) under argon atmosphere. The reaction mixture was stirred at 0 °C for 3h. Then, the mixture was diluted with hexane (5.0 mL), filtered, and washed with hexane (2 × 5 mL). The combined filtrate was concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (PE/EA = 100:1 to 20:1, v/v) afforded the desired product **6** (624.0 mg, 87% yield) as a colorless oil.

7.1.2 Characterization data of (1-(dimethoxy(phenyl)silyl)-2-phenylethyl)(ethyl)dimethylsilane 6

¹H NMR (400 MHz, CDCl₃): δ 7.69–7.59 (m, 2H), 7.51–7.39 (m, 3H), 7.34–7.26 (m, 2H), 7.25–7.16 (m, 3H), 3.63 (s, 3H), 3.55 (s, 3H), 3.03 (dd, J = 14.5, 7.0 Hz, 1H), 2.81 (dd, J = 14.5, 6.6 Hz, 1H), 0.92 (t, J = 7.9 Hz, 3H), 0.82 (t, J = 6.8 Hz, 1H), 0.52 (qd, J = 7.8, 2.3 Hz, 2H), 0.04 (s, 3H), 0.00 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 144.4, 134.7, 133.9, 129.9, 128.6, 128.1, 127.9, 125.6, 50.9, 50.7, 30.5, 14.0, 7.6, 7.5, –2.8, –2.9 ppm. HRMS (ESI): calculated for C₂₄H₃₇O₂Si₂⁺ [M+H]⁺: 359.1857; found 359.1859.

7.2 Synthesis of Unsymmetrical Geminal Bis(silane) 7

7.2.1 Synthetic Procedure

In an argon-filled glovebox, a Schlenk tube was charged with NaOH (4 mg, 0.1 mmol, 20 mol%), THF (2.0 mL), pinacol (65 mg, 0.55 mmol, 1.1 equiv) and **4aac** (149 mg, 0.5 mmol, 1.0 equiv). The mixture was stirred at 60 °C for 24 h. After the reaction mixture was cooled to room temperature, saturated aqueous NH_4CI solution (10.0 mL) was added. The mixture was extracted with diethyl ether (10.0 mL x 3). The combined organic layer was washed with water and dried over by sodium sulfate. After removal of diethyl ether, the residue was purified by preparative TLC (Petroleum ether/EtOAc = 20:1 v/v) to afford **7** as a colorless oil (127 mg, 62% yield).

7.2.2 Characterization data of 2-(1-(ethyldimethylsilyl)-2-phenylethyl)-4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxasilolane **7**

¹**H NMR** (400 MHz, CDCl₃) δ 7.60–7.58 (m, 2H), 7.38–7.16 (m, 8H), 3.21 (dd, *J* = 14.2, 6.9 Hz, 1H), 2.74 (dd, *J* = 14.2, 6.6 Hz, 1H), 1.33 (s, 3H), 1.32 (s, 3H), 1.20 (s, 3H), 1.12 (s, 3H), 0.79–0.74 (m, 4H), 0.47–0.36 (m, 2H), -0.07 (s, 3H), -0.09 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 144.5, 137.4, 133.9, 129.7, 128.6, 128.3, 127.7, 125.8, 81.7, 81.5, 30.8, 26.2, 25.9, 17.6, 7.7, 7.4, –2.7, –2.9 ppm. **IR** (film): 3067, 2977, 2952, 2873, 1495, 1428, 1375, 1143, 1117, 966, 831, 738, 699 cm⁻¹. **HRMS** (ESI): calculated for C₂₄H₃₇O₂Si₂⁺ [M+H]⁺: 413.2327; found 413.2328.

7.3 Synthesis of Unsymmetrical Geminal Bis(silane) 8

7.3.1 Synthetic procedure

To a 10 mL Schlenk tube, Cul (4.8 mg, 0.025 mmol, 5 mol%), CuCl₂ (269 mg, 2.0 mmol, 4.0 equiv), CsF (152 mg, 1.0 mmol, 2.0 equiv) and dry Et_2O (2.0 mL), **4aac** (149 mg, 0.5 mmol, 1.0 equiv) was added.

The mixture was stirred at 60 °C for 36 h, and then diluted with hexane (10 mL) and filtered. The desired product **4aac** was obtained in 70% yield (117.3 mg) as a colorless oil by removing the solvent under vacuum.

7.3.2 Characterization data of (1-(difluoro(phenyl)silyl)-2-phenylethyl)(ethyl)dimethylsilane (8)

¹**H NMR** (400 MHz, CDCl₃): δ 7.52–7.35 (m, 3H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.20–7.10 (m, 5H), 2.91 (d, *J* = 7.2 Hz, 2H), 0.97–0.88 (m, 4H), 0.63–0.55 (m, 2H), 0.08 (s, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, CDCl₃): δ 142.8, 133.7 (t, *J* = 2.2 Hz), 131.4, 130.4 (t, *J* = 19.5 Hz), 128.5, 128.4, 128.1, 126.2, 29.8, 14.7 (t, *J* = 14.3 Hz), 7.3, 7.2, 0.1, –3.1 (d, *J* = 18.2 Hz) ppm. ¹⁹F{¹H} **NMR** (376 MHz, CDCl₃): δ –133.6 (d, *J* = 19.6 Hz, 1 F), –138.1 (d, *J* = 19.6 Hz, 1 F) ppm. **IR** (film): 3067, 3025, 2952, 2873, 1495, 1428, 1428, 1249, 1116, 1036, 982, 835, cm⁻¹. **HRMS** (ESI): calculated for C₁₈H₂₄F₂Si₂⁺ [M+H]⁺: 335.1457; found 335.1459.

8. Control Experiments and KIE Studies

8.1 Control experiments

Phenyl acetylene (0.2 mmol, 20.4 mg) was added to a solution at -20 °C of $B(C_6F_5)_3$ (0.04 mmol, 21 mg, 20 mol%) and hydrosilane (0.3 mmol, 1.5 equiv.) in 0.40 mL of CD_2Cl_2 in an NMR tube. All of the NMR samples were placed at -20 °C for 5 hours, and then the NMR spectra were recorded at room temperature.

As shown in Figure S1a, with PhSiH₃ as the silane source, we detected only a trace amount of the characteristic peak of geminal bis(silane) (i.e., a doublet at δ = 2.82 ppm). ¹⁹F NMR spectrum of the reaction mixture of PhSiH₃, **1a** and 20 mol% of B(C₆F₅)₃ confirms the significant deterioration of B(C₆F₅)₃ in the case of PhSiH₃ (Figure S2a). The crude ¹H NMR spectra clearly shown the formation of hydrosilylation or dihydrosilylation product with EtMe₂SiH or Et₂SiH₂ (Figure S1b and S1c). ¹⁹F NMR spectra of the reaction mixture of phenylacetylene **1a** with EtMe₂SiH or Et₂SiH₂ indicated that most of B(C₆F₅)₃ was untouched (Figure S2b and S2c).

Figure S1. ¹**H NMR** spectra (400 MHz MHz, CD₂Cl₂) for the hydrosilylation reaction of phenylacetylene with different hydrosilanes a) with PhSiH₃; b) with Et₂SiH₂; c) with EtMe₂SiH.

Figure S2. ¹⁹F{¹H} NMR spectrum (376 MHz MHz, CD_2CI_2) for the hydrosilylation reaction of phenylacetylene with different hydrosilanes a) with PhSiH₃; b) with Et₂SiH₂; c) with EtMe₂SiH; a 5:1 mixture of Et₂SiH₂ and B(C₆F₅)₃.

8.2 Effect of hydrosilanes on the hydrosilylation of vinylsilane

General procedure A: In an argon-filled glovebox, $B(C_6F_5)_3$ (5.1 mg, 0.02 mmol, 5 mol%), hydrosilane (0.24 mmol, 1.2 equiv), 1,2,3,4,5,6-hexamethylbenzene (16 mg, 0.1 mmol, 0.5 equiv, as an internal standard) and dichloromethane (1.0 mL) were added to an oven-dried reaction vial. The reaction vial was capped, removed from the glovebox, and stirred at varied temperatures. Vinylsilane **3aa** (38 mg, 0.2 mmol, 1.0 equiv) was then added to the reaction solution. After 5 hours, an aliquot (approximately 50 µL) of the reaction solution was then directly transferred to an NMR tube and CDCl₃ (0.4 mL) was added. The yield of was determined by ¹H NMR by the integration of the corresponding geminal bis(silanes) and internal standard. The results are tabulated in Scheme S1.

Scheme S1. Comparison of the reactivity of different hydrosilanes for hydrosilylation of vinylsilane **3aa**. Yields were determined by ¹H NMR analysis with 1,2,3,4,5,6-hexamethylbenzene as an internal standard.

Scheme S2. Competition experiments: reactions were performed in 0.2 mmol scale, and the crude material was purified by flash column chromatography on neutral aluminum oxide using *n*-hexane. Ratios were determined by ¹H NMR analysis.

Figure S3. ¹H NMR spectrum (400 MHz MHz, CDCl₃) for the hydrosilylation reaction of vinylsilane **3aa** in the presence of Et_2SiH_2 (**2b**) and PhMeSiH₂ (**2e**).

Figure S4. ¹**H NMR** spectrum (400 MHz MHz, CDCl₃) for the hydrosilylation reaction of vinylsilane **3aa** in the presence of PhSiH₃ (**2c**) and BuSiH₃ (**2d**).

8.3 KIE Studies

General procedure

A 5 mL reaction vial was charged with indicated concentration of $B(C_6F_5)_3$, PhSiH₃ (or PhSiD₃), 1,2,3,4,5,6-hexamethylbenzene (16 mg, 0.1 mmol, 0.5 equiv., as an internal standard), and CH₂Cl₂ (1 mL) in an argon-filled glove box. Then the solution was vigorously stirred at –20 °C and the vinylsilane **3aa** was added *via* a syringe. At 40, 80, 120, 160, 200, 240 seconds, under Ar atmosphere, 30 µL of the reaction mixture was carefully taken out by micro-syringe into an NMR tube and quenched with CDCl₃ (0.4 mL) immediately. The reaction mixture was analyzed by ¹H NMR, and the molar concentration of **4aac** was determined by the integration of the characteristic peak of which at 2.95 (dd, *J* = 14.3, 5.9 Hz, 1H) ppm against the internal standard. These reactions were all performed two times at the same conditions and the average value was taken for each time point. The concentration of geminal bis(silane) **4aac** (only the data < 25% yield was used) was plotted against the reaction time and the slope of the linear portion of the curve was used to determine the initial rates (*k*_{in}) of the reaction.

Kinetic isotope effect (KIE) determination for the hydrosilylation of vinylsilane 3aa

The KIE was measured by parallel intermolecular competition experiments: two reactions were set at the same time using vinylsilane **3aa** (38 mg, 0.2 mmol, 1.0 equiv.), 0.0045 M of $B(C_6F_5)_3$ (0.0045 mmol, 2.25 mol%) in the presence of PhSiH₃ (32 mg, 0.3 mmol, 1.50 equiv.) and PhSiD₃ (32 mg, 0.3 mmol, 1.50

equiv.), respectively. The concentration of geminal bis(silane) **4aac** and $[D_3]$ -**4aac** at different reaction times was measured using ¹H NMR analysis with 1,2,3,4,5,6-hexamethylbenzene (0.1 M) as the internal standard. Initial reaction rates were determined and a KIE value of 0.81 was found.

Time (s)	[4aac]	[[D3]- 4aac]	
40	0.008	0.0105	
80	0.0155	0.0210	
120	0.024	0.0320	
160	0.0315	0.0385	
200	0.038	0.0475	
240	0.045		

Table S2. Concentration of 4aac and [D₃]-4aac at different time interval

Table S3. The k_{in} value of [4aac] and [[D₃]-4aac] with PhSiH₃ and PhSiD₃

	<i>k</i> _{in} (mol L ⁻¹ s ⁻¹)
[4aac]	1.86E-04
[[D3]- 4aac]	2.29E-04

Figure S5. Up: parallel intermolecular competition experiments. Bottom: Plot of the change in geminal bis(silane) 4aac and [D₃]-4aac with time for the reaction of vinylsilane 3aa (0.2 M), B(C₆F₅)₃ (0.0045 M), with 0.3 M of PhSiH₃ and PhSiD₃ at -20 °C, respetively. The curve depicts the results of an unweighted least-square fit to y = a*x + b (PhSiH₃: a = 1.86 x 10⁻⁴, b = 1.0 x 10⁻³, R² = 0.998; PhSiD₃: a = 2.29 x 10⁻⁴, b = 2.45 x 10⁻³, R² = 0.992).

9. Computational Investigations

9.1 Computational Details

All calculations were performed with the Gaussian 16 package.^{S1} The 3D structures of the optimized species were generated using CYLview.^{S2} Geometry optimizations were performed at M06-2X^{S3}/6-311G(d,p) level of theory in conjugation with the polarizable continuum model (PCM)^{S4} solvation model for dichloromethane. To get more accurate energies, single-point energy calculations were done with the same functional and solvation model using the cc-pVTZ basis set. For the monohydrosilylation of phenylacetylene with PhSiH₃, the related S_N2@Si transition state could not be located with M06-2X functional. We therefore performed a relax scan with the B3LYP functional,^{S5} augmented with Grimme's D3 dispersion correction.^{S6} However, the energy increases monotonically at the decreasing distance of the Si-C bond. Our further calculations show that the resulting ion-pair intermediate doesn't exist as a minimum structure on the potential energy surface. (see Figure S10 for details).

Activation free energy barriers here are defined as the free energy difference between the transition state and the lowest-energy stationary point before it along the reaction pathways.

9.2 B(C_6F_5)₃-catalyzed dihydrosilylation of phenylacetylene with Me₃SiH and PhSiH₃

Figure S6.3D structures involved in $B(C_6F_5)_3$ -catalyzed dihydrosilylation of phenylacetylene with Me₃SiH 2a'
and PhSiH₃ 2c (distance are given in Å). Color code: H, white; C, gray; B, pink; F, green; Si, brown.

9.3 cis-Hydrosilylation pathway of phenylacetylene

Figure S7. Free energy profile of B(C₆F₅)₃-catalyzed *cis*-hydrosilylation reaction of phenylacetylene **1a** with Me₃SiH **2a**'. Color code: H, white; C, gray; B, pink; F, green; Si, brown.

For the monohydrosilylation of terminal alkyne, hydride transfer from borohydride $[HB(C_6F_5)_3]^-$ to the vinyl cation at the same side of the silyl group (*via* **TS**_{II'-*E*-3aa'}) generates the *cis*-hydrosilylation product (Figure S7). However, this pathway requires an activation barrier of 24.1 kcal mol⁻¹ in the hydride transfer step (**TS**_{II'-*E*-3aa'}), being much higher than that of *trans*-hydrosilylation pathway ($\Delta G^{\neq} = 18.2$ kcal mol⁻¹). The large activation barrier difference between these two pathways can account for the observed stereoselectivity in the monohydrosilylation step.

9.4 1,1-Carboboration reaction of phenylacetylene with $B(C_6F_5)_3$

Figure S8. (a) Free energy profile of 1,1-carboboration reaction between B(C₆F₅)₃ and phenylacetylene 1a (in kcal mol⁻¹). (b) Key transition states and intermediates. Color code: H, white; C, gray; B, pink; F, green; Si, brown.

As shown in Figure S8, the carboboration reaction between $B(C_6F_5)_3$ and phenylacetylene proceeds sequentially through the electrophilic association of $B(C_6F_5)_3$ and **1a** leading to a Lewis acid-alkyne σ complex **VII**, a concerted intramolecular Ar^F/hydrogen shift generating alkenylborane **9**. The formation of alkenylborane **9** is exothermic by 23.4 kcal mol⁻¹ with an activation barrier of 21.6 kcal mol⁻¹ in the ratedetermining step (*via* **TS**_{VII-9}). This result suggests that the deterioration of $B(C_6F_5)_3$ through 1,1carboboration reaction is possible. These computational results are consistent with previous experimental studies by Erker *et al* (*carboboration reaction finished in short reaction time at room temperature*).^{S7} The relative lower barrier suggests that conducting the reaction at a lower temperature and slow addition of the terminal alkyne to the reaction mixture are necessary to achieve high yields of vinylsilanes and 1,1-bis(silanes).

- **Scheme S3**. Computational analysis on other possible pathways for the reaction between $B(C_6F_5)_3$ and phenylacetylene. Activation barriers and energies are in kcal mol⁻¹.
- 9.5 Theoretical investigation on the effect of hydrosilanes

Figure S9. Optimized geometries of vinylsilane hydrosilylation transition states (TS_{3aa'a'}, with Me₃SiH; TS_{3ab'b'}, with Me₂SiH₂; and TS_{3aa'-V}, with PhSiH₃). The barriers listed in parenthesis are obtained at the level M06-2X/cc-pVTZ//M06-2X/6-311G(d,p), in kcal mol⁻¹. Color code: H, white; C, gray; B, pink; F, green; Si, brown.

Figure S10. Relaxed scans for the Si-H bond cleavage of with phenylacetylene (1aa): a) PhSiH₃, at the M06-2X/6-31G(d,p)/(PCM, solvent = CH₂Cl₂) level of theory; b) PhSiH₃ at B3LYP-D3/6-31G(d,p)/(PCM, solvent = CH₂Cl₂) level of theory; c) Me₃SiH, at the M06-2X/6-31G(d,p)/(PCM, solvent = CH₂Cl₂) level of theory. Color code: H, white; C, gray; B, pink; F, green; Si, brown.

We also computed the reaction of alkyne **1a** with PhSiH₃ instead of Me₃SiH. However, the related S_N2@Si transition state could not be located after extensive endeavors. For the monohydrosilylation of phenylacetylene (**1a**) with PhSiH₃ (**2c**), no S_N2@Si transition state could be located with the M06-2X functional. We performed relaxed scans by fixing the Si-C bond distance from 2.46 Å to 1.86 Å with M06-2X and B3LYP-D3 functional (see Figure S10). The energy increases monotonically at the decreasing distance of the Si-C bond. Our further calculations show that the resulting ion-pair intermediate doesn't exist as a minimum structure on the potential energy surface. These results are consistent with the experimental observation that only a trace amount of related product was detected for the hydrosilylation of phenylacetylene with PhSiH₃ as the silane.

9.6 Kinetic isotope effect calculations

The kinetic isotope effect calculations for the hydrosilylation of vinylsilane step were conducted with two different methods and the quantum tunneling correction, as discussed below:

Bigeleisen-Mayer method: According to Bigeleisen and Mayer's theory,^{S8} the kinetic isotope effect can be expressed as a ratio of partition functions of the ground state and the transition state. For a non-linear structure with *N* atoms at a critical point on the potential energy surface, a frequency calculation gives (3N - 6) frequencies $(v_0, v_1, \ldots, v_{3N-7})$. All the frequencies should be real if it is a ground state (GS) structure. For a transition state (TS) structure, which is a first-order saddle point on the potential energy surface, there should be exactly one imaginary frequency. We assume that the real frequencies v_i are sorted from low to high, and if there exists an imaginary frequency, we denote it as v_0 . The equation to obtain the KIE is given by Bigeleisen and Mayer's theory as follows:

$$KIE = \frac{k_{H}}{k_{D}}$$

$$= \frac{u_{0,H}^{TS}}{u_{0,D}^{TS}} \times \prod_{i=0}^{3N-7} \left[\frac{u_{i,D}^{GS}}{u_{i,H}^{GS}} \cdot \frac{\exp\left(-u_{i,D}^{GS}/2\right)}{\exp\left(-u_{i,H}^{GS}/2\right)} \cdot \frac{1 - \exp\left(-u_{i,H}^{GS}\right)}{1 - \exp\left(-u_{i,D}^{GS}\right)} \right] \times \prod_{i=1}^{3N-7} \left[\frac{u_{i,H}^{TS}}{u_{i,D}^{TS}} \cdot \frac{\exp\left(-u_{i,H}^{TS}/2\right)}{\exp\left(-u_{i,D}^{TS}/2\right)} \cdot \frac{1 - \exp\left(-u_{i,D}^{TS}\right)}{1 - \exp\left(-u_{i,H}^{TS}\right)} \right]$$

where *u* represents frequencies scaled by h/k_BT , leading to: $u_i = hv_i/(k_BT)$, similarly hereinafter. The ground state and transition state frequencies are denoted by superscript *GS* and *TS*, while the subscript *H* and *D* represent the frequencies from hydrogen and deuterium isotopomers.

Rigid-rotor harmonic oscillator (\Delta H \Delta S) method: According to the methodologies developed by the O'Leary laboratory,^{S9} the kinetic isotope effect is given by the following equation:

$$KIE = \frac{k_H}{k_D} = \exp\left(\frac{\Delta G_D - \Delta G_H}{k_B T}\right)$$

where ΔG represents the Gibbs free energy change from GS to TS. It is given by the sum of the electronic energy difference and the Gibbs thermal correction difference:

$$\Delta G = \Delta EE + \Delta G_{corr} = \Delta EE + \Delta H_{corr} - T\Delta S_{corr}$$

where $\Delta EE = EE^{TS} - EE^{GS}$ denotes the electronic energy difference between TS and GS. It is similar with the enthalpy thermal correction $\Delta Hcorr$ and the entropy thermal correction ΔS_{corr} . Those are $\Delta H_{corr} = H_{corr}^{TS} - H_{corr}^{GS}$ and $\Delta S_{corr} = S_{corr}^{TS} - S_{corr}^{GS}$.

According to our knowledge of statistical thermodynamics, H_{corr} is given by:

$$H_{corr} = ZPE + H_{vib} + E_{rot} + E_{trans} + k_BT$$

The last term k_BT is the same in both H_{corr}^{TS} and H_{corr}^{GS} , so it does not contribute ΔH_{corr} . E_{rot} and E_{trans} cancel each other in TS and GS in the same way, because $E_{trans} = (3/2)k_BT$, and for nonlinear molecules, $E_{rot} = (3/2)k_BT$.

Thus, only the first two terms of H_{corr} should be calculated. The zero-point vibrational energy (*ZPE*) is calculated as:

$$ZPE^{GS} = \frac{1}{2} \sum_{i=0}^{3N-7} h v_i^{GS}$$
$$ZPE^{TS} = \frac{1}{2} \sum_{i=0}^{3N-7} h v_i^{TS}$$

while the vibrational contribution to the enthalpy H_{vib} is:

$$H_{vib}^{GS} = k_B T \sum_{i=0}^{3N-7} u_i^{GS} \frac{exp(-u_i^{GS})}{1 - exp(-u_i^{GS})}$$
$$H_{vib}^{TS} = k_B T \sum_{i=0}^{3N-7} u_i^{TS} \frac{exp(-u_i^{TS})}{1 - exp(-u_i^{TS})}$$

Then we consider the entropy thermal correction Δ_{Scorr} . It is given by:

$$S_{coor} = S_{vib} + S_{rot} + S_{trans}$$

The translation contribution S_{trans} can be described as:

$$S_{trans} = k_B \left\{ \ln \left[\left(\frac{2\pi m k_B T}{h^2} \right)^{3/2} \frac{k_B T}{p} \right] + \frac{5}{2} \right\}$$

where *m* denotes the mass of the structure and *p* denotes the pressure. From GS to TS, the mass and pressure of a structure do not change. Thus, S_{trans} does not contribute to ΔS_{corr} . The rotation contribution S_{rot} for a non-linear structure is given by:

$$S_{rot} = k_B \left\{ \ln \left[\frac{8\pi^2}{\sigma h^3} (2\pi k_B T)^{3/2} (I_A I_B I_C)^{1/2} \right] + \frac{3}{2} \right\}$$

where I_A , I_B and I_C are three components of the moment of inertia for the structure. For the hydrosilylation of vinylsilane step, both GS and TS belong to the C1 group, leading to the rotational symmetry number σ = 1. As a result, the contribution of S_{rot} to ΔS_{corr} is:

$$\Delta S_{rot} = \frac{1}{2} k_B \ln \left[\frac{\left(I_A I_B I_C \right)^{TS}}{\left(I_A I_B I_C \right)^{GS}} \right]$$

Finally, the vibrational contribution S_{vib} is given by:

$$S_{vib}^{GS} = k_B \sum_{i=0}^{3N-7} \left\{ u_i^{GS} \frac{exp(-u_i^{GS})}{1 - exp(-u_i^{GS})} - \ln\left[1 - exp(-u_i^{GS})\right] \right\}$$
$$S_{vib}^{TS} = k_B \sum_{i=0}^{3N-7} \left\{ u_i^{TS} \frac{exp(-u_i^{TS})}{1 - exp(-u_i^{TS})} - \ln\left[1 - exp(-u_i^{TS})\right] \right\}$$

Quantum tunneling correction: Finally we applied a quantum tunneling (QT) correction with the Northrop and Bell's one-dimensional parabolic approximation:^{S10}

$$QT = \frac{QT_H}{QT_D}$$

where

$$QT_{H} = \frac{|u_{0,H}^{TS}|/2}{\sin(|u_{0,H}^{TS}|/2)}$$

and

$$QT_{D} = \frac{\left|u_{0,D}^{TS}\right|/2}{\sin\left(\left|u_{0,D}^{TS}\right|/2\right)}$$

The final KIEs reported in the manuscript and this supplementary information for both the Bigeleisen-Mayer and rigid-rotor harmonic oscillator methods are as follows:

$$KIE = (KIE) \cdot (QT)$$

Constants: In all above equations, we take Avogadro constant as $N_A = 6.02214076 \times 1023 \text{ mol}^{-1}$, Boltzmann constant as $k_B = 1.3806488 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$, Plank constant as $h = 6.62607015 \times 10^{-34} \text{ J} \cdot \text{s}$, the speed of light as $c = 2.99792458 \times 108 \text{ m} \cdot \text{s}^{-1}$, and the reaction temperature as *T* in Kelvin.

Kinetic isotope effects are calculated with a python-based program Gaussian_KIE developed by ourselves. The results of the calculated kinetic isotope effects are listed in Table S4.

Table S4. Computed KIE values with the Bigeleisen-Mayer (BM) and rigid-rotor harmonic oscillator ($\Delta H\Delta S$) methods for the hydrosilylation of vinylsilane step.

$GS\!\toTS$	KIE _{comp} (BM)	$KIE_{comp}(\Delta H \Delta S)$
$3aa' \rightarrow TS_{3aa'-V}$	0.7471	0.7702
$VI \ \rightarrow \ TS_{VI-4aa'c}$	1.396	1.444

10.NMR Spectra

Figure S11. ¹H NMR spectrum (400 MHz, CDCI₃) of compound 3aa.

Figure S12. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 3aa.

Figure S13. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **3wa**.

Figure S14. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **3wa**.

Figure S15. ¹H NMR spectrum (400 MHz, $CDCl_3$) of the compound 3xa.

Figure S16. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 3xa.

Figure S17. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4aac.

Figure S18. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4aac.

Figure S19. ¹H NMR spectrum (400 MHz, CDCl₃) of the compound 4bac.

Figure S20. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃) of compound 4bac.

Figure S21. ¹⁹F{¹H} NMR spectrum (376 MHz MHz, CDCl₃) of compound 4bac.

Figure S22. ¹H NMR spectrum (400 MHz, CDCl₃) of the compound 4cac.

Figure S23. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4cac.

Figure S24. ¹⁹F{¹H} NMR spectrum (376 MHz MHz, CDCl₃) of compound 4cac.

Figure S25. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4dac.

Figure S26. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4dac.

Figure S27. ¹⁹F{¹H} NMR spectrum (376 MHz MHz, CDCl₃) of compound 4dac.

Figure S28. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4eac.

Figure S29. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4eac.

Figure S30. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4fac.

Figure S31. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound **4fac**.

Figure S32. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4gac.

Figure S34. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4hac.

Figure S35. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃) of compound 4hac.

Figure S36. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4iac.

Figure S37. ¹³C {¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4iac.

Figure S38. ¹⁹F{¹H} NMR spectrum (376 MHz MHz, CDCl₃) of compound 4iac.

Figure S39. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4jac.

Figure S40. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4jac.

Figure S41. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4kac.

Figure S42. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4kac.

Figure S43. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4lac.

Figure S44. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4lac.

Figure S45. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4mac.

Figure S46. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4mac.

Figure S47. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4nac.

Figure S48. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4nac.

Figure S49. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4oac.

Figure S50. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4oac.

Figure S51. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4pac.

Figure S52. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4pac.

Figure S53. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4qcc.

Figure S54. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4qcc.

Figure S55. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4rcc.

Figure S56. ¹³C{¹H} NMR spectrum (100 MHz, CDCI₃) of compound 4rcc.

Figure S57. ¹H NMR spectrum (400 MHz, $CDCI_3$) of compound 4rac.

Figure S58. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, CDCl₃) of compound 4rac.

Figure S59. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4sac.

Figure S60. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4sac.

Figure S62. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4tac.

Figure S63. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4uac.

Figure S64. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4uac.

Figure S65. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4vac.

Figure S66. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4vac.

Figure S67. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4wac.

Figure S68. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4wac.

Figure S69. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 5abb.

Figure S70. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 5abb.

Figure S71. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4abc.

Figure S72. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4abc.

Figure S73. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4aad.

Figure S74. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4aad.

Figure S75. ¹H NMR spectrum (400 MHz, $CDCI_3$) of compound 4aab.

Figure S76. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 4aab.

Figure S77. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 6.

Figure S78. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 6.

Figure S79. ¹H NMR spectrum (400 MHz, $CDCI_3$) of compound 7.

Figure S80. ¹³C{¹H} NMR spectrum (100 MHz, CDCI₃) of compound 7.

Figure S82. ¹³C{¹H} NMR spectrum (100 MHz, CDCl₃) of compound 8.

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

80 70 60

50

40 30

20 10

-10

0

Figure S83. $^{19}F{^1H}$ NMR spectrum (376 MHz MHz, CDCl₃) of compound 8.

11. Energies and Cartesian Coordinates of the Optimized Structures

$B(C_{6}F_{5})_{3}$

M06-2X/6-311G(d,p) free energy: -2208.064745 M06-2X/6-311G(d,p) SCF energy: -2208.1626693 M06-2X/cc-PVTZ SCF energy: -2208.422318

В	0.00082500	-0.00122300	0.00175600
С	-1.28311700	-0.89883300	0.00261800
С	-1.32850200	-2.13160200	-0.64952000
С	-2.45633900	-0.51545500	0.65336500
С	-2.45680200	-2.92980800	-0.66910200
С	-3.59589900	-1.29750300	0.67001100
С	-3.59489500	-2.50972500	-0.00035800
С	-0.13565800	1.55955700	0.00121100
С	-1.18420500	2.21313900	-0.64741500
С	0.78341500	2.38636400	0.64839700
С	-1.31437200	3.58913900	-0.66706900
С	0.67358700	3.76417100	0.66408800
С	-0.38054800	4.36698400	-0.00250700
С	1.42033200	-0.66389600	0.00036400
С	2.51148500	-0.08213900	-0.64632000
С	1.67583100	-1.87406300	0.64668300
С	3.76830200	-0.65709800	-0.66400700
С	2.92416400	-2.46742100	0.66442100
С	3.97424900	-1.85515000	0.00021100
F	-4.67977900	-3.26561800	-0.00174400
F	-2.45999100	-4.09038400	-1.31509700
F	-0.26279400	-2.58689000	-1.30871800
F	-4.68672200	-0.89961400	1.31492900
F	-2.51579000	0.64146700	1.31331900
F	-2.11258500	1.51637700	-1.30321700
F	-2.32124100	4.16960700	-1.31009300
F	-0.49521300	5.68421200	-0.00434800
F	1.56492700	4.51214900	1.30457800
F	1.81796800	1.86226500	1.30598100
F	2.37324100	1.07075300	-1.30136200
F	4.77564300	-0.07469300	-1.30455400
F	5.17248000	-2.41411800	-0.00042200
F	3.12508800	-3.61368400	1.30463000

F 0.70362300 -2.50892300 1.30176200

Me₃SiH

M06-2X/6-311G(d,p) free energy: -409.719058 M06-2X/6-311G(d,p) SCF energy: -409.8078127 M06-2X/cc-PVTZ SCF energy: -409.8269317

Si	-0.00021700	-0.00004500	0.38354600
С	0.68201700	1.64122900	-0.22458500
Н	1.70524100	1.79735700	0.12486000
Н	0.69145800	1.66692400	-1.31756900
Н	-0.00036500	-0.00031900	1.87250800
С	-1.76254600	-0.23015500	-0.22477800
Н	-2.40980500	0.57715600	0.12561800
Н	-1.78966800	-0.23378500	-1.31775000
С	1.08078900	-1.41100400	-0.22462800
Н	0.70606000	-2.37542400	0.12598500
Н	1.09741000	-1.43288700	-1.31760300
Н	-2.18090700	-1.17648400	0.12578100
Н	0.07251600	2.47697900	0.12682300
Н	2.10953200	-1.29930000	0.12565300

T

M06-2X/6-311G(d,p) free energy: -2617.786655 M06-2X/6-311G(d,p) SCF energy: -2617.9959024 M06-2X/cc-PVTZ SCF energy: -2618.2704664

Si	-0.00791800	-0.00437500	2.84889400
С	-0.00219700	1.80894200	3.25831600
Н	0.72568400	2.34098800	2.64199300
Н	-0.98727800	2.25555400	3.11577800
Н	0.28444500	1.93592200	4.30591800
С	-1.58212200	-0.90676000	3.25378400
Н	-1.83114600	-0.73276100	4.30429300
Н	-2.40857600	-0.53480800	2.64441100
Н	-1.47824400	-1.98183500	3.09990900
С	1.55827700	-0.91501300	3.26559800

M06-2X/6-311G(d,p) SCF energy: -308.3386706
M06-2X/cc-PVTZ SCF energy: -308.3736187

С	-1.50733500	1.20542000	0.00000600
С	-0.11905500	1.20964000	-0.00000500
С	0.58588200	0.00001100	-0.00003500
С	-0.11904500	-1.20963000	-0.00000600
С	-1.50732600	-1.20542900	0.00000000
С	-2.20404700	-0.00000800	0.00001200
Н	-2.04598800	2.14514100	0.00001500
Н	0.42876500	2.14406700	-0.00002300
Н	0.42879500	-2.14404600	-0.00000500
Н	-2.04596700	-2.14515600	0.00001900
Н	-3.28722900	-0.00001000	0.00004300
С	2.02060700	-0.00000300	-0.00001000
С	3.22266400	-0.00000200	0.00002000
Н	4.28755400	0.00001000	0.00007000

TS_{I-II}

M06-2X/6-311G(d,p) free energy: -2926.016392 M06-2X/6-311G(d,p) SCF energy: -2926.3257806 M06-2X/cc-PVTZ SCF energy: -2926.6358541

С	2.24412200	1.14945100	-0.26626500
С	2.53524800	0.82071900	-1.40588800
Si	3.27072700	-0.50918400	0.83766000
С	3.97672100	-1.65012700	-0.44764400
Н	4.53161500	-2.44277500	0.05425200
Н	3.18667000	-2.10220100	-1.05054700
Н	4.67130800	-1.12168500	-1.10324400
С	4.41576800	0.70564500	1.66081100
Н	3.85045300	1.54117700	2.07757300
Н	4.95522900	0.22285500	2.47588900
Н	5.13367200	1.08881600	0.93246700
С	1.66095600	-0.98324000	1.64434400
Н	1.27727200	-0.15954200	2.24898000
Н	0.92581300	-1.23677400	0.87752900
Н	1.80536700	-1.85443500	2.28391300
С	2.93048600	0.37356000	-2.69068600
С	4.12935700	0.84607200	-3.24676100
С	2.12760400	-0.54168700	-3.38831000

Н	1.64556100	-1.82585900	2.66955200
Н	2.43907100	-0.29248900	3.10123100
Н	1.53303000	-1.20186300	4.32060700
В	0.00185800	-0.00154700	-0.10734100
С	1.47809200	-0.57240400	-0.35912500
С	1.78101700	-1.68311200	-1.13322300
С	2.56258500	0.03898900	0.25725400
С	3.07428900	-2.16327800	-1.28097600
С	3.86260300	-0.41330000	0.14841400
С	4.11885300	-1.52748500	-0.63483600
С	-1.23103900	-0.99271700	-0.36516900
С	-2.34411400	-0.69495000	-1.13784400
С	-1.24652800	-2.23897100	0.24847400
С	-3.40984100	-1.57095200	-1.28525300
С	-2.29134300	-3.13493500	0.13979800
С	-3.38462100	-2.79442100	-0.64088800
С	-0.24052100	1.56261800	-0.35947200
С	-1.31325100	2.19683300	0.25443300
С	0.57179600	2.37969800	-1.13230600
С	-1.57005100	3.54914500	0.14582100
С	0.34217000	3.73994100	-1.28054400
С	-0.73123800	4.32738200	-0.63600900
F	-0.20505900	-2.60309200	1.01603000
F	-2.26188600	-4.30401400	0.77386700
F	-4.40124400	-3.63759300	-0.76800900
F	-4.45681200	-1.24317800	-2.03808000
F	-2.43831800	0.47054100	-1.78618300
F	2.35377700	1.12149500	1.02597900
F	4.85746000	0.19926300	0.78454800
F	5.35914100	-1.98134500	-0.76279600
F	3.31775700	-3.23135100	-2.03613100
F	0.82142300	-2.34900800	-1.78391200
F	1.62912400	1.88084500	-1.78104400
F	1.14661100	4.48415100	-2.03507900
F	-0.95704700	5.62860400	-0.76434000
F	-2.59833900	4.10548300	0.78045800
F	-2.14844500	1.47488200	1.02089500
Н	-0.00116400	-0.00651200	1.27517800

phenylacetylene

M06-2X/6-311G(d,p) free energy: -308.258757

С	4.51998200	0.39713700	-4.49764800	Н	4.159620
Н	4.73492400	1.55209200	-2.69200000	Н	1.793465
С	2.53142200	-0.98231500	-4.63805000		
Н	1.20613600	-0.89456100	-2.94185500	II	
С	3.72365700	-0.51471900	-5.18847400		
Н	5.44332700	0.75398000	-4.93519400	M06	6-2X/6-3110
Н	1.92109600	-1.68997500	-5.18395200	MOG	6-2X/6-3110
Н	4.03522800	-0.86465500	-6.16509900	MOG	8-2X/cc-PV⁻
В	4.64009300	-2.77566000	3.09654600		
С	3.59732600	-2.80480700	4.34467900	С	3.977883
С	3.26171400	-3.93143500	5.08166200	С	4.938251
С	2.95979600	-1.63722200	4.73896300	Si	2.292324
С	2.34030300	-3.91565700	6.11711600	С	2.881913
С	2.02830700	-1.57405500	5.76179000	Н	2.017189
С	1.71522800	-2.72845700	6.45686300	Н	3.371713
С	4.74441800	-4.20022900	2.31594300	Н	3.570553
С	5.78064600	-5.11218600	2.46014400	С	1.663649
С	3.74919200	-4.58406200	1.42855800	Н	1.615757
С	5.84749300	-6.30538100	1.75820400	Н	0.658232
С	3.77477300	-5.76335200	0.70242400	Н	2.317823
С	4.83819500	-6.63193900	0.86925600	С	1.475867
С	6.09376500	-2.15789100	3.48777100	Н	1.208675
С	6.87354900	-1.55305400	2.51225100	Н	2.148486
С	6.65593300	-2.17664100	4.75628300	Н	0.570535
С	8.10724600	-0.97402000	2.75908900	С	5.921634
С	7.88843500	-1.61451400	5.04994700	С	6.425279
С	8.61814500	-1.00513200	4.04426500	С	6.379557
F	2.67988900	-3.78880300	1.23452400	С	7.379947
F	2.79257000	-6.06924600	-0.14729600	Н	6.057391
F	4.88713000	-7.77396300	0.18658800	С	7.333873
F	6.86725300	-7.14716300	1.93441000	Н	5.975999
F	6.77413700	-4.88156000	3.33130600	С	7.828866
F	3.23652800	-0.47841000	4.11118300	Н	7.775178
F	1.43595000	-0.42222000	6.08257800	Н	7.693426
F	0.82599100	-2.69680500	7.44736000	Н	8.574664
F	2.05388900	-5.02803000	6.79547300	В	-1.005269
F	3.85257400	-5.10948900	4.83160100	С	-2.043492
F	6.02310300	-2.78054300	5.77311400	С	-3.086435
F	8.38425100	-1.66062700	6.28753100	С	-1.902587
F	9.80286400	-0.45893400	4.31037000	С	-3.914856
F	8.80275300	-0.39231500	1.78023200	С	-2.702410
F	6.43345400	-1.50124200	1.24067400	С	-3.718038

-1	4.15962000	-1.99547500	2.29385900
Н	1.79346500	1.75888700	0.49214300

M06-2X/6-311G(d,p) free energy: -2926.017732 M06-2X/6-311G(d,p) SCF energy: -2926.3263322 M06-2X/cc-PVTZ SCF energy: -2926.63636

С	3.97788300	-0.09745800	-2.99149800
С	4.93825100	-0.08399000	-2.21438900
Si	2.29232400	-0.04485400	-1.75843200
С	2.88191300	-0.18185800	0.00023400
Н	2.01718900	-0.10155200	0.65999600
Н	3.37171300	-1.14081800	0.18353200
н	3.57055300	0.62696000	0.25412900
С	1.66364900	1.62625900	-2.28495700
н	1.61575700	1.69553400	-3.37358300
н	0.65823200	1.77714100	-1.88863700
Н	2.31782300	2.41371300	-1.90463700
С	1.47586700	-1.55545400	-2.47956800
Н	1.20867500	-1.38391500	-3.52426800
Н	2.14848600	-2.41357600	-2.41692600
Н	0.57053500	-1.78439800	-1.91543400
С	5.92163400	-0.05352900	-1.21568600
С	6.42527900	1.18657800	-0.77788500
С	6.37955700	-1.25950000	-0.65122600
С	7.37994700	1.21153200	0.22205800
Н	6.05739100	2.10090700	-1.22629400
С	7.33387300	-1.21618500	0.34844600
Н	5.97599900	-2.20076300	-1.00293700
С	7.82886600	0.01453900	0.78127900
Н	7.77517800	2.15648900	0.57067100
Н	7.69342600	-2.13393200	0.79466600
Н	8.57466400	0.04140200	1.56650500
В	-1.00526900	0.00463500	0.06312000
С	-2.04349200	-0.75676900	-0.93526600
С	-3.08643500	-1.57843700	-0.53265000
С	-1.90258700	-0.62392600	-2.30951300
С	-3.91485600	-2.24840600	-1.41907500
С	-2.70241000	-1.27719200	-3.23319500
С	-3.71803800	-2.10007300	-2.78108300

С	-0.77686000	-0.78910000	1.46864600
С	-1.38173300	-0.46804900	2.67574200
С	0.09166700	-1.87025400	1.52210000
С	-1.12804300	-1.14291600	3.85936800
С	0.37886800	-2.57267800	2.68141500
С	-0.23693800	-2.20195500	3.86294400
С	-1.36409900	1.57957600	0.27604300
С	-0.35026100	2.49122500	0.53468500
С	-2.63727200	2.12673900	0.20661000
С	-0.55784400	3.85312800	0.68363200
С	-2.89383200	3.48079300	0.35253000
С	-1.84440700	4.35173700	0.58923500
F	0.71054900	-2.29489100	0.40391000
F	1.23554900	-3.59680900	2.67119500
F	0.01936200	-2.86189700	4.99153100
F	-1.73706400	-0.79124400	4.99385700
F	-2.28253300	0.52421800	2.74185600
F	-0.94485500	0.17656200	-2.81450100
F	-2.50621300	-1.12206000	-4.54478400
F	-4.50362900	-2.73822900	-3.64747500
F	-4.90380400	-3.02872800	-0.97781500
F	-3.35623300	-1.74337300	0.77138700
F	-3.70548500	1.33836400	0.01266500
F	-4.13894100	3.95568300	0.27640000
F	-2.07275900	5.65662300	0.73102300
F	0.46146600	4.68338700	0.91727500
F	0.92258300	2.06797900	0.65430600
Н	0.05906300	-0.01320400	-0.50141100
Н	3.70833300	-0.13174900	-4.03424400

IIA

M06-2X/6-311G(d,p) free energy: -717.202526 M06-2X/6-311G(d,p) SCF energy: -717.3850549 M06-2X/cc-PVTZ SCF energy: -717.4389511

С	-3.27507600	-1.21601700	0.20541800
С	-2.00072600	-1.23266700	-0.32372600
С	-1.35208300	-0.00532300	-0.59134700
С	-1.99181300	1.22778700	-0.32819200
С	-3.26602100	1.22277800	0.20143300
С	-3.89994500	0.00619600	0.46555600

Н	-3.78802200	-2.14420300	0.41871000
Н	-1.48858700	-2.16266400	-0.53598200
Н	-1.47357000	2.15362700	-0.54394000
Н	-3.77178500	2.15562500	0.41161600
Н	-4.89995300	0.01028200	0.88249500
С	-0.06496000	-0.00836000	-1.10898900
С	1.14102500	-0.00416300	-1.43466900
Si	2.28299500	0.00123700	0.20630200
С	1.17374400	-0.07370400	1.69760000
Н	0.56793400	-0.98260700	1.70845700
Н	1.80232400	-0.08144300	2.59213500
Н	0.51132100	0.79222100	1.76368900
С	3.32243100	-1.52401000	-0.02259500
Н	3.90285600	-1.46941100	-0.94540000
Н	4.01869600	-1.60871500	0.81639600
Н	2.70442900	-2.42321700	-0.04646200
С	3.21909900	1.60141400	0.05216100
Н	2.54316200	2.45809400	0.06841000
Н	3.90690400	1.69217400	0.89756000
Н	3.80417000	1.63107900	-0.86889200
н	1.66414900	-0.00175800	-2.38292800

HB(C₆F₅)₃⁻

M06-2X/6-311G(d,p) free energy: -2208.813514 M06-2X/6-311G(d,p) SCF energy: -2208.9174947 M06-2X/cc-PVTZ SCF energy: -2209.176408

В	-0.00003700	-0.00602300	0.87603200
С	-1.39712500	-0.71330000	0.40351600
С	-2.07623100	-0.42832800	-0.77338300
С	-2.00454600	-1.66845200	1.20748600
С	-3.27724500	-1.02058400	-1.12876500
С	-3.20396600	-2.28907300	0.89109600
С	-3.84815100	-1.95815000	-0.28648700
С	0.08289000	1.55716300	0.40117600
С	0.69027200	2.00822100	-0.76293800
С	-0.47203300	2.55551100	1.19059000
С	0.76726600	3.34502600	-1.11935400
С	-0.42116000	3.90449900	0.87264900
С	0.20834600	4.30277700	-0.29200200
С	1.31517300	-0.85860800	0.40824500

С	2.45756900	-0.86051800	1.19750000	С	4.78740100	-1.68440100	3.40748400
С	1.40675600	-1.62332400	-0.74670800	Н	4.47354000	-0.98023100	4.18028200
С	3.60469000	-1.57607900	0.88863700	Н	4.20920200	-2.60385500	3.51521000
С	2.53032500	-2.35646000	-1.09382700	Н	5.84252900	-1.92178600	3.56827500
С	3.63890400	-2.33492000	-0.26639100	С	4.91645900	-2.13603100	0.31316900
F	-1.10933600	2.24519400	2.33100800	Н	4.64736700	-1.69385100	-0.64826100
F	-0.97098300	4.82191000	1.67433200	Н	5.98121700	-2.38319600	0.29150900
F	0.26947100	5.59454900	-0.61869300	Н	4.35272600	-3.06375300	0.43711900
F	1.36470100	3.72112500	-2.25436500	С	5.43251800	0.69110700	1.51201000
F	1.22689400	1.13817300	-1.63282800	Н	5.26319300	1.12056000	0.52201000
F	-1.43395700	-2.04862700	2.36205700	Н	5.10552700	1.41053600	2.26640600
F	-3.74437200	-3.19956000	1.70706100	Н	6.50896300	0.54526500	1.63324100
F	-5.00291100	-2.54133300	-0.61130400	В	-0.71249500	-0.31820500	0.20617000
F	-3.88681800	-0.70647000	-2.27614500	С	-0.74339700	1.09934700	-0.60819400
F	-1.56905500	0.44549300	-1.65693100	С	-0.61908200	1.29866600	-1.97505200
F	0.38597000	-1.66790400	-1.61740000	С	-0.96836600	2.25691900	0.13068600
F	2.56206300	-3.07578900	-2.22000900	С	-0.64828600	2.55392700	-2.56773400
F	4.73086500	-3.03184700	-0.58421900	С	-1.02227600	3.52496400	-0.42016700
F	4.67400300	-1.54240900	1.68997400	С	-0.84545100	3.67593100	-1.78426900
F	2.50257500	-0.13900800	2.32913400	С	0.00789900	-1.57461500	-0.55712700
Н	-0.00223700	-0.00377900	2.07854800	С	-0.41085700	-2.89622900	-0.44640300
				С	1.19517600	-1.42246300	-1.26614800

III

M06-2X/6-311G(d,p) free energy: -2926.021341 M06-2X/6-311G(d,p) SCF energy: -2926.3325779 M06-2X/cc-PVTZ SCF energy: -2926.639059

С	1.57844400	4.08307000	1.84749800
С	1.75174500	2.73622100	2.09586600
С	2.17456800	1.89016500	1.04539400
С	2.43135000	2.41039500	-0.24592700
С	2.27848800	3.76429000	-0.46587700
С	1.84602000	4.59129400	0.57444800
Н	1.23380600	4.74148200	2.63340200
Н	1.55019500	2.31117400	3.07083700
Н	2.74909500	1.74361400	-1.03531700
Н	2.47533200	4.18169200	-1.44498400
Н	1.70628900	5.64939000	0.38667000
С	2.33245900	0.53410100	1.28996700
С	2.63731800	-0.66065000	1.52706300
Si	4.57537200	-0.95038500	1.70981700

Н	4.20920200	-2.60385500	3.51521000
Н	5.84252900	-1.92178600	3.56827500
С	4.91645900	-2.13603100	0.31316900
Н	4.64736700	-1.69385100	-0.64826100
Н	5.98121700	-2.38319600	0.29150900
Н	4.35272600	-3.06375300	0.43711900
С	5.43251800	0.69110700	1.51201000
Н	5.26319300	1.12056000	0.52201000
Н	5.10552700	1.41053600	2.26640600
Н	6.50896300	0.54526500	1.63324100
В	-0.71249500	-0.31820500	0.20617000
С	-0.74339700	1.09934700	-0.60819400
С	-0.61908200	1.29866600	-1.97505200
С	-0.96836600	2.25691900	0.13068600
С	-0.64828600	2.55392700	-2.56773400
С	-1.02227600	3.52496400	-0.42016700
С	-0.84545100	3.67593100	-1.78426900
С	0.00789900	-1.57461500	-0.55712700
С	-0.41085700	-2.89622900	-0.44640300
С	1.19517600	-1.42246300	-1.26614800
С	0.27145500	-3.97253400	-0.99903200
С	1.90837000	-2.46182900	-1.83643100
С	1.44271800	-3.75743000	-1.69889600
С	-2.25461200	-0.61324700	0.64198100
С	-2.69735300	-0.61840200	1.95376000
С	-3.23502500	-0.82062300	-0.31689800
С	-4.02561800	-0.82242500	2.30214100
С	-4.56842200	-1.03259100	-0.01679700
С	-4.96588100	-1.03141500	1.31039900
F	1.73698000	-0.19830700	-1.41621500
F	3.04270400	-2.23040700	-2.50304000
F	2.11479200	-4.77717500	-2.22864500
F	-0.19039500	-5.21542800	-0.85167100
F	-1.52190300	-3.21672900	0.23525400
F	-1.13930800	2.17710900	1.46164000
F	-1.20507400	4.60453800	0.34643000
F	-0.85530600	4.89098100	-2.33245400
F	-0.49455400	2.68992100	-3.88715200
F	-0.45923800	0.26085400	-2.80927100
F	-2.89006400	-0.83724400	-1.61545100

F	-5.47222800	-1.23691200	-0.97824800
F	-6.24521300	-1.23071500	1.62759500
F	-4.40690600	-0.82028100	3.58260200
F	-1.84112700	-0.43112300	2.97033700
Н	-0.07190000	-0.11924100	1.21549300
Н	1.99517500	-1.53620700	1.54292500

TS_{III-3aa},

M06-2X/6-311G(d,p) free energy: -2926.020711 M06-2X/6-311G(d,p) SCF energy: -2926.3314396 M06-2X/cc-PVTZ SCF energy: -2926.638051

С	0.90070100	4.09674400	1.98277900
С	1.11832000	2.75010300	2.20193600
С	1.71807000	1.97451600	1.18834100
С	2.10035300	2.56210900	-0.03803900
С	1.89717800	3.91577800	-0.22964000
С	1.29054300	4.67453100	0.77296700
Н	0.42371300	4.70017800	2.74342700
Н	0.81441300	2.27328700	3.12535400
Н	2.55470400	1.94918700	-0.80370700
Н	2.19215000	4.38159300	-1.16115200
Н	1.11266600	5.73038500	0.60702600
С	1.93724500	0.61054000	1.40094300
С	2.44234000	-0.52210000	1.64592100
Si	4.36653700	-0.52500700	1.97864600
С	4.58387800	-1.36176600	3.62925200
Н	4.11430600	-0.78211100	4.42626700
Н	4.14995400	-2.36347700	3.62369700
Н	5.65001800	-1.45147400	3.85397500
С	4.99619600	-1.52401100	0.53428100
Н	4.72170200	-1.05156500	-0.41172000
Н	6.08577400	-1.60078300	0.57680200
Н	4.58156300	-2.53502200	0.54677300
С	4.98024500	1.23416300	1.97346100
Н	4.85336300	1.70515700	0.99617000
Н	4.46772200	1.84239300	2.72260600
Н	6.04724500	1.23704100	2.21104800
В	-0.62709600	-0.35460300	0.01207500
С	-0.81158100	1.02302000	-0.83496300
С	-0.58601400	1.23285300	-2.18678000

С	-1.22545100	2.14995500	-0.12970900
С	-0.69986800	2.47738600	-2.79157100
С	-1.36267200	3.40521400	-0.69327400
С	-1.08366100	3.57239200	-2.03881100
С	0.19551600	-1.56468900	-0.70617100
С	-0.15336900	-2.91029600	-0.66370900
С	1.42243400	-1.32156100	-1.31792400
С	0.63701600	-3.92728300	-1.18512900
С	2.24161100	-2.29880900	-1.85155400
С	1.84548700	-3.62338200	-1.78035400
С	-2.08122200	-0.77236500	0.60172100
С	-2.40773300	-0.73856100	1.94589900
С	-3.11131400	-1.12845800	-0.25533400
С	-3.67497600	-1.04498600	2.42224000
С	-4.38683800	-1.44564200	0.17360900
С	-4.66908300	-1.40059700	1.52971000
F	1.88582000	-0.06102300	-1.40379800
F	3.40755700	-1.98286100	-2.41917000
F	2.61751200	-4.58584000	-2.27749200
F	0.24032800	-5.19805400	-1.10846400
F	-1.29770100	-3.31708800	-0.09512700
F	-1.49598600	2.04943800	1.18321200
F	-1.72648700	4.45725300	0.04427800
F	-1.18568900	4.77526800	-2.60159800
F	-0.45111700	2.62745700	-4.09403600
F	-0.24148600	0.21692600	-2.99121000
F	-2.86967600	-1.19877900	-1.57449400
F	-5.34308300	-1.79352500	-0.69019700
F	-5.89068100	-1.70002200	1.96955000
F	-3.94588400	-0.99845200	3.72917300
F	-1.49181200	-0.39890400	2.86678800
Н	0.06069700	-0.01992800	0.97518500
Н	1.94933700	-1.48669500	1.56951000

3aa'

M06-2X/6-311G(d,p) free energy: -718.019669 M06-2X/6-311G(d,p) SCF energy: -718.2138151 M06-2X/cc-PVTZ SCF energy: -718.2653908

С	3.33560000	0.45646900	0.73445100
С	2.29560300	1.26825600	0.29801100

С	1.27050000	0.74594400	-0.49727600
С	1.33823000	-0.59439600	-0.88592100
С	2.38484800	-1.40567600	-0.45991500
С	3.38099900	-0.88456200	0.35990700
Н	4.11384800	0.86985000	1.36503900
Н	2.26303700	2.31270600	0.58953100
Н	0.57094200	-0.99219200	-1.54055800
Н	2.42472800	-2.44269000	-0.77199800
Н	4.19529700	-1.51543200	0.69556000
С	0.14275600	1.60498100	-0.92427500
С	-1.15418200	1.29697300	-0.80012000
Si	-1.96422700	-0.12601500	0.13885600
С	-3.60971000	0.56611800	0.73379900
Н	-3.45952700	1.42768300	1.38955200
Н	-4.22733400	0.88778300	-0.10910100
Н	-4.16853400	-0.18987800	1.29161700
С	-2.31878500	-1.60924300	-0.96344800
Н	-1.40773400	-2.13573900	-1.25498300
Н	-2.95865200	-2.31839000	-0.43048300
Н	-2.84188100	-1.30403300	-1.87319000
С	-0.95256800	-0.64380800	1.63693300
Н	-0.06432100	-1.21697700	1.36669000
Н	-0.62846800	0.23437400	2.20189400
Н	-1.57102700	-1.26001300	2.29600100
Н	0.43032100	2.56185700	-1.35974400
н	-1.85125900	2.03896200	-1.19268400

PhSiH₃

M06-2X/6-311G(d,p) free energy: -2730.847655 M06-2X/6-311G(d,p) SCF energy: -2731.053001 M06-2X/cc-PVTZ SCF energy: -2731.338855

Si	5.93189500	0.30164300	-4.56030100
Н	6.89116600	-0.48023600	-3.74731900
Н	6.54307000	0.55955000	-5.88551100
Н	5.65579800	1.60185600	-3.90795500
С	4.32740700	-0.65666100	-4.73396300
С	4.32793800	-2.05586800	-4.80055500
С	3.09843400	0.00926500	-4.82040700
С	3.14189600	-2.76649900	-4.95594200
Н	5.26360900	-2.60149900	-4.72665600

С	1.90948600	-0.69721300	-4.97603400
Н	3.06442700	1.09267200	-4.76209900
С	1.93056600	-2.08675600	-5.04482300
Н	3.16195800	-3.84893800	-5.00421500
Н	0.96795800	-0.16445200	-5.04009000
Н	1.00564100	-2.63876700	-5.16358200

IV

M06-2X/6-311G(d,p) free energy: -2730.847655 M06-2X/6-311G(d,p) SCF energy: -2731.053001 M06-2X/cc-PVTZ SCF energy: -2731.338855

Si	7.08749100	2.59788600	-4.73457600
В	8.69952300	4.86687000	-5.89566000
С	10.01829400	4.39200300	-5.14046100
С	11.15424000	3.88893400	-5.76523800
С	10.04534200	4.36760700	-3.74779600
С	12.23452900	3.37923400	-5.06106000
С	11.10498200	3.87778000	-3.01060900
С	12.20580800	3.36795600	-3.67848300
С	8.54619200	4.60072900	-7.46389600
С	8.28037200	5.60472300	-8.38629100
С	8.65956900	3.32036300	-7.98950700
С	8.13151600	5.35356200	-9.74234400
С	8.50749300	3.02505400	-9.32921100
С	8.24106300	4.05831700	-10.21415300
С	7.88191700	6.11443100	-5.32676600
С	6.50930300	6.20035400	-5.52134000
С	8.46775700	7.18459700	-4.66610100
С	5.74659300	7.26731200	-5.08363800
С	7.74086300	8.27676400	-4.22186800
С	6.37326600	8.31662600	-4.43206400
F	8.93240700	2.29793700	-7.16220700
F	8.61844100	1.77805100	-9.77606300
F	8.09678200	3.80499700	-11.50769800
F	7.88568700	6.34710300	-10.59139100
F	8.17443500	6.88046600	-8.00269000
F	8.97516200	4.79045200	-3.06138800
F	11.07224600	3.87084500	-1.68166700
F	13.21964300	2.85762300	-2.99331600
F	13.29308000	2.89212800	-5.70372300

F	11.25736000	3.86936700	-7.09721500
F	9.78482000	7.20180000	-4.43831900
F	8.34232100	9.28552900	-3.59718600
F	5.66458800	9.35558000	-4.00944500
F	4.43240800	7.29976000	-5.28477500
F	5.86807600	5.20513000	-6.15342200
Н	7.77334400	3.80386700	-5.41572300
Н	6.51634500	1.87393700	-5.88120200
С	8.40794100	1.72492700	-3.76908100
С	8.43076300	1.86053100	-2.37342700
С	9.43596100	1.00365600	-4.39468200
С	9.45869000	1.29981200	-1.62334800
Н	7.64971900	2.41879900	-1.86840200
С	10.46919400	0.45475500	-3.64440100
Н	9.43837400	0.87431300	-5.47015500
С	10.48456300	0.60823000	-2.25983300
Н	9.46829800	1.41799400	-0.54685500
Н	11.26572300	-0.08802200	-4.13965000
Н	11.29648600	0.18816400	-1.67811800
Н	6.08785200	3.23648000	-3.86107500

TS_{3aa'-V}

M06-2X/6-311G(d,p) free energy: -3448.845797 M06-2X/6-311G(d,p) SCF energy: -3449.2736839 M06-2X/cc-PVTZ SCF energy: -3449.6089149

С	-0.18093400	-5.87553000	2.04804500
С	0.60218000	-4.73063900	2.05310200
С	1.79076600	-4.67738500	2.79880100
С	2.18416800	-5.81496800	3.52612800
С	1.40658800	-6.96107000	3.51279100
С	0.22268800	-6.99130900	2.77533400
Н	-1.09660900	-5.90299400	1.47139000
Н	0.29943600	-3.86329200	1.47651600
Н	3.11034200	-5.81386500	4.08653000
Н	1.72227900	-7.83441600	4.07047600
Н	-0.37986900	-7.89143000	2.76378000
С	2.57900100	-3.45927000	2.72471900
С	3.74337600	-3.13237100	3.37486100
Si	4.23075100	-3.51006200	5.20524500
С	5.23764800	-1.99890600	5.66182100

Н	6.12739100	-1.91650700	5.03187000
Н	4.65198200	-1.08382100	5.54743800
Н	5.56663600	-2.06571200	6.70183800
С	2.63450000	-3.56972000	6.18551000
Н	2.02382200	-4.44189300	5.94409900
Н	2.87021600	-3.61010300	7.25257400
Н	2.03863000	-2.67269700	6.00138700
С	5.26352900	-5.03590000	5.55395400
Н	4.80457500	-5.98920600	5.28956400
Н	6.24523200	-4.99361900	5.07929700
Н	5.42249400	-5.04428900	6.63735600
Н	2.18811400	-2.73617700	2.00922200
Н	4.08290800	-2.12763100	3.10991200
Si	5.16484100	-4.29022800	2.04854300
Н	6.26184400	-4.01216300	2.98362000
Н	4.33364200	-5.49108700	2.12764600
С	5.20016400	-3.24965200	0.50676400
С	6.44935500	-2.80910300	0.04945200
С	4.06628700	-2.97460100	-0.26579700
С	6.56109700	-2.11412200	-1.14997500
Н	7.34555900	-3.03348400	0.62143300
С	4.17438700	-2.26930300	-1.45923100
Н	3.09198800	-3.34202400	0.03839700
С	5.42264100	-1.84249800	-1.90375200
Н	7.53488600	-1.79139400	-1.49866800
Н	3.28966000	-2.07241300	-2.05204400
Н	5.50925200	-1.30718700	-2.84205600
В	6.73116500	-6.49608200	0.63897300
С	6.61560100	-6.02394900	-0.90454600
С	7.68620000	-5.74119900	-1.74087300
С	5.36837300	-5.70731800	-1.43169200
С	7.53849400	-5.17575500	-3.00067700
С	5.17447700	-5.14444500	-2.67742000
С	6.27651700	-4.86780800	-3.46880200
С	8.21442000	-6.89372000	1.14595500
С	8.79787300	-8.06471100	0.68480900
С	8.96341600	-6.17046800	2.05630900
С	10.04582900	-8.50312700	1.08639100
С	10.21828900	-6.57334000	2.49079700
С	10.76087200	-7.74720800	2.00201900
С	5.67151500	-7.62311200	1.13555700
С	5.40848500	-7.71185200	2.49527700

С	4.92951600	-8.48181200	0.33927500	Н	6
С	4.42608100	-8.51702500	3.04082400	Н	5
С	3.94599500	-9.32101100	0.84416000	Н	6
С	3.68210200	-9.32819400	2.20251200	С	3
F	8.49640400	-5.01772400	2.56512100	Н	2
F	10.90415500	-5.84271500	3.37121100	Н	4
F	11.96389200	-8.14904600	2.40601900	Н	3
F	10.56919700	-9.63238700	0.60827200	С	4
F	8.14073600	-8.81041100	-0.21658400	Н	3
F	4.26573900	-5.91311500	-0.68928200	Н	5
F	3.95170500	-4.83964000	-3.11240300	Н	5
F	6.11857300	-4.29499200	-4.65959900	Н	1
F	8.60703900	-4.91032500	-3.75426400	Н	3
F	8.95006800	-5.98045600	-1.35948200	Si	4.
F	5.11358800	-8.51374300	-0.98575800	Н	5
F	3.24210100	-10.10992300	0.03257000	Н	4
F	2.71385800	-10.09430500	2.69979100	С	3
F	4.16050100	-8.48623400	4.35108300	С	3
F	6.08599400	-6.92176200	3.34753300	С	2
Н	6.42825500	-5.45097000	1.28637900	С	3

۷

M06-2X/6-311G(d,p) free energy: -3448.847354 M06-2X/6-311G(d,p) SCF energy: -3449.2762757 M06-2X/cc-PVTZ SCF energy: -3449.6093284

С	-0.04532400	-5.93652000	5.80720400
С	0.40284200	-4.79225400	5.17004500
С	1.58010900	-4.82185200	4.39502500
С	2.27981400	-6.03751000	4.25160500
С	1.82925400	-7.17578500	4.88944700
С	0.67110200	-7.12330300	5.66996500
Н	-0.94523200	-5.90876600	6.40743700
Н	-0.14189500	-3.86042400	5.27154100
Н	3.17667300	-6.09474500	3.64957000
Н	2.37183600	-8.10405400	4.77305000
Н	0.32321100	-8.01992800	6.16875700
С	2.02053300	-3.58025300	3.82969800
С	3.23617500	-3.23183300	3.23156300
Si	4.37900200	-2.94344600	4.92158600
С	5.90442900	-2.11328900	4.24710000

Н	6.55490500	-2.79594400	3.69963700
Н	5.65415500	-1.26828800	3.60293000
Н	6.46522000	-1.73353200	5.10708000
С	3.39990800	-1.80533700	6.02704800
Н	2.52493900	-2.30274400	6.45181500
Н	4.03695600	-1.48404800	6.85541600
Н	3.07112500	-0.91262300	5.49019800
С	4.74570700	-4.57528500	5.74702800
Н	3.89154100	-4.95758100	6.30868500
Н	5.09236300	-5.34812500	5.05705900
Н	5.55664400	-4.38504300	6.45972200
Н	1.31029600	-2.76567500	3.97506300
Н	3.18635000	-2.20350000	2.86097500
Si	4.35107400	-4.26143900	2.03703600
Н	5.36178000	-3.28860000	1.58651900
Н	4.95697800	-5.33973500	2.83100000
С	3.36582800	-4.86134100	0.56290800
С	3.98647600	-4.82083800	-0.69465000
С	2.06200900	-5.36456000	0.64657900
С	3.32250300	-5.26958800	-1.83166700
Н	5.00506200	-4.45563100	-0.78595000
С	1.39649200	-5.81427000	-0.49045800
Н	1.54920900	-5.41399200	1.60217200
С	2.02581700	-5.76475300	-1.73067000
Н	3.82162900	-5.24171400	-2.79283900
Н	0.39011500	-6.20705700	-0.40627600
Н	1.51039100	-6.12058100	-2.61475500
В	6.76173200	-6.76099400	1.25374600
С	5.41117500	-7.63721800	0.94299700
С	5.03312200	-7.84046300	-0.38194600
С	4.43632700	-8.01370200	1.86039400
С	3.81952800	-8.37645400	-0.77662300
С	3.21038100	-8.56066800	1.51117000
С	2.89317000	-8.74189700	0.18055200
С	8.03400400	-7.10831800	0.28344300
С	8.85007700	-8.21703600	0.44772800
С	8.40338800	-6.26409400	-0.75734900
С	9.95442100	-8.48726400	-0.34638000
С	9.49813700	-6.49344000	-1.57525800
С	10.28195600	-7.61461100	-1.36682200
С	7.24750600	-6.73702200	2.81548600
С	7.68941200	-5.53754900	3.36149600

С	7.23979500	-7.80527900	3.70410400	
С	8.04072500	-5.37438900	4.69199800	
С	7.59218000	-7.69055300	5.04097300	
С	7.98779000	-6.46324800	5.54219400	
F	7.68798300	-5.16374900	-1.03844700	
F	9.80630200	-5.64903500	-2.56393200	
F	11.33886000	-7.85096900	-2.14377800	
F	10.70161600	-9.57467100	-0.13752500	
F	8.58820700	-9.10551500	1.41807100	
F	4.59231900	-7.79978100	3.18694100	
F	2.31155300	-8.87472100	2.45111300	
F	1.69966200	-9.21462500	-0.17580100	
F	3.51488900	-8.49380500	-2.07039800	
F	5.82842300	-7.43038300	-1.38339600	
F	6.83625200	-9.01994500	3.31188500	
F	7.54001500	-8.74783500	5.85487100	
F	8.30112200	-6.32657500	6.83021100	
F	8.39609700	-4.17656300	5.16873900	
F	7.75934000	-4.42933200	2.60047800	
Н	6.43948800	-5.63170700	0.97120800	

VA

M06-2X/6-311G(d,p) free energy: -1240.028888 M06-2X/6-311G(d,p) SCF energy: -1240.325446 M06-2X/cc-PVTZ SCF energy: -1240.407979

С	0.68522200	-0.75438900	1.92254400
С	0.71296000	-1.14156900	0.58338000
С	0.00760700	-0.41488000	-0.36616600
С	-0.74136800	0.72044200	0.06198600
С	-0.73850200	1.11132400	1.42005000
С	-0.04837600	0.35528700	2.34922900
Н	1.22998800	-1.34188000	2.65191100
Н	1.26496800	-2.02412000	0.28397500
Н	-1.10269800	1.42409900	-0.68848900
Н	-1.28430100	1.99844000	1.71826000
Н	-0.06006900	0.62939200	3.39554600
С	-0.25854800	-0.90597400	-1.77025400
С	-1.78388400	-1.25561000	-1.80598900
Si	-2.17845700	-3.11937400	-1.96384300
С	-3.99676400	-3.32075100	-1.54317400

Н	-4.20409800	-3.09360500	-0.49208200
Н	-4.61821500	-2.66667600	-2.16074900
Н	-4.31765400	-4.35069300	-1.71843400
С	-1.81442700	-3.65569600	-3.71902000
Н	-0.77183000	-3.46087400	-3.98303800
Н	-1.99514200	-4.72730800	-3.83507300
Н	-2.45160300	-3.12450000	-4.42981400
С	-1.10784600	-4.06615800	-0.74737700
Н	-0.04857000	-4.01406600	-1.01217100
Н	-1.22488300	-3.70063300	0.27637700
Н	-1.39317000	-5.12157400	-0.75548600
Н	0.38128100	-1.76004800	-1.99856900
Н	-2.27512400	-0.76562800	-2.65258700
Si	-2.45273700	-0.56325300	-0.20750800
Н	-2.37461900	-1.41719300	0.99191100
С	-3.94265900	0.51897400	-0.20373400
С	-4.69573200	0.64888700	0.97209600
С	-4.34520900	1.21003500	-1.35546300
С	-5.82981900	1.45146000	0.99359600
Н	-4.39718200	0.12077600	1.87192300
С	-5.47896300	2.01210600	-1.33052900
Н	-3.77546000	1.12586200	-2.27529000
С	-6.21923100	2.13140400	-0.15696700
Н	-6.40917100	1.54572800	1.90363600
Н	-5.78636000	2.54246900	-2.22324800
Н	-7.10373400	2.75677700	-0.13982200
Н	-0.03297000	-0.11861400	-2.49130100

VI

M06-2X/6-311G(d,p) free energy: -3448.852463 M06-2X/6-311G(d,p) SCF energy: -3449.280291 M06-2X/cc-PVTZ SCF energy: -3449.6140013

С	1.51998800	-4.31557700	-0.58315900
С	0.80653200	-3.32183700	-1.23163500
С	-0.35628700	-2.77907400	-0.64777200
С	-0.76449800	-3.23277600	0.62393700
С	-0.03832200	-4.21158100	1.27428000
С	1.09679100	-4.75753000	0.66828700
Н	2.41163700	-4.72981000	-1.03503800
н	1.13850600	-2.94315000	-2.19158400

Н	-1.65118300	-2.83523600	1.09998300	C)	3.35240800	1.59715200	-0.67062100
Н	-0.34632200	-4.55409900	2.25419100	C)	2.31569000	0.33819800	-2.34177200
Н	1.66330300	-5.52185700	1.18777200	C)	4.37264200	1.95759400	-1.53544600
С	-1.05991800	-1.78821700	-1.40364700	C)	3.31261600	0.67159300	-3.24508600
С	-2.34729800	-1.24204500	-1.19696400	C)	4.34958700	1.49141000	-2.83813800
Si	-3.62894400	-2.61576300	-1.88611500	C)	0.40977700	1.83163900	0.47899500
С	-5.30213000	-1.80199500	-1.73186800	C)	-0.50986100	2.41564100	-0.38239000
Н	-5.63162100	-1.73627000	-0.69262400	C)	0.69033700	2.57420500	1.61788400
Н	-5.31277200	-0.79725500	-2.15999100	C)	-1.13957200	3.62553300	-0.14127300
Н	-6.02522500	-2.41564500	-2.27736400	C)	0.07794200	3.78513300	1.90505400
С	-3.14950300	-2.90895100	-3.66583600	C)	-0.84653200	4.31427400	1.02184300
Н	-2.17393400	-3.39583000	-3.74124800	F		1.35705800	-0.48642600	-2.81109600
Н	-3.88700200	-3.55926700	-4.14330800	F	-	3.28654900	0.20968500	-4.49760400
Н	-3.11253800	-1.97139600	-4.22547300	F	-	5.31804500	1.82473200	-3.69002000
С	-3.52679400	-4.18205400	-0.87871100	F	-	5.37207500	2.74428600	-1.13180400
Н	-2.57163700	-4.69648200	-0.99855100	F		3.43109800	2.07086800	0.58198900
Н	-3.70594900	-4.01148900	0.18482300	F		-0.07054500	0.15311200	2.78793200
Н	-4.31332800	-4.85110800	-1.24177100	F		0.59718700	-1.65893900	4.58555300
Н	-0.55964200	-1.50726300	-2.32780200	F		2.53422000	-3.49772500	4.05719100
Н	-2.51749900	-0.44099500	-1.92486100	F		3.79632100	-3.44965400	1.64869500
Si	-2.94235900	-0.62103100	0.51667400	F		3.17845100	-1.64229900	-0.16778100
Н	-3.60395000	-1.71214200	1.26982200	F		1.58118100	2.13911300	2.51872400
Н	-1.72490300	-0.17594800	1.22061900	F		0.37380000	4.45178200	3.02303400
С	-4.19904400	0.73381900	0.24991000	F		-1.43756000	5.47911500	1.28228100
С	-5.38408600	0.72410000	0.99731500	F	-	-2.01512300	4.13286600	-1.01420800
С	-3.98742400	1.78404600	-0.65181300	F	-	-0.83340900	1.79907700	-1.53864500
С	-6.32903800	1.73393900	0.84913600	F	ł	0.23776800	-0.18039600	-0.59192800
Н	-5.57590200	-0.08083900	1.69999400					
С	-4.92919600	2.79746500	-0.79893000	Т	Sγ	'l-4aa'c		
Н	-3.08478300	1.82076800	-1.25159200					
С	-6.10138400	2.77184600	-0.04956000	Ν	/06	6-2X/6-311G(d,p	o) free energy: -	3448.851158
Н	-7.24119800	1.71075500	1.43338000	Ν	/06	6-2X/6-311G(d,p	o) SCF energy:	-3449.2798879
Н	-4.74295000	3.60678200	-1.49453300	Ν	/106	8-2X/cc-PVTZ S	CF energy: -344	49.6131013
Н	-6.83609300	3.55986700	-0.16499200					
В	1.09250900	0.42110900	0.02583700	C)	1.41346000	-4.42308200	-0.56185900
С	1.55680800	-0.58875400	1.21842800	C)	0.77136500	-3.35492900	-1.16745900
С	2.53408100	-1.55743300	1.00925600	C)	-0.32111800	-2.72924800	-0.53859400
С	0.93012700	-0.68001900	2.45877300	C)	-0.72931200	-3.17276600	0.73329300
С	2.88493300	-2.51881600	1.94296500	C)	-0.07264800	-4.22673100	1.34252800
С	1.25052000	-1.62405200	3.42193600	C)	0.99160200	-4.85623200	0.69289800
С	2.23888400	-2.55493700	3.16347400	F	ł	2.25075700	-4.90271000	-1.05172600
С	2.28901900	0.78173500	-1.02955100	F	ł	1.10763300	-2.98474800	-2.12942700

Н	-1.55746700	-2.70395000	1.24906600	(С	3.29614800	1.57494000	-0.69934000
Н	-0.38085000	-4.56024200	2.32569100	(С	2.28778400	0.30797300	-2.38106100
Н	1.50371300	-5.67861700	1.17863000	(С	4.31234500	1.95879600	-1.55857800
С	-0.96917400	-1.66471900	-1.25985500	(С	3.28105400	0.66514300	-3.27913400
С	-2.28203800	-1.14190200	-1.07857000	(С	4.30175700	1.50102000	-2.86428500
Si	-3.49188100	-2.51194100	-1.86758500	(С	0.35672400	1.76846300	0.43737800
С	-5.18855700	-1.73270900	-1.79766400	(С	-0.55471500	2.33938000	-0.44163800
Н	-5.57141000	-1.67567300	-0.77626900	(С	0.62764900	2.52787900	1.56839400
Н	-5.19552200	-0.72621600	-2.22172000	(С	-1.18729600	3.55199900	-0.22386000
Н	-5.87233000	-2.35674900	-2.38040700	(С	0.00726000	3.73975700	1.83362800
С	-2.91201500	-2.76872100	-3.62469800	(С	-0.91012400	4.25460000	0.93484800
Н	-1.93350500	-3.25505900	-3.65533300	F	F	1.34759900	-0.53244800	-2.85760300
Н	-3.62023300	-3.40887000	-4.15697000	F	F	3.26600300	0.20985900	-4.53337100
Н	-2.84357400	-1.81992900	-4.16208200	F	F	5.26611900	1.85683200	-3.71044200
С	-3.42858200	-4.10382600	-0.89425900	F	F	5.29531400	2.76005700	-1.14560600
Н	-2.47463400	-4.62206500	-1.00843700	F	F	3.36265700	2.04172500	0.55580900
Н	-3.62153800	-3.95413400	0.17013600	F	F	-0.03031300	0.11330000	2.80209900
Н	-4.21436600	-4.75823700	-1.28421500	F	F	0.68072600	-1.69961600	4.57782700
Н	-0.48377400	-1.41168800	-2.19800400	F	F	2.58313200	-3.55397100	3.98961000
Н	-2.43245200	-0.31927100	-1.78657400	F	F	3.77478100	-3.51503200	1.54677600
Si	-2.96390200	-0.57290500	0.61223100	F	F	3.12509100	-1.69430100	-0.24631000
Н	-3.62295300	-1.69261300	1.32584700	F	F	1.52197600	2.11735300	2.47551000
Н	-1.80210400	-0.09759300	1.38746200	F	F	0.29293500	4.42258600	2.94339600
С	-4.24462800	0.75464200	0.31300300	F	F	-1.50622100	5.42024100	1.17402800
С	-5.42943100	0.74788800	1.06038600	F	F	-2.04961400	4.04891800	-1.11451300
С	-4.04961600	1.78302000	-0.61682000	F	F	-0.86073600	1.70769300	-1.59463100
С	-6.38874800	1.74006700	0.88613400	ł	Н	0.20280200	-0.27172700	-0.60713500
Н	-5.61023200	-0.04151500	1.78333300					
С	-5.00459800	2.77984200	-0.78975000	4	4aa	'c		
Н	-3.14988200	1.81532500	-1.22150500					
С	-6.17588500	2.75784700	-0.03881400	ſ	M06	6-2X/6-311G(d,p	o) free energy: -	1240.832412
Н	-7.30088400	1.71873700	1.47054400	ſ	M06	6-2X/6-311G(d,p	o) SCF energy:	-1241.1396
Н	-4.83051000	3.57220500	-1.50777100	ſ	M06	8-2X/cc-PVTZ S	CF energy: -124	41.2198154
Н	-6.92163000	3.53219200	-0.17425600					
В	1.07010000	0.37043500	0.00470500	(С	1.70449300	-4.50598500	-1.25193400
С	1.55347900	-0.63035400	1.18838300	(С	1.16313700	-3.28744700	-1.65369000
С	2.51577800	-1.60884700	0.94815200	(С	0.46293900	-2.47961900	-0.75687300
С	0.95991300	-0.71856200	2.44557900	(С	0.35456200	-2.90585400	0.57010200
С	2.88216500	-2.57667900	1.86807200	(С	0.88982600	-4.12243400	0.97689900
С	1.30239500	-1.66621500	3.39769000	(С	1.55839800	-4.93353700	0.06306700
С	2.27215100	-2.60677600	3.10761100	ł	Η	2.23935700	-5.11974500	-1.96732500
С	2.24776800	0.74268700	-1.06669200	ł	Η	1.28535500	-2.95972200	-2.68066100

Н	-0.14345100	-2.27638800	1.30066500
Н	0.78974000	-4.43628800	2.00935100
Н	1.97289800	-5.88359600	0.37823500
С	-0.18788400	-1.19528400	-1.21801900
С	-1.74264500	-1.22810400	-1.20791400
Si	-2.51587600	-2.64668400	-2.21154000
С	-4.35835000	-2.30330700	-2.39640900
Н	-4.88955300	-2.41575700	-1.44778600
Н	-4.54295900	-1.28787200	-2.75803800
Н	-4.79513300	-3.00551000	-3.11240900
С	-1.73822100	-2.67577500	-3.92516500
Н	-0.68452300	-2.95999200	-3.89093800
Н	-2.25748400	-3.39776600	-4.56153200
Н	-1.81045100	-1.69409400	-4.40173000
С	-2.31362300	-4.32597700	-1.38664000
Н	-1.26754200	-4.63479600	-1.32579700
Н	-2.72318300	-4.31797400	-0.37298300
Н	-2.86127700	-5.07913400	-1.96131200
Н	0.15356300	-0.98250800	-2.23529000
Н	-2.07580200	-0.32600100	-1.74375600
Si	-2.52597300	-1.01625200	0.49471300
Н	-2.72250000	-2.29849300	1.21882300
Н	-1.63696100	-0.16006300	1.32702000
С	-4.22444600	-0.22487800	0.33064800
С	-5.34478400	-0.79550600	0.94672500
С	-4.41301000	0.93382100	-0.43446600
С	-6.61107000	-0.23606700	0.79832400
Н	-5.23132100	-1.69594800	1.54255800
С	-5.67533800	1.49821200	-0.58613600
Н	-3.56597400	1.40647900	-0.92366200
С	-6.77784900	0.91077400	0.02884200
Н	-7.46633300	-0.69616200	1.27945400
Н	-5.80037300	2.39367200	-1.18375100
Н	-7.76283200	1.34631200	-0.09159700
Н	0.16558000	-0.36882000	-0.59140300

2bʻ

M06-2X/6-311G(d,p) free energy: -370.425436 M06-2X/6-311G(d,p) SCF energy: -370.488211 M06-2X/cc-PVTZ SCF energy: -370.5031949

Si	4.89444200	-4.37558500	-0.67644900
Н	5.66977800	-3.78557100	-1.79806000
С	3.53416600	-5.47379400	-1.35910200
н	3.94416500	-6.27532400	-1.97659300
н	2.96380300	-5.92893100	-0.54622800
С	4.17794200	-3.00376900	0.38538600
н	3.49823700	-2.38035800	-0.19993900
н	3.61633300	-3.42097300	1.22429600
н	4.96434100	-2.36276700	0.78853700
н	2.84288800	-4.89188000	-1.97289100
н	5.83682100	-5.19171600	0.13167800

TS_{3aa'a'}

M06-2X/6-311G(d,p) free energy: -3335.766784 M06-2X/6-311G(d,p) SCF energy: -3336.1990542 M06-2X/cc-PVTZ SCF energy: -3336.5239225

С	-0.80864200	-5.18652400	3.05391900
С	0.17090200	-4.25275100	2.74245400
С	1.46392200	-4.36716000	3.27109400
С	1.76063200	-5.46133000	4.09585300
С	0.78640700	-6.39806300	4.40047900
С	-0.50218700	-6.25850700	3.88528200
Н	-1.80569300	-5.08120900	2.64508300
Н	-0.06354400	-3.41793000	2.09087400
Н	2.76427800	-5.59770000	4.47562300
Н	1.02964500	-7.24231400	5.03345400
Н	-1.26182200	-6.99227900	4.12589800
С	2.43275900	-3.32943000	2.92331600
С	3.66944100	-3.07730400	3.43344300
Si	4.44778500	-3.47971700	5.13584500
С	5.64497800	-2.06333300	5.42159300
Н	6.46710600	-2.04894800	4.70333100
Н	5.12403400	-1.10430900	5.35886100
Н	6.07636100	-2.14471300	6.42273600
С	3.10659000	-3.37998500	6.44476000
Н	2.38769400	-4.19882100	6.40150600
Н	3.57924400	-3.39840500	7.43100700
Н	2.55834400	-2.43913400	6.35242600
С	5.37375600	-5.11091000	5.28936300
Н	4.71667900	-5.98210700	5.33885800

Н	6.10974200	-5.28352000	4.50089000	
Н	5.91905300	-5.07127300	6.23751300	
н	2.07123200	-2.65529800	2.14777700	
н	4.09216500	-2.15626500	3.02721100	
Si	4.75592200	-4.28307100	1.46914200	
В	6.94721400	-5.19434600	-0.74139600	
С	6.96326200	-3.69629600	-1.38879100	
С	7.81922100	-2.66393900	-1.02716700	
С	6.02367200	-3.34273400	-2.35174400	
С	7.75102200	-1.38403600	-1.56023500	
С	5.91566700	-2.08327900	-2.91116400	
С	6.79360800	-1.09033200	-2.51145200	
С	8.26171600	-5.58338400	0.14090600	
С	9.52105400	-5.54456100	-0.44394200	
С	8.23561100	-6.05991600	1.44013400	
С	10.68080900	-5.91947000	0.20776700	
С	9.37206300	-6.44413200	2.13784100	
С	10.60332500	-6.37551900	1.51477900	
С	6.76911000	-6.40686000	-1.82155500	
С	6.36706800	-7.65319400	-1.35999400	
С	7.07817200	-6.36080800	-3.17420600	
С	6.23504900	-8.77214700	-2.16361200	
С	6.96314100	-7.45643100	-4.01725000	
С	6.53580000	-8.66991600	-3.51039600	
F	7.07334500	-6.15637100	2.11319600	
F	9.28469700	-6.87835500	3.39609900	
F	11.70671200	-6.74141600	2.16251400	
F	11.86636800	-5.84985400	-0.39782800	
F	9.64134600	-5.10390600	-1.70502100	
F	5.13617600	-4.25706000	-2.78264200	
F	4.98128500	-1.81626800	-3.82336300	
F	6.71154500	0.13075400	-3.03255300	
F	8.60107300	-0.43728500	-1.16217900	
F	8.77672200	-2.84793800	-0.10178400	
F	7.51433900	-5.22946300	-3.74500300	
F	7.26509500	-7.35252600	-5.31232800	
F	6.42081000	-9.72964400	-4.30755700	
F	5.83514400	-9.93964200	-1.65789000	
F	6.09686300	-7.81977300	-0.05237200	
Н	5.95282200	-5.24316100	0.00187800	
С	3.74309600	-3.53195600	0.10239300	
Н	3.83696100	-2.44383800	0.08211400	

Н	4.06933200	-3.92904800	-0.85777800
Н	2.69214200	-3.80017600	0.22275300
С	6.28640300	-3.38028100	2.03342100
Н	6.11519600	-2.30261400	2.00270600
Н	6.56659600	-3.66872800	3.04602800
Н	7.12907800	-3.60756700	1.38287000
С	4.26611000	-5.99485600	1.98327100
Н	3.18150400	-6.09384900	1.91675100
Н	4.72571500	-6.71416400	1.30661500
Н	4.59103100	-6.22982600	2.99610800

TS_{3ab'b'}

M06-2X/6-311G(d,p) free energy: -3296.478599 M06-2X/6-311G(d,p) SCF energy: -3296.881782 M06-2X/cc-PVTZ SCF energy: -3297.2034183

С	-0.31560300	-5.72876400	2.49117400
С	0.44479300	-4.56984000	2.45493200
С	1.74833100	-4.55321300	2.97669000
С	2.28432300	-5.73841100	3.50536200
С	1.52822300	-6.89860200	3.52821100
С	0.22652300	-6.89302200	3.02808700
Н	-1.32325000	-5.72857400	2.09562700
Н	0.03245600	-3.66169000	2.02923000
Н	3.29738300	-5.75957700	3.88275500
Н	1.95164700	-7.81001500	3.93064300
Н	-0.36190300	-7.80224900	3.04983300
С	2.48019700	-3.29885300	2.91592700
С	3.69467100	-2.96401100	3.46046800
Si	4.46948600	-3.54729500	5.12335200
С	5.35803700	-2.01455400	5.73441100
Н	6.14254400	-1.69110800	5.04619500
Н	4.65664400	-1.18653500	5.86368700
Н	5.82294500	-2.21716300	6.70274400
С	3.06384900	-3.94990100	6.29756000
Н	2.54481500	-4.87860100	6.05722600
Н	3.47213300	-4.04601200	7.30771500
Н	2.33039300	-3.13983600	6.30578900
С	5.68723200	-4.97099200	5.02857700
Н	5.31999700	-5.86451500	4.52087700
Н	6.62453900	-4.68607500	4.54851400

Н	5.92080100	-5.25285500	6.06014600	Н
Н	1.97811900	-2.54049300	2.31557900	С
Н	3.93788600	-1.91500800	3.27395300	Н
Si	4.82722400	-3.79139800	1.66701200	Н
В	6.85688700	-4.98935700	-0.54403700	Н
С	7.03891600	-3.60366200	-1.38555300	Н
С	8.03661700	-2.66524100	-1.14907700	
С	6.14744000	-3.24102700	-2.39030700	Т
С	8.15302500	-1.46976500	-1.84345900	
С	6.22233500	-2.06106100	-3.10874600	Μ
С	7.24123100	-1.16561700	-2.83553500	Μ
С	8.18951700	-5.47129200	0.25929500	Μ
С	9.37366700	-5.70903000	-0.42620000	
С	8.23214100	-5.75368100	1.61258600	С
С	10.52958600	-6.16832900	0.17674900	С
С	9.36803300	-6.21393900	2.26404100	С
С	10.52514400	-6.42414500	1.53936800	С
С	6.35392900	-6.27404800	-1.41290400	С
С	5.69359600	-7.30480300	-0.75708100	С
С	6.59579500	-6.49680000	-2.76138700	Н
С	5.27124900	-8.46715100	-1.38018300	Н
С	6.19246500	-7.64588100	-3.42458200	Н
С	5.52473600	-8.63802800	-2.72952000	Н
F	7.14421400	-5.57905200	2.38391300	Н
F	9.34994700	-6.45460500	3.57654400	С
F	11.62640400	-6.86758100	2.14147200	С
F	11.64322700	-6.36883800	-0.52886400	S
F	9.42530900	-5.46864400	-1.74477300	С
F	5.12216100	-4.05226300	-2.70463300	Н
F	5.32640500	-1.77801200	-4.05442700	Н
F	7.33381800	-0.02341300	-3.51124500	Н
F	9.13419100	-0.61255900	-1.56037700	С
F	8.95933000	-2.86319200	-0.19140300	Н
F	7.23687100	-5.58395800	-3.50447900	Н
F	6.44174500	-7.80595100	-4.72553800	Н
F	5.13129700	-9.74732300	-3.35236500	С
F	4.63387700	-9.42080900	-0.69829200	Н
F	5.44072600	-7.20399500	0.55896400	Н
Н	5.96903800	-4.79416400	0.29240100	Н
С	3.75468300	-3.24218300	0.24443800	Н
Н	3.54392600	-2.17270000	0.31630500	Н
Н	4.24693000	-3.43502300	-0.70618800	S

Н	2.80838300	-3.78753500	0.24474100
С	6.32276800	-2.74982100	2.06870200
Н	6.06478300	-1.69136000	1.99099700
Н	6.68512900	-2.95104700	3.07679100
Н	7.13489300	-2.96174300	1.37255400
Н	4.69570100	-5.17789900	2.12352000

TS_{3b'b'-iso}

M06-2X/6-311G(d,p) free energy: -3296.47513 M06-2X/6-311G(d,p) SCF energy: -3296.88055 M06-2X/cc-PVTZ SCF energy: -3297.20278

С	-0.43428600	-5.59435100	2.32175200
С	0.53863000	-4.64138100	2.05726200
С	1.67404400	-4.53125400	2.87532700
С	1.82036600	-5.41621000	3.95564600
С	0.85381400	-6.37166300	4.21430300
С	-0.27676700	-6.45847700	3.40028900
Н	-1.30851600	-5.66669600	1.68759200
Н	0.42455800	-3.96831100	1.21503000
Н	2.70039800	-5.37205500	4.58121400
Н	0.97775800	-7.05385900	5.04570900
Н	-1.03171500	-7.20725500	3.60713600
С	2.63769700	-3.49782100	2.54196300
С	3.79736500	-3.11620200	3.17435900
Si	4.28962400	-3.16522300	5.03264500
С	5.47734000	-1.72941600	5.23206400
Н	6.43406500	-1.89694900	4.73462800
Н	5.04312300	-0.80669400	4.83903600
Н	5.67689900	-1.57715900	6.29630400
С	2.74510200	-2.80021100	6.03135800
Н	1.97771500	-3.57154800	5.95494200
Н	3.01942800	-2.70046900	7.08532200
Н	2.30899300	-1.85243400	5.70590800
С	5.12212700	-4.73723800	5.63941000
Н	4.44924100	-5.59028800	5.74569800
Н	5.96838800	-5.04603400	5.02222500
Н	5.51402600	-4.51549000	6.63689700
Н	2.38456900	-2.96404900	1.62592200
Н	4.20470800	-2.21337800	2.71084100
Si	5.07137900	-4.40647500	1.79810400

В	7.04081100	-5.30449200	-0.52063200
С	6.91988500	-3.76885200	-1.04648100
С	7.83449800	-2.74975400	-0.82223800
С	5.77202000	-3.37182100	-1.72431100
С	7.64428500	-1.44128600	-1.24619500
С	5.53863800	-2.08244400	-2.16526500
С	6.49027400	-1.10524600	-1.92697900
С	8.48179200	-5.72131900	0.11081800
С	9.62479500	-5.66535000	-0.67542000
С	8.66520300	-6.23969400	1.38100100
С	10.87297700	-6.06930700	-0.24147200
С	9.89854700	-6.65865000	1.86165400
С	11.00835100	-6.57364600	1.04305600
С	6.68074900	-6.43901300	-1.63592500
С	6.35680000	-7.71523100	-1.19502700
С	6.72596600	-6.28908700	-3.01401600
С	6.06878600	-8.77303400	-2.03980500
С	6.44579800	-7.32071300	-3.89825800
С	6.11332800	-8.57044300	-3.40833000
F	7.62958800	-6.35302300	2.23368100
F	10.02154800	-7.14340700	3.09852200
F	12.20032100	-6.97089200	1.48343300
F	11.94226600	-5.98369900	-1.03363900
F	9.53409200	-5.18031300	-1.92298200
F	4.80465600	-4.27038800	-1.97109700
F	4.41272600	-1.76896000	-2.80840700
F	6.28919900	0.14427500	-2.33926500
F	8.56237300	-0.50610700	-0.99793000
F	8.97164200	-2.97581700	-0.14293900
F	7.04725900	-5.11074700	-3.56732600
F	6.49584900	-7.12150100	-5.21664900
F	5.84170100	-9.57048500	-4.24473100
F	5.75707100	-9.97685300	-1.55638100
F	6.32261700	-7.97202500	0.12515300
Н	6.19326400	-5.44276900	0.35983500
С	6.63620600	-3.54903200	2.35462000
Н	6.89769300	-3.82821100	3.37581400
Н	7.46634100	-3.83248200	1.70758100
Н	6.51563800	-2.46574500	2.30054300
С	4.61908300	-6.12424600	2.34720500
Н	4.59861300	-6.20794700	3.43427800
Н	3.63626800	-6.39219000	1.95520200

Н	5.35221500	-6.83029900	1.96105200
Н	4.47333300	-3.90576900	0.55422800

TS_{1a-VII}

M06-2X/6-311G(d,p) free energy: -2516.308365 M06-2X/6-311G(d,p) SCF energy: -2516.5092946 M06-2X/cc-PVTZ SCF energy: -2516.7979731

В	-0.52432000	0.03293700	-0.18981700
С	-1.31178700	-1.36738900	-0.19364800
С	-1.40616900	-2.35339000	-1.16189400
С	-1.92796000	-1.65827400	1.01914800
С	-2.08599800	-3.54495800	-0.94751100
С	-2.61283400	-2.82982700	1.27132500
С	-2.69266200	-3.78452400	0.27045500
С	-1.36735700	1.38508200	-0.21066700
С	-0.74215400	2.62517500	-0.34730700
С	-2.75937300	1.43662300	-0.14750100
С	-1.42065600	3.82635700	-0.40127000
С	-3.47460500	2.62416000	-0.18673500
С	-2.80329000	3.82502300	-0.31552600
С	0.84514800	-0.06139600	0.61445000
С	1.25419500	0.82967300	1.60250100
С	1.71823400	-1.12134900	0.37241400
С	2.47739100	0.72734300	2.24585500
С	2.94896000	-1.25260000	0.98836700
С	3.33523000	-0.31047500	1.92597200
F	-3.49474900	0.32741700	-0.04209500
F	-4.80192100	2.61330900	-0.10880900
F	-3.47505700	4.96571200	-0.35995400
F	-0.76538200	4.97510400	-0.53543300
F	0.58862400	2.69224800	-0.44895500
F	-1.87735400	-0.74436300	2.00057700
F	-3.19254000	-3.04739400	2.44862600
F	-3.34445500	-4.92160100	0.48240900
F	-2.14995600	-4.46339900	-1.90916700
F	-0.83013700	-2.21647600	-2.36001300
F	1.40905200	-2.04145200	-0.54769300
F	3.76317300	-2.25725100	0.67872800
F	4.51692000	-0.40649300	2.51880900
F	2.83069800	1.61323500	3.17342600

F	0.46315100	1.83029900	1.99682400
С	4.61173000	-0.89092400	-2.03890200
С	3.27172300	-0.78587800	-2.37699500
С	2.55696200	0.37342100	-2.03717500
С	3.20249300	1.43336400	-1.38486500
С	4.54200200	1.31199100	-1.04365600
С	5.24241100	0.14993800	-1.35985000
Н	5.16079100	-1.79017500	-2.28734800
Н	2.75811100	-1.59820100	-2.87530600
Н	2.64942100	2.32855400	-1.13851500
Н	5.03948400	2.12225600	-0.52536400
Н	6.28457300	0.05642600	-1.07959500
С	1.15340100	0.40991400	-2.28446900
С	-0.05290300	0.35086900	-2.40988700
Н	-1.04416800	0.35869400	-2.80607800

VII

M06-2X/6-311G(d,p) free energy: -2516.312258 M06-2X/6-311G(d,p) SCF energy: -2516.5123694 M06-2X/cc-PVTZ SCF energy: -2516.801128

В	0.43020900	0.05982800	-0.45048900
С	-0.17623800	0.20472100	-2.09330500
С	1.08925000	1.54027100	-0.30046500
С	0.26469200	2.65933900	-0.23101000
С	0.72549300	3.95987200	-0.16662700
С	2.09087500	4.19025600	-0.17942100
С	2.95579300	3.11633800	-0.26197900
С	2.44897700	1.82576800	-0.33057600
F	-1.06901300	2.49848900	-0.21835100
F	-0.12196000	4.98487500	-0.09448800
F	2.56227800	5.43059100	-0.11785900
F	4.27081000	3.32715600	-0.28392500
F	3.36409600	0.85362700	-0.43441100
С	-1.42315100	0.24925100	-2.15165600
С	-0.76016100	-0.29847100	0.60641800
С	1.47944800	-1.18257600	-0.39837100
С	1.68684900	-2.16217000	-1.35481000
С	2.56044500	-3.22557000	-1.16918100
С	3.25852000	-3.33845500	0.01715500
С	3.07405600	-2.38795200	1.00870800

С	2.19371700	-1.34807600	0.78328700
F	2.04782400	-0.44425900	1.76385500
F	3.74326300	-2.48745400	2.15626900
F	4.09939500	-4.35051800	0.20841500
F	2.72600700	-4.13990900	-2.12487000
F	1.03740900	-2.13679700	-2.52861300
С	-1.06626000	0.39358300	1.77116700
С	-2.10117900	0.02692900	2.62011500
С	-2.87139900	-1.08347500	2.32792400
С	-2.58054100	-1.82888000	1.19885100
С	-1.52701500	-1.43955900	0.39214500
F	-1.27386400	-2.21827700	-0.67412400
F	-3.30878600	-2.90320000	0.89853400
F	-3.87236800	-1.43698500	3.12714200
F	-2.35737600	0.73553600	3.71870800
F	-0.36082400	1.46611600	2.14794800
н	0.59158800	0.29885400	-2.84724300
С	-2.81047700	0.22783500	-2.02620200
С	-3.50177400	-0.99545100	-2.18246300
С	-3.50817900	1.41075800	-1.69828200
С	-4.86934900	-1.02825400	-1.99448300
Н	-2.94599600	-1.88910400	-2.43399500
С	-4.87676300	1.35911800	-1.51472300
Н	-2.95827300	2.33506500	-1.58427100
С	-5.54950500	0.14442800	-1.65803900
Н	-5.41080700	-1.95871700	-2.10262500
Н	-5.42454100	2.25574400	-1.25655500
Н	-6.62175900	0.11066200	-1.50599200

TS_{VII-9}

M06-2X/6-311G(d,p) free energy: -2516.292189 M06-2X/6-311G(d,p) SCF energy: -2516.4893069 M06-2X/cc-PVTZ SCF energy : -2516.7806825

С	1.01326100	-1.93177500	1.52863900
С	0.70593900	-0.58517400	1.39865800
С	0.97464000	0.19753800	2.51146100
С	1.49880400	-0.32499500	3.68444000
С	1.77826900	-1.67742100	3.76926400
С	1.53512400	-2.49495800	2.67859400
В	0.17240400	-0.05027900	-0.04585500

С	1.43727500	-0.08526000	-1.06125800	9	9			
С	1.65466400	-1.02680900	-2.05195400					
С	2.80609800	-1.05755500	-2.82595500	I	M06	6-2X/6-311G(d,p	o) free energy: -2	2516.363780
С	3.79540100	-0.11794700	-2.60805900	I	M06	6-2X/6-311G(d,p	o) SCF energy: -	-2516.565191
С	3.62564800	0.83737100	-1.61750000	I	M06	6-2X/cc-PVTZ S	CF energy: -25	16.8568863
С	2.46537300	0.82815900	-0.86801000					
F	0.74173300	-1.98007300	-2.30785200	I	В	0.83322200	-0.04302700	-0.15084400
F	2.96599300	-1.98396500	-3.76918200	(С	-1.70768400	-0.32867500	0.2717690
F	4.90492800	-0.13095900	-3.33915900	(С	-2.83622500	-0.37287400	-0.5400900
F	4.57664400	1.74348000	-1.40171400	(С	-1.80166300	0.41604800	1.44115900
F	2.33423100	1.76308300	0.08282400	(С	-4.01265900	0.26376800	-0.1865030
F	0.73178100	1.51273000	2.50257000	(С	-2.96442600	1.06606800	1.81621400
F	1.73596700	0.46302300	4.73111200	(С	-4.07712600	0.98349000	0.99648600
F	2.28071400	-2.18798700	4.88832600	(С	0.65519300	1.50907500	-0.32533400
F	1.80702600	-3.79615700	2.74637900	(С	-0.24775400	2.04916400	-1.2359690
F	0.81138000	-2.75452700	0.47965500	(С	1.37625800	2.41771000	0.44155000
С	-1.05138400	-0.94454400	-0.53643100	(С	-0.43527800	3.41198500	-1.3814630
С	-2.03330300	-1.63410900	-0.87596300	(С	1.20477400	3.78624600	0.33240700
С	-0.66892100	1.35950200	0.00104100	(С	0.29526800	4.28195700	-0.58777500
С	-1.63120700	1.56395200	0.98502000	(С	2.28286500	-0.62965700	-0.0293810
С	-2.39180600	2.71432800	1.08372300	(С	3.31349000	-0.18020600	-0.8513750
С	-2.21143700	3.72248900	0.15250700	(С	2.62721000	-1.58553200	0.92358200
С	-1.28220700	3.55686700	-0.85816400	(С	4.60641900	-0.66128700	-0.7604230
С	-0.54272900	2.38585800	-0.92751400	(С	3.91566200	-2.07511000	1.05259200
F	-1.85862300	0.61112400	1.89942500	(С	4.90577700	-1.61275400	0.20169700
F	-3.29589900	2.85545700	2.04999600	I	F	2.25432600	1.97912900	1.34638600
F	-2.93158600	4.83484100	0.22332300	I	F	1.89738500	4.62553400	1.09475000
F	-1.11223600	4.51820700	-1.76268000	I	F	0.12572100	5.58963100	-0.71091000
F	0.31394200	2.29488400	-1.94954900	I	F	-1.29608500	3.89348700	-2.27181500
н	-1.09947100	-2.36075700	-0.86388500	I	F	-0.95310100	1.24481600	-2.03641000
С	-3.37383100	-2.07210200	-1.19568900	I	F	-0.73281800	0.51944100	2.23825800
С	-4.44406000	-1.27761100	-0.77232600	I	F	-3.01996600	1.76371400	2.94616000
С	-3.59263900	-3.24947800	-1.91299000	I	F	-5.20169500	1.59944900	1.33794700
С	-5.73876300	-1.66880400	-1.07938500	I	F	-5.07860500	0.20286900	-0.97871100
н	-4.25665500	-0.37427600	-0.20492700	I	F	-2.80261500	-1.02732800	-1.69766700
С	-4.89374500	-3.62930600	-2.21108700	I	F	1.71816700	-2.04341100	1.78511600
н	-2.75436300	-3.85444100	-2.23530100	I	F	4.21223600	-2.97687600	1.98232700
С	-5.96364600	-2.84120200	-1.79689000	I	F	6.14013600	-2.07937000	0.30800000
Н	-6.57287300	-1.05978200	-0.75498600	I	F	5.55907000	-0.22417900	-1.57692800
Н	-5.07144500	-4.54060500	-2.76756900	I	F	3.06649100	0.73566600	-1.79047600
Н	-6.97705700	-3.14228300	-2.03183900	(С	-3.32994900	-4.35836200	0.3921780
				(С	-2.37855400	-3.35041400	0.4618020

-0.15084400

0.27176900 -0.54009000

1.44115900

-0.18650300 1.81621400

0.99648600

-0.32533400

-1.23596900 0.44155000

-1.38146300

0.33240700

-0.58777500

-0.02938100

-0.85137500

0.92358200

-0.76042300

1.05259200

0.20169700 1.34638600

1.09475000

-0.71091000

-2.27181500

-2.03641000

2.23825800

2.94616000

1.33794700

-0.97871100

-1.69766700

1.78511600 1.98232700

0.30800000

-1.57692800 -1.79047600

0.39217800

0.46180200

С	-1.26891900	-4.27851200	-1.47071800
С	-2.23465200	-5.27281400	-1.55141800
С	-3.26879800	-5.31241400	-0.62120700
н	-4.11864300	-4.40417100	1.13313700
н	-2.41924400	-2.62806200	1.26783800
н	-0.45453600	-4.25304600	-2.18634400
н	-2.17533100	-6.02114300	-2.33207500
н	-4.01801200	-6.09291000	-0.67578100
С	-0.41305700	-0.95502000	-0.09778300
С	-1.34370300	-3.29120500	-0.48120400
С	-0.30435100	-2.25661600	-0.45158600
Н	0.67311900	-2.59301500	-0.79203000

II-E

M06-2X/6-311G(d,p) free energy: -2926.014407 M06-2X/6-311G(d,p) SCF energy: -2926.3273719 M06-2X/cc-PVTZ SCF energy: -2926.6329178

С	3.15607200	-3.30036800	0.52321500
С	1.80026600	-3.16252600	0.73924700
С	1.35265800	-2.42412200	1.86243300
С	2.28081600	-1.82162100	2.74568100
С	3.63167000	-1.95393700	2.49961600
С	4.06314800	-2.69340200	1.39549100
Н	3.51550400	-3.87066200	-0.32343300
Н	1.07783700	-3.62753700	0.08498500
Н	1.91465600	-1.25418700	3.59182100
Н	4.35314300	-1.48433100	3.15451700
Н	5.12615300	-2.79183200	1.20714200
С	0.00473100	-2.36743700	2.17362600
С	-1.18840900	-2.45045600	2.58583900
Si	-2.80794200	-1.37180400	2.72988100
С	-3.99064200	-2.03762600	1.45372600
Н	-3.71200900	-1.70729500	0.45333400
Н	-4.03365000	-3.12842400	1.46503000
Н	-4.99135000	-1.65356900	1.67115500
С	-3.35963300	-1.80183300	4.46305800
Н	-2.61194900	-1.50838400	5.20318100
Н	-4.28609800	-1.26797700	4.68998100
Н	-3.55152000	-2.87210000	4.56855500
С	-2.49735700	0.45276400	2.57485600

Н	-1.67185400	0.77617000	3.20882100
Н	-2.29401900	0.77201600	1.55309800
Н	-3.40887000	0.95415500	2.91671600
В	-0.09375000	0.31855900	-0.00887000
С	1.34996700	-0.08301100	-0.67622600
С	1.60297400	-0.61171600	-1.93475500
С	2.49180800	0.16861400	0.07980400
С	2.87666600	-0.92344400	-2.39245500
С	3.77932700	-0.10687200	-0.34330800
С	3.97414900	-0.67403500	-1.59024600
С	-1.40408500	-0.24497100	-0.81743400
С	-2.53696800	0.48055600	-1.16628600
С	-1.46427800	-1.58340800	-1.18609100
С	-3.61148400	-0.05386500	-1.86619000
С	-2.50242900	-2.16175800	-1.89323100
С	-3.59151500	-1.38297700	-2.24425000
С	-0.05289100	1.94056300	0.16799900
С	0.13602000	2.58745100	1.37853200
С	-0.09737400	2.77219500	-0.94262700
С	0.23799100	3.96792200	1.49277400
С	-0.00140600	4.14953700	-0.87792100
С	0.16778600	4.75302500	0.35801800
F	-0.44532700	-2.40166900	-0.86433200
F	-2.47460600	-3.45472100	-2.22105500
F	-4.61413200	-1.91248700	-2.91168800
F	-4.66499500	0.70406700	-2.17338500
F	-2.66675000	1.77330100	-0.82513800
F	2.37408100	0.70706800	1.30537800
F	4.82942200	0.12827800	0.44880900
F	5.20221200	-0.97922200	-2.00669900
F	3.05319600	-1.45171900	-3.60542000
F	0.60586800	-0.84697700	-2.80127400
F	-0.25764400	2.22877800	-2.16077600
F	-0.06576900	4.90209900	-1.97879500
F	0.26587800	6.07895000	0.44923500
F	0.41336700	4.54402200	2.68525300
F	0.24172700	1.89857300	2.52593600
н	-0.11457600	-0.18366100	1.09715100
Н	-1.34568500	-3.40443000	3.11217500

TS_{II-E-3aa}

M06-2X/6-311G(d,p) free energy: -2926.012456 M06-2X/6-311G(d,p) SCF energy: -2926.3265659 M06-2X/cc-PVTZ SCF energy: -2926.6319162

С	3.40857200	-2.90928300	1.11255500
С	2.04578400	-2.74256500	1.26754100
С	1.56944000	-1.76476200	2.17006900
С	2.47189100	-0.95926100	2.89918600
С	3.83043900	-1.13311700	2.72207400
С	4.29369100	-2.10292700	1.83075600
Н	3.78807300	-3.65870600	0.42998800
Н	1.34206800	-3.35867600	0.72775600
Н	2.08366100	-0.20619400	3.57321200
Н	4.53230900	-0.51366700	3.26420000
Н	5.36096300	-2.22822000	1.68984700
С	0.20293200	-1.63260200	2.41846500
С	-0.96573400	-1.73184600	2.90881800
Si	-2.71396300	-0.90073100	2.87810300
С	-3.80409800	-1.97591300	1.81257500
Н	-3.64355100	-1.76832200	0.75480300
Н	-3.63258500	-3.03935900	1.99101500
Н	-4.84950300	-1.75507500	2.04532700
С	-3.21319200	-1.01093500	4.67633700
Н	-2.51702600	-0.46407000	5.31616000
Н	-4.20602500	-0.57249300	4.80590300
Н	-3.25515300	-2.04805700	5.01714700
С	-2.67347500	0.87209400	2.32086100
Н	-2.02650700	1.47438600	2.95880500
Н	-2.35868700	0.99640400	1.28542900
Н	-3.69629000	1.25236300	2.41175100
В	-0.10416200	0.24170400	-0.11918100
С	1.35463400	-0.16178200	-0.73900800
С	1.62833800	-0.93670900	-1.85897400
С	2.48722700	0.32492300	-0.08889300
С	2.91484400	-1.25903800	-2.27045000
С	3.78514500	0.04194100	-0.47258000
С	4.00222200	-0.77302400	-1.56936500
С	-1.38670900	-0.51802400	-0.79067000
С	-2.55154600	0.07189000	-1.26806600
С	-1.37954900	-1.90479000	-0.89012600
С	-3.59535600	-0.64148400	-1.84405700
С	-2.38604000	-2.65935300	-1.46314000

С	-3.50946300	-2.01649800	-1.95392900
С	-0.17983900	1.86733400	-0.11699100
С	-0.04308500	2.64716100	1.01987100
С	-0.27938300	2.56979000	-1.30898500
С	-0.05063300	4.03434000	0.99147600
С	-0.28978000	3.95040200	-1.38636500
С	-0.17636000	4.68908000	-0.21973100
F	-0.32191600	-2.59116000	-0.42221000
F	-2.29589000	-3.98789400	-1.53052600
F	-4.50199100	-2.71423900	-2.49904800
F	-4.68244500	-0.01057000	-2.28805000
F	-2.74802900	1.39702300	-1.18371100
F	2.34998500	1.11052700	0.99232400
F	4.82525400	0.51393500	0.21844000
F	5.24181500	-1.08246400	-1.94283400
F	3.11189100	-2.02606600	-3.34395800
F	0.64131800	-1.41787200	-2.62896000
F	-0.38646000	1.89061600	-2.46212000
F	-0.40435600	4.57741100	-2.55880600
F	-0.18295900	6.02035900	-0.26634200
F	0.07352800	4.74234500	2.11678800
F	0.11948000	2.08304800	2.22744500
Н	-0.07346700	-0.12441100	1.06055100
Н	-0.95052200	-2.53941600	3.65916800

E-3aa'

M06-2X/6-311G(d,p) free energy: -718.024512 M06-2X/6-311G(d,p) SCF energy: -718.218194 M06-2X/cc-PVTZ SCF energy: -718.2706572

С	-3.92026900	1.05194600	0.03403400
С	-2.54306200	1.24157600	-0.00045900
С	-1.66451600	0.15328400	-0.02994300
С	-2.20666800	-1.13836200	-0.03569500
С	-3.58062300	-1.32988900	-0.00295500
С	-4.44406600	-0.23596400	0.03385800
Н	-4.58253900	1.90913700	0.05933400
Н	-2.13680500	2.24769600	-0.00140900
Н	-1.55129800	-2.00045700	-0.07409400
Н	-3.98263300	-2.33617800	-0.00981800
Н	-5.51623200	-0.38940300	0.05857500

С	-0.21095200	0.41420700	-0.05569200	
С	0.77913300	-0.48197000	0.05071500	
Si	2.59880100	-0.03448700	0.00893500	
С	3.40372800	-0.58288900	1.61661800	
Н	2.95913400	-0.07009700	2.47287000	
Н	3.28361400	-1.65888900	1.76694200	
Н	4.47453700	-0.36236000	1.60605700	
С	3.41975900	-0.92783800	-1.42698700	
Н	2.98376900	-0.62088400	-2.38066200	
Н	4.49040200	-0.70803800	-1.45580600	

Н	3.30125200	-2.01043000	-1.33352300
С	2.77829100	1.82277400	-0.20140400
Н	2.32081600	2.16527000	-1.13309700
Н	2.31470300	2.36547000	0.62635900
н	3.83667500	2.09487900	-0.22876900
н	0.04308800	1.46848600	-0.16586600
Н	0.51377500	-1.53262500	0.17528100

12. References

- S1 Full citation of Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
- S2 C. Y. Legault, CYLview, version 1.0b; Universitéde Sherbrooke: Quebec, Canada, 2009; http://www.cylview.org.
- S3 (a) Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, 120, 215–241; (b) Y. Zhao and D. G. Truhlar, *Acc. Chem. Res.*, 2008, 41, 157–167.
- S4 J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027–2094.
- S5 (a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B Condens. Matter*, **1988**, **37**, 785–789; (b) A. D. Becke, *J. Chem. Phys.*, **1993**, *98*, 5648–5652.
- S6 (a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104–154119; (b) S. Grimme,
 A. Hansen, J. G. Brandenburg and C. Bannwarth, Chem. Rev., 2016, 116, 5105–5154.
- S6 (a) C. Chen, F. Eweiner, B. Wibbeling, R. Fröhlich, S. Senda, Y. Ohki, K. Tatsumi, S. Grimme, G. Kehr and G. Erker, *Chem. Asian J.*, **2010**, *5*, 2199–2208; (b) C. Chen, G. Kehr, R. Fröhlich and G. Erker, *J. Am. Chem. Soc.*, **2010**, *132*, 13594–13595; (c) C. Chen, T. Voss, G. Kehr, R. Fröhlich and G. Erker, *Org. Lett.*, **2011**, *13*, 62–65; (d) G. Kehr and G. Erker, *Chem. Commun.*, **2012**, *48*, 1839–1850; (e) G. Kehr and G. Erker, *Chem. Sci.*, **2016**, *7*, 56–65.
- S8 J. Bigeleisen and M. G. Mayer, J. Chem. Phys., 1947, 15, 261–267.
- S9 (a) D. J. O'Leary, P. R. Rablen and M. P. Meyer, *Angew. Chem., Int. Ed.,* 2011, *50*, 2564–2567; (b) A. Fong,
 M. P. Meyer and D. J. O'Leary, *Molecules*, 2013, *18*, 2281–2296.
- S10 (a) R. P. Bell, *Chem. Soc. Rev.*, **1974**, *3*, 513–544. (b) R. P. Bell, The Tunnel Effect in Chemistry; Chapman and Hall: New York, **1980**; (c) D. B. Northrop, *J. Am. Chem. Soc.*, **1999**, *121*, 3521–3524.