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Supplemental Experimental Procedures

In this supplement, we present additional analyses and technical details ex-
panding upon the material presented in the main text. These include: (i) addi-
tional analysis of synthetic and experimental traces that include the estimation
of lifetimes and the fraction of different species contributing photons; (ii) addi-
tional details on the theoretical approaches used; and (iii) a complete description
of the inference framework developed that includes choices for prior probabil-
ity distributions and a computational implementation. Moreover, in our BNP
analysis, we do not pre-specify the number of species, we learn them.

Additional results

Analysis of additional synthetic data

In the main text we focused on the estimation of: lifetime, τ , with values
less than 10 ns which are typical lifetime values in in vivo applications [1]. Here,
we explore broader parameter ranges from freely diffusive molecules, Figs. S2
and S3 to the case when we have different background photons, Fig. S4, which
we evaluated our method respect to different background levels to see how it
behaves with different number background photons. Moreover, we evaluated our
method for cases with more than two species, Figs. S5 and S6, and estimate the
fraction of molecules contributing photons from different species, Fig. S7, that
we explain in the main text in Section “Mixtures of different species contributing
photons” .



Figure S1: The greater the number of detected photons, the sharper the molecular
lifetime estimate. (A) Here, we work on single species lifetime while all molecules are
immobilized. The synthetic trace generated using a lifetime of τ = 1 ns. The blue dots
represent single photon arrival times (y-axis) recorded after each excitation pulse (x-axis).
We consider the excitation pulse as a Gaussian IRF (Eq. 4 ) occurs at a frequency of 40 MHz
with standard deviation of 0.1 ns. (B1) In the analysis to determine lifetimes, we first start
with just 50 photons, first black-dashed line in panel (A), and gradually increase the number
of photons considered in the analysis to (B2) 100, second black-dashed line in panel (A), (B3)
500, third black-dashed line in panel (A), and (B4) 1000 photons, last black-dashed line in
panel (A). The ground truth for the lifetime is known (as this is synthetic data) and it is
shown by the red-dashed line.



Figure S2: Effect of the number of detected photons on a single diffusive molecular
lifetime estimate. The more photons per unit time, the sharper the lifetime
estimate. Here, we work on single species lifetime while all molecules are diffusing with
diffusion coefficient, D = 10 µm2/s. The synthetic trace is generated using τ = 1 ns. We
start with 50 photons (A) and gradually increase the number of photons that we incorporate
into the analysis to 100 (B), 500 (C), and 1000 (D) photons. The excitation pulses occur
at a frequency of 40 MHz and we assume that these pulses assume a Gaussian shape with
standard deviation of 0.1 ns. The ground truth for the lifetimes are known (as this is synthetic
data) and they are shown by red-dashed lines.



Figure S3: Effect of the number of detected photons on a double diffusive molec-
ular lifetime estimation. The more photons per unit time and thus the sharper
estimation of lifetime. Here, we work on single species lifetime while all molecules are
diffusing with diffusion coefficient, D = 10 µm2/s. The synthetic trace generated by τ = 1 ns
and τ = 10 ns. We start with 1500 photons (A) and gradually increase the number of photons
that we incorporate into the analysis to 2000 (B), 5000 (C), and 10000 (D) photons. Here,
all other features such as the frequency of acquisition and width of pulse are the same as in
Fig. S2. Also, we follow the same red-dashed line convention as in S1.



Figure S4: Effect of the number of background photons on a double diffusive
molecular lifetimes estimation. The more background photons per unit time, the
poorer the lifetime estimate. Here, we work on double species lifetime while all molecules
are diffusing with diffusion coefficient, D = 10 µm2/s. The synthetic trace generated by
τ = 1 ns and τ = 10 ns with total 3000 photons. We start with 3 background photons (A)
and gradually increase the number of photons that we incorporate into the analysis to 30 (B),
150 (C), and 300 (D) photons. Here, all other features such as the frequency of acquisition and
width of pulse are the same as in Fig. S2. Also, we follow the same red-dashed line convention
as in S1.



Figure S5: Lifetime estimates with three different species using synthetic data.
Here, we generate a synthetic trace with three species having lifetimes τ = 1 ns, τ = 4 ns and
τ = 10 ns with equal fraction of molecules contributing photons from different species (33%
for each of them) and analyze a total of 2× 105 photon arrivals. Here, all other features such
as the frequency of acquisition and width of pulse are the same as in Fig. S2. Also, we follow
the same red-dashed line convention as in S1.



Figure S6: Lifetime estimates with four different species in synthetic data. Here,
we work with four species lifetimes while all molecules are immobilized. The synthetic trace
generated by τ = 0.5 ns, τ = 2 ns, τ = 6 ns and τ = 12 ns with equal fraction of molecules of
each species (i.e., set at 25%) for each of them and analyze a total of 3× 105 photon arrivals.
Here, all other features such as the frequency of acquisition and width of pulse are the same
as in Fig. S2. Also, we follow the same red-dashed line convention as in S1.



Figure S7: Estimation of the fraction of molecules contributing photons from dif-
ferent species. (A-C) Using the same synthetic traces as in Fig. 4, the posterior probability
distribution over the fraction of molecules contributing photons from different species (weight)
with lifetimes of 1 ns and 10 ns, 3000 total number of detected photons analyzed and fractions
of chemical species of 70% − 30%, 50% − 50% and 30% − 70% respectively. Here, all other
features such as the frequency of acquisition and width of pulse are the same as in Fig. S2.
Also, we follow the same red-dashed line convention as in S1.



Analysis of additional experimental data

Here, we used real measurements, obtained as explained in the method sec-
tion, from different fluorescent dyes, namely Cy3, TMR, Rhod-B, and Rhod-6G.
In Fig. S8 we considered a mixture of all four species. In Fig. S9 we show that
we can correctly identify the fraction of molecules contributing photons from
different species.



Figure S8: Lifetime estimates for the case of four different species from experi-
mental data. Here, we work on four species lifetimes while all molecules are immobilized.
The experimental trace generated by four different dyes including Cy3, Rhod-B, TMR, and
Rhod-6G with a total of ≈ 3×105 photon arrivals analyzed. The excitation pulses occur with
a frequency of 40 MHz and we assume that these pulses are modeled by a Gaussian with
a standard deviation of 0.1 ns. The ground truth estimates for the lifetimes are determined
using the whole trace which includes total 1.4 × 106 photon arrivals and they are shown by
red-dashed lines.



Figure S9: Estimation of the different fraction of molecules contributing photons
from different species from experimental data. (A-C) Using the same traces as Fig. 8,
the posterior probability distributions for the fraction of chemical species contributing photons
for experimental dyes, RhodB and Rhod6G, with a total of ≈ 3000 total number of detected
photons and fraction of chemical species contributing photons of 70%− 30%, 50%− 50% and
30% − 70% respectively. The excitation pulses happen at a frequency of 40 MHz and we
consider them to have a Gaussian shape with a standard deviation of 0.1 ns. What we treat
as ground truth lifetime estimates (as we do not have real ground truths for experimental
data) are determined using the whole trace which includes a total of 1.4× 106 photon arrivals
and they are shown by red-dashed lines.



Brief description of phasor plots analysis

Time domain

In typical time-domain lifetime imaging, a pulsed laser is used to excite
the sample periodically, causing fluorescence emission for those pulses where a
molecule is excited and decays back to the ground state radiatively. Experimen-
tally, based on the data we presented, this is typically 1 in 40 pulses[2].

From Eq. 1, fluorescence species with M different lifetimes have exponen-
tially decaying intensities

I(t) =
M∑
m=1

am exp

(
− t

τm

)
(S1)

with fluorescence lifetimes τm and weights, am. In an ideal scenario, a fluo-
rophore is excited with an exceedingly thin (Dirac-shaped) laser pulse at time
t = 0. Its initial intensity is therefore I(t < 0) = 0. As excitation pulses are
not infinitely sharp and detectors exhibit delays, the recorded signal, Î(t), is
the convolution of its fluorescence intensity I(t) with the instrumental response
function (IRF) [3, 4]; see Eq. S12.

Frequency Domain

Frequency-domain experiments constitute an alternative way to measure
excited state lifetimes. In this case, the sample is excited with an intensity-
modulated light, typically a sine-wave [2]. When a fluorescent sample is excited
in this way, the emission intensity follows a shifted modulation (m) pattern with
the phase shift (φ) and peak height that both encode information on the excited
state lifetime [2].



Figure S10: Frequency-domain analysis. Mapping frequency-domain modulated emission
(left) into a phasor plot representation (right).



The modulation of the excitation is given by e
E , where e is the average in-

tensity and E is the peak-to-peak height of the incident light (Fig. S10). The
modulation of the emission is defined similarly, f

F , except using the intensities
of the emission (Fig. S10). The shifted modulation between emission and ex-
citation, m = (f/F )/(e/E). The other experimental observable is the phase
shift, (φ) which is the phase difference between excitation and emission. Both
phase shift (φ) and the shifted modulation between emission and excitation (m)
can be employed to calculate the lifetime using

tanφ = ωτφ (S2)

m =
1√

1 + ω2τ2
m

. (S3)

These expressions can be also be used to calculate the phase (τφ) and shifted
modulation (τm) lifetimes for the curves shown in Fig. S10. If the intensity
decay is a single exponential, then Eqs. S2 and S3 yield the correct lifetime. In
this case, both τφ and τm are equal. For more than one species, these two are
not the same and details are discussed in Ref. [2]

Along these same lines, lifetimes can also be determined using a phasor
approach first introduced by Jameson et al. [5].

Briefly, we introduce the pair of conjugate variables G and S (termed phase
coordinates) where

G =

∫ +∞
0

I(t) cos(ωt)dt∫ +∞
0

I(t)dt
S =

∫ +∞
0

I(t) sin(ωt)dt∫ +∞
0

I(t)dt
(S4)

and where I(t) is the photon intensity [6, 3]. In the case of single exponential
I(t) = a exp(− t

τ ), the coordinates of the phasor are given by

G =
1

1 + (ωτ)2
S =

ωτ

1 + (ωτ)2
. (S5)

IRF approximation

To incorporate the effect of the IRF in our analysis, we approximate the
IRF with a Gaussian function [7]; see Fig. S11. Centrally symmetric pulses
such as the Gaussian, are obtained from electronics as used in most modern
instruments [8]. However, non-symmetrical IRFs could be handled by proper
modifications to Eq. 4 in the main text.



Figure S11: The actual IRF (blue color) fitted with a Gaussian function (magenta
color). The fitted IRF is used for the analysis of all experimental data.



Description of the pulsed excitation and microtimes simulation

To simulate experimentally realistic microtimes, for mobile particles, we sim-
ulate diffusive molecules which freely traverse through an illuminated confocal
volume. We define periodic boundaries [] (±Lx, ±Ly, ±Lz) which are much
larger than the confocal radii to maintain a constant concentration of molecules.
The confocal volume itself is pulsed on and off and the probability of excita-
tion of a molecule depends on its location within that volume during the pulse.
Here we consider the confocal volume (the combined excitation and emission
point spread function, PSF) to be a 3D Gaussian, with radii of ωx = 0.3 µm,
ωy = 0.3 µm, ωz = 3.5 µm and centered at the point of origin. The precise
formula for this PSF is

PSF (x, y, z) = exp

(
−2

((
x

ωx

)2

+

(
y

ωy

)2

+

(
z

ωz

)2
))

. (S6)

So, the emission that received by molecule n of the mth is species

µm,n = µm,extPSF (x, y, z) (S7)

where, µm,ext is the maximum excitation rate of the molecule n of species m
which occurs when the molecule is at the center of the confocal volume [9].

Assuming that molecules do not move significantly over the duration of the
pulse (of typical width 0.1 ns [10]), the probability of excitation of molecule n of
species m is qm,n = µm,nδtp where, δtp is the duration of the pulse. So, for any
pulse excitation, we need to determine if the nth molecule of species m is excited
or not. We define the variable bm,n to be either 1 or 0 if the molecule emits or
does not emit a photon and consider this variable to be Bernoulli distributed

bm,n ∼ Bernoulli (qm,n) . (S8)

At the end, when a molecule is excited by each pulse bm,n = 1, we need to
consider the delays and errors introduced by the measuring electronic devices,
tdet,k − tems,k. Since, we consider these errors follow a normal distribution, and
the excitation time is normal distributed as well, we denote both effects with
∆terr,k = (text,k − tpul,k) + (tdet,k − tems,k) and as the result, we sample it from
a normal distribution

∆terr,k ∼ Normal(τIRF , σ
2
IRF ) (S9)

where τIRF is the mean of IRF and σIRF is the standard deviation of the IRF
(see Eq. 4 for comparison). In this simulation we considered σ =

δtp
2 as the

width of the pulse.
After sampling the error time, we sample the emission time of each molecule

from the exponential distribution with corresponding inverse lifetime belongs to
species m

∆text,k|λm ∼ Exponential (λm) (S10)



and as we have shown in the Fig. S12 the detection time of each molecule will
be sum of these two times

∆tk = ∆text,k + ∆terr,k (S11)

which is determined by the convolution of emission profile, Eq. S9, and excitation
pulse, Eq. S10.



Figure S12: Pictorial representation of the experimental setup a sample with a
mixture of two species. (A) The Brownian motion of two species in space versus time.
Excitation and emission points are shown with different arrows. (B) Micro-times are the time
between the peak of the pulse tpul,k that trigger the kth photon detection and detection time
tdet,k. The time between the excitation text,k and emission tems,k of the molecule, ∆text,k
follows the molecular lifetime. The gray and green-shaded regions are described in Fig. 9.



Derivation of model likelihood

As we mentioned in the main text, Section “Model description” , measure-
ments ∆tk = ∆text,k + ∆terr,k, follow

∆tk|λsk ∼ Normal(τIRF, σ
2
IRF) ∗Exponential(λsk). (S12)

In this case we have

∆tk|λsk ∼
∫ ∞
−∞

Normal(τIRF, σ
2
IRF)Exponential(λsk)d∆text

=
λsk√

2πσ2
IRF

∫ ∞
−∞

e
− (∆tk−∆text−τIRF)2

2σ2
IRF e∆textλsk d∆text

=
λsk
2

exp

[
λsk
2

(
2 (τIRF −∆tk) + λskσ

2
IRF

)]
erfc

(
τIRF −∆tk + λskσ

2
IRF

σIRF

√
2

)
(S13)

where erfc(·) denotes the complementary error function.

Detailed description of the inference framework

Description of prior probability distributions

Within the Bayesian approach, all unknown model parameters need priors.
The model parameters in our framework that require priors are: the inverse life-
times {λm}m; labels on each species s; and probability on the labels of species π
(fraction of molecules contributing photons from different species). Our choices
of priors are described below.

Inverse lifetimes, {λm}m. Here we are faced with different species which
have different lifetimes. For convenience, we consider inverse lifetimes instead
of lifetimes, τm = 1

λm
, where the τm is the molecular lifetime and λm is the

inverse lifetime of species m.
To learn inverse lifetimes, and to guarantee that their sampled values in our

formulation attain only positive values, we place a Gamma distribution prior
over them as follows

λm ∼ Gamma (αλ, βλ) , (S14)

where, αλ and βλ are prior parameters.

Weights, π. The weight on each species comes from the Dirichlet distribution

π ∼ DirichletM

( α
M
, . . . ,

α

M

)
(S15)

where α is the scalar parameter of the Dirichlet distribution [11, 12]. This
prior is conjugate to the labeled species, sk, which simplifies the computations
shown below. The Dirichlet distribution is an important multivariate continuous
distribution in Bayesian statistics which is a multivariate generalization of the
Beta distribution and, conveniently, conjugate to the Categorical [13].



Labels on each species, sk
Since we have many species, we define a label for each molecule which will

tell us that molecule belongs to which species

sk|π ∼ Categorical1:M (π) (S16)

where π = (π1, . . . , πM ) is the weight on each species. In other words, πm is the
fraction of photons which species m contributes to the data.

Summary of model equations

For concreteness, below we summarize all equations used in our framework,
including a complete list of priors.

λm ∼ Gamma (αλ, βλ) (S17)

π ∼ DirichletM

( α
M
, . . . ,

α

M

)
(S18)

sk|π ∼ Categorical1:M (π) (S19)

∆tk|λm, sk ∼
λsk
2

exp

[
λsk
2

(
2 (τIRF −∆tk) + λskσ

2
IRF

)]
erfc

(
τIRF −∆tk + λskσ

2
IRF

σIRF

√
2

)
(S20)

Inverse problem

Within the Bayesian paradigm, our goal is to sample from the following
posterior probability distribution P ({λm}m, s, π|∆t). Since, it is not possi-
ble to directly compute this distribution, we will sample the random variables
{λm}m, s, and π from their conditional distributions through a Gibbs sampling
scheme [14, 15, 16, 17, 18]. Accordingly, posterior samples are generated by up-
dating each one of the variables involved sequentially by sampling conditioned
on all other variables and the measurements ∆t.

Conceptually, the steps involved in the generation of each posterior sample
({λm}m, s, π) are:
Update the weights on each species π
Update the labels on species s
Update the inverse lifetimes {λm}m.

Sampling of the weights π. To update the weights of the labels on the species
s, we sample them from the corresponding conditional probability P (π|{λm}m,∆t, s, ),



which simplifies to P (π|s).

π ∼ P (π|s) ∝ P (s|π)P (π)

=

[
K∏
k=1

P (sk|π)

]
P (π) =

[
K∏
k=1

πsk

]
DirichletM

( α
M
, . . . ,

α

M

)

=

[
K∏
k=1

πsk

]
Γ
(∑M

m=1
α
M

)
∑M
m=1 Γ

(
α
M

) M∏
m=1

π
α
M−1
m

= DirichletM

(
α

M
+

K∑
k=1

I(sk = 1), . . . ,
α

M
+

K∑
k=1

I(sk = M)

)
.

Sampling of the labels s. To sample the labels on species, we sample them
from the conditional probability distribution P (sk|∆tk, {λm}m, π) as follows

sk ∼ P (sk|∆tk, {λm}m, π) ∝ P (∆tk|{λm}m, sk)P (sk|π)

= Categorical1:M

(
π1
λsk
2

exp

[
λsk
2

(
2 (τIRF −∆tk) + λskσ

2
IRF

)]
erfc

(
τIRF −∆tk + λskσ

2
IRF

σIRF

√
2

)
,

...

, πM
λsk
2

exp

[
λsk
2

(
2 (τIRF −∆tk) + λskσ

2
IRF

)]
erfc

(
τIRF −∆tk + λskσ

2
IRF

σIRF

√
2

))
, k = 1, . . . ,K.

Sampling the inverse lifetimes {λm}m. To sample λm, we sample from the
corresponding conditional probability distribution P ({λm}m|∆t, s) as follows

{λm}m ∼ P ({λm}m|∆t, s) ∝ P (∆t|{λm}m, s)

[
M∏
m=1

P (λm)

]

=

[
K∏
k=1

λsk
2

exp

[
λsk
2

(
2 (τIRF −∆tk) + λskσ

2
IRF

)]
erfc

(
τIRF −∆tk + λskσ

2
IRF

σIRF

√
2

)]

×

[
M∏
m=1

Gamma (λm;αλ, βλ)

]
.

(S21)
Since, there is no closed form to sample {λm}m, we sample it using the

Metropolis algorithm with the proposal

λprop
m ∼ Gamma

(
αprop
λm

,
λold
m

αprop
λm

)
, m = 1, . . . ,M

where, the αprop
λm

is the parameter of the proposal distributions for the inverse
lifetime. Then, the acceptance ratio is equal to

rλ =
P ({λprop

m }m|∆t, s)

P ({λold
m }m|∆t, s)

Proposal
(
{λold

m }m|{λprop
m }m

)
Proposal ({λprop

m }m|{λold
m }m)

.



Also, to avoid numerical underflow, we work with the logarithm of the accep-
tance ratio

log rλ =

[
K∑
k=1

log

(
λprop
sk
− λold

sk

2

)
+ (∆tk − τIRF)

(
λold
sk
− λprop

sk

)
+
σ2

2

(
λ2

prop
sk
− λ2 old

sk

)]

+ log

erfc

(
τIRF−∆tk+λprop

sk
σ2

IRF

σIRF

√
2

)
erfc

(
τIRF−∆tk+λold

sk
σ2

IRF

σIRF

√
2

)


+

[
M∑
m=1

(
2αprop

λm
− αλ

)
log

(
λold
m

λprop
m

)
+

(
λold
m − λprop

m

βλ

)
+ αprop

λm

(
λprop
m

λold
m

− λold
m

λprop
m

)]
.

(S22)
So, at the end we will accept or reject the proposal if

log rλ ≥ 0⇒ λnew
m = λprop

m , m = 1, . . . ,M

log rλ < 0⇒ λnew
m = λold

m , m = 1, . . . ,M

Label switching correction of the molecular lifetimes. Label switching
is a well-known feature of BNPs [19]. It arises when we are exploring complex
posterior distributions by MCMC algorithms and the likelihood of the model
is invariant to the relabelling of mixture components [20]. The issue of label
switching appears because the likelihood is invariant under permutation of the
indices. Under symmetric priors, the posteriors also reflects the likelihood’s
invariance with respect to index permutation. As a result, in any MCMC algo-
rithm, labels of the components can permute multiple times between iterations
of the sampler [21, 22]. Concretely, here, due to exchangeability of the molecular
lifetimes, at any iteration (i) of the Gibbs sampling scheme, the corresponding
lifetime of the species m might switch with the molecule’s lifetime of the species
m′. This label switching does not affect the joint posterior over all lifetimes.

To undo such label switching, at any iteration of the Gibbs sampling we

compare the sampled lifetimes {τ (i)
m }m and their weights {π(i)

m }m with a fixed set
of lifetimes {τ∗m}m and weights {π∗m}m. Based on the distances of the lifetimes
at iteration (i) from the fixed set of lifetimes, which we chose, we correct for
label switching. The simple choice for this distance can be the distance between
the lifetimes, but, since label switching happens in the sampled lifetimes, and
subsequently the weights of each molecular lifetime, the particular distance we
use incorporates the emission probability and the weights of each molecular
lifetime

dm,m′ =

∫ ∞
0

dt |πmExp (t; τm)− π∗mExp (t; τ∗m)| (S23)

and we solve the assignment problem is minimizing this distance over the species∑M
m=1 dm,m′ . This problem and its computation can be done efficiently by

applying the Hungarian algorithm [23, 24, 25].



Table S1: Probability distributions used and their densities. Here, the corresponding random
variables are denoted by x.

Distribution Notation Probability density function Mean Variance

Normal Normal(µ, σ2) 1√
2πσ2

e−
(x−µ)2

2σ2 µ σ2

Exponential Exponential(µ) µe−µx
1

µ

1

µ2

Gamma Gamma(α, β) 1
Γ(α)βαx

α−1e−
x
β αβ αβ2



Table S2: Here, we list point estimates of our analyses for synthetic data, which we obtain
from the marginal posterior probability distributions p(τ |∆t). Estimates are listed according
to figure.

τ
mean std

ns ns

Fig. 2C 0.51 , 2.19, 10.51 0.14 , 1.42 , 6.45
Fig. 2D 0.52 , 2.36 , 13. 01 0.26 , 1.65 , 12.59
Fig. 2E 0.52 , 2.51 , 9.74 0.31 , 2.33 , 15.74
Fig. 2F 0.51 , 2.10 , 11.06 0.32 , 0.65 , 6.71
Fig. S1B1 1.17 0.29
Fig. S1B2 1.03 0.23
Fig. S1B3 1.04 0.05
Fig. S1B4 1.01 0.03
Fig. 3B1 0.82 , 8.88 0.41 , 10.31
Fig. 3B2 1.10 , 10.37 0.33 , 6.31
Fig. 3B3 1.07 , 10.08 0.15 , 4.98
Fig. 3B4 1.01 , 10.1 0.05 , 5.23
Fig. 4A 0.95 , 9.21 0.21 , 8.91
Fig. 4B 1.10 , 10.13 0.35 , 7.11
Fig. 4C 1.07 , 10.08 0.15 , 10.18
Fig. 5A 1.05 , 10.12 0.14 , 3.84
Fig. 5B 1.10 , 5.11 0.25 , 3.11
Fig. 5C 0.87 , 2.18 0.98 , 2.06
Fig. 5D 1.13 , 1.48 0.26 , 0.68
Fig. S2A 0.85 0.31
Fig. S2B 1.03 0.39
Fig. S2C 0.99 0.48
Fig. S2D 1.01 0.11
Fig. S5 1.01 , 4.10 , 10.06 0.12 , 0.35 , 5.21
Fig. S6 0.51 , 1.97 , 6.16 , 12.25 0.14 , 0.55 , 3.41 , 7.43



Table S3: Here, we list point estimates of our analyses for experimental data, which we
obtain from the marginal posterior probability distributions p(τ |∆t). Estimates are listed
according to figure.

τ
mean std

ns ns

Fig. 6A1 3.14 2.49
Fig. 6B1 3.84 1.84
Fig. 6C1 3.85 0.37

Fig. 7A1 1.44 , 3.39 1.14 , 1.52
Fig. 7B1 1.42 , 3.86 0.46 , 1.05
Fig. 7C1 1.41 , 3.71 0.30 , 1.10

Fig. 8A1 1.44 , 3.42 0.48 , 1.62
Fig. 8B1 1.42 , 3.91 0.39 , 1.24
Fig. 8C1 1.37 , 3.75 1.12 , 1.15

Fig. S8 0.21 , 1.37 , 2.06 , 3.89 0.25 , 0.72 , 1.41 , 2.44
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3. Lakner PH, Monaghan MG, Möller Y, Olayioye MA, Schenke-Layland K.
Applying phasor approach analysis of multiphoton flim measurements to
probe the metabolic activity of three-dimensional in vitro cell culture mod-
els. Scientific Reports 2017;7:42730.

4. Warren SC, Margineanu A, Alibhai D, Kelly DJ, Talbot C, Alexandrov Y,
Munro I, Katan M, Dunsby C, French PM. Rapid global fitting of large flu-
orescence lifetime imaging microscopy datasets. PLoS One 2013;8:e70687.

5. Jameson DM, Gratton E, Hall RD. The measurement and analysis of het-
erogeneous emissions by multifrequency phase and modulation fluorometry.
Applied spectroscopy reviews 1984;20(1):55–106.

6. Digman MA, Caiolfa VR, Zamai M, Gratton E. The phasor approach to
fluorescence lifetime imaging analysis. Biophysical Journal 2008;94(2):L14–
6.

7. Rowley MI, Barber PR, Coolen AC, Vojnovic B. Bayesian analysis of fluo-
rescence lifetime imaging data. In: Multiphoton Microscopy in the Biomed-
ical Sciences XI ; vol. 7903. International Society for Optics and Photonics;
2011:790325.

8. Rowley MI, Coolen AC, Vojnovic B, Barber PR. Robust Bayesian
fluorescence lifetime estimation, decay model selection and instrument
response determination for low-intensity FLIM imaging. PloS One
2016;11(6):e0158404.

9. Enderlein J, Ambrose WP. Optical collection efficiency function in single-
molecule detection experiments. Applied Optics 1997;36(22):5298–302.

10. Otosu T, Ishii K, Oikawa H, Arai M, Takahashi S, Tahara T. Highly
heterogeneous nature of the native and unfolded states of the B domain
of protein a revealed by two-dimensional fluorescence lifetime correlation
spectroscopy. The Journal of Physical Chemistry B 2017;121(22):5463–73.

11. Ferguson TS. A Bayesian analysis of some nonparametric problems. The
Annals of Statistics 1973;:209–30.

12. Ng KW, Tian GL, Tang ML. Dirichlet and related distributions: Theory,
methods and applications; vol. 888. John Wiley & Sons; 2011.



13. Lin J. On the dirichlet distribution. Ph.D. thesis; Masters thesis, Depart-
ment of Mathematics and Statistics, Queens University ; 2016.

14. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB.
Bayesian data analysis; vol. 2. CRC press Boca Raton, FL; 2014.

15. Von Toussaint U. Bayesian inference in physics. Reviews of Modern Physics
2011;83(3):943.

16. Tavakoli M, Taylor JN, Li CB, Komatsuzaki T, Pressé S. Single molecule
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