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Abstract: 

 

Background - Carbohydrate responsive element binding protein (ChREBP) is a transcription 

factor that responds to sugar consumption. Sugar-sweetened beverage (SSB) consumption and 

genetic variants in the CHREBP locus have separately been linked to high-density lipoprotein 

cholesterol (HDL-C) and triglyceride (TG) concentrations. We hypothesized SSB consumption 

would modify the association between genetic variants in the CHREBP locus and dyslipidemia. 

Methods - Data from 11 cohorts from the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) consortium (N=63,599) and the UK Biobank (UKB) (N=59,220) 

were used to quantify associations of SSB consumption, genetic variants, and their interaction on 

HDL-C and TG concentrations using linear regression models. A total of 1,606 single-nucleotide 

polymorphisms (SNPs) within or near CHREBP were considered. SSB consumption was 

estimated from validated questionnaires and participants were grouped by their estimated intake.   

Results - In a meta-analysis, rs71556729 was significantly associated with higher HDL-C 

concentrations only among the highest SSB consumers [β (95% CI) = 2.12 (1.16, 3.07) mg/dl; 

p<0.0002], but not significantly among the lowest SSB consumers (p=0.81; pDiff<0.0001). 

Similar results were observed for two additional variants (rs35709627 and rs71556736). For TG, 

rs55673514 was positively associated with TG concentrations only among the highest SSB 

consumers [β (95% CI): 0.06 (0.02, 0.09) per allele count for log(mg/dl), p=0.001], but not the 

lowest SSB consumers (p=0.84; pDiff=0.0005). 

Conclusions - Our results identified genetic variants in the CHREBP locus that may protect 

against SSB-associated reductions in HDL-C and other variants that may exacerbate SSB-

associated increases in TG concentrations. 

Clinical Trial Registration - Some participating cohorts were registered at URL: 

https://www.clinicaltrials.gov/ with unique identifiers: NCT00005131 (Atherosclerosis Risk in 

Communities), NCT00005133 (Cardiovascular Health Study), NCT00005121 (Framingham 

Offspring Study), NCT00005487 (Multi-Ethnic Study of Atherosclerosis), and NCT00000479 

(Women’s Health Study: parent study of the Women’s Genome Health Study). 
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Nonstandard Abbreviations and Acronyms 

HDL-C: high-density lipoprotein cholesterol 

TG: triglyceride  

T2D: type 2 diabetes  

 CVD: cardiovascular disease  

GWAS: genome-wide association studies  

ChREBP: Carbohydrate Responsive Element Binding Protein  

SSB: sugar-sweetened beverages   

SNPs: single nucleotide polymorphisms   

CHARGE: Cohorts for Heart and Aging Research in Genetic Epidemiology  

UKB: UK Biobank  

 

 

 

Introduction 

Low circulating high-density lipoprotein cholesterol (HDL-C) and elevated fasting triglyceride 

(TG) concentrations are positively associated with risk of type 2 diabetes (T2D) and 

cardiovascular disease (CVD).1–5 Both genetic and environmental factors, including diet, are 

important determinants of HDL-C and TG concentrations.5–7 Genetic determinants of HDL-C 

and TG concentrations have been identified in genome-wide association studies (GWAS),8–12 but 

the extent to which genetic variants interact with environmental exposures is unknown. It is 

plausible that unrecognized genetic variants or genetic effects may be suppressed or exacerbated 

by environmental factors, such as diet.  

Carbohydrate Responsive Element Binding Protein (ChREBP) is a transcription factor 

that regulates glucose and lipid metabolism in response to sugar consumption, including sugar 

from sugar sweetened beverages (SSB).13,14 GWAS have consistently observed an association 
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between single nucleotide polymorphisms (SNPs) in the CHREBP locus (also known as 

MLXIPL), and HDL-C and TG concentrations.8,9,15,16 In animal studies, hepatic ChREBP is 

robustly activated by dietary fructose, a major constituent of SSB, and potentiates hepatic 

lipogenesis and TG secretion.14,17–20 These findings are consistent with large population-based 

studies in which high SSB consumption has been associated with elevated fasting plasma TG and 

reduced HDL-C concentrations,21–24 and increased T2D25–27 and CVD21 risk. Thus, SNPs within 

the CHREBP locus present promising candidates for gene-SSB interactions on circulating HDL-

C and TG concentrations. 

These pieces of biological, epidemiological and genetic evidence suggest that SSB 

consumption may modify how genetic variants within the CHREBP locus influence plasma lipid 

concentrations in some individuals. Although reduction of SSB consumption is increasingly 

being encouraged globally,28 public health efforts to reduce SSB consumption have achieved 

limited success and SSB consumption remains a modifiable dietary exposure that contributes 

substantially to the burden of T2D and CVD worldwide.29,30 A better understanding of the 

mechanisms underlying the SSB-ChREBP-lipid relationship may reveal novel mechanisms that 

contribute to the pathogenesis of T2D and CVD risk. Understanding these mechanisms may 

provide alternative strategies and approaches to reduce metabolic disease that may complement 

or facilitate dietary interventions. 

The present study aimed to examine whether SSB consumption may modify the 

association of genetic variants within the CHREBP locus on HDL-C and TG concentrations in 

aggregated data from cohorts who are part of the Cohorts for Heart and Aging Research in 

Genetic Epidemiology (CHARGE) consortium.31 Descriptions of the CHARGE cohorts are 
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included in the supplemental material, Table I.  We further used data from the UK Biobank 

(UKB) to assess the reproducibility of the finding in an independent cohort.32  

 

Methods 

Methods are available in the Supplemental Material. The data that support the findings of this 

study are available from the corresponding author upon reasonable request. All study participants 

provided written informed consent, and approval for all study protocols was granted by local 

institutional review boards and/or oversight committees. 

 

Results 

General characteristics and mean dietary intakes for the eleven CHARGE cohorts are shown in 

Table 1. Replication of previous findings on associations of SSB consumption and SNPs with 

lipid traits in the CHARGE cohorts are presented in the Supplemental Results in the 

Supplemental Material. 

Difference Test Interactions between SSB Consumption and SNPs on HDL-C and TG in 

CHARGE Cohorts 

We identified 55 SNPs that displayed a significant (pDiff <0.0001) or suggestive (pDiff <0.005) 

difference in estimated effect by category of SSB consumption on HDL-C concentrations in 

either of the two covariate models in the meta-analysis of the CHARGE cohorts. Among these 

55 top SNPs, four were identified as distinct signals for HDL-C concentrations were observed 

when applying the difference test interaction. Two distinct SNPs in moderate LD with one 

another [rs35709627 and rs71556729; R2 = 0.55 (Figure II in the Supplemental Material)] and in 

low LD with the top SNP identified in the overall analysis for HDL-C concentrations (R2<0.3) 
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displayed a statistically significant difference in effect by category of SSB intake on HDL-C 

concentrations in fully adjusted models (Model 2; pDiff<0.0001) (Table 2 and Figures III and IV 

in the Supplemental Material). In model 2, each additional minor allele at rs35709627 [β (SE): 

2.72 (0.72), p=0.0002] and rs71556729 [β (SE): 3.89 (1.04), p=0.0002] was associated with 

higher mean concentrations of HDL-C concentrations among the highest SSB consumers (> 1 

serving/day), but was not associated with mean HDL-C concentrations among the lowest SSB 

consumers (<1 serving/month; p>0.05). The effect sizes of these SNPs among the highest SSB 

consumers were consistent across all the cohorts. There was no heterogeneity (I2 = 0%) observed 

the top four distinct signals (statistically significant and suggestive) among the highest SSB 

consumers (>1 serving/day), which could be due to low power to detect heterogeneity given the 

smaller sample size available among the highest SSB consumers (maximum n=4,033).  

No statistically significant differences in effect by category of SSB intake on TG 

concentrations were observed when applying the difference test (pDiff >0.0001 for all SNPs). One 

SNP (rs799157) in moderate LD with a top SNP identified in the overall analysis for TG 

concentrations (Table X in the Supplemental Material; R2 with rs42124=0.44) displayed a 

suggestive difference in effect by category of SSB intake on TG concentrations in minimally 

adjusted models (Model 1; pDiff =0.005) (Table 2). Each additional minor allele at rs799157 was 

associated with higher mean TG concentrations among the highest SSB consumers (> 1 

serving/day) [β (SE):  0.11 (0.03) ln-mg/dl, p=0.002], but this association was attenuated among 

the lowest SSB consumers [β (SE): 0.01 (0.01) ln-mg/dl, p=0.11] (Figure V in the Supplemental 

Material). The direction of the effect size of this SNP among the highest SSB consumers was 

consistent across all the cohorts in which these SNPs were available, and heterogeneity was low 

among the highest SSB consumers (I2 = 0%).  
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Cross-Product Interactions between SSB Consumption and SNPs on HDL-C and TG in 

CHARGE Cohorts 

No statistically significant cross-product interactions between SNPs and SSB consumption on 

HDL-C or TG concentrations were observed (pinteraction>0.0001), while some tests were 

suggestive (pinteraction<0.005) (Table 2). Three SNPs displayed a suggestive interaction with SSB 

consumption on HDL-C concentrations in either covariate model, and the clumping identified 

two distinct signals (rs71556729 and rs79578725). One SNP (rs55673514) displayed a 

suggestive interaction with SSB on TG concentrations in Model 2. Forest plots for top distinct 

signals in SSBxSNP interaction analyses on lipid traits are presented in Figures VI and VII in the 

Supplemental Material. 

Interactions between SSB Consumption and SNPs on Lipid Traits in the UKB and Meta-

Analysis with CHARGE Cohort Results 

General characteristics and mean dietary intakes for the 59,220 UKB participants are shown in 

Table VI in the Supplemental Material. Two out of five top signals for HDL-C (rs35709627 and 

rs71556729) and one out of two top signals for TG in the CHARGE consortium were replicated 

among the UKB participants (Table VII in the Supplemental Material). In a meta-analysis of the 

top results from the CHARGE consortium and data from the UKB, three out of the five top SNPs 

for HDL-C and one out of the two top SNPs for TG concentrations displayed statistically 

significant interactions (Table 3). The top SNP for HDL-C concentrations was located at 

rs71556729 (Figure 1A). In fully adjusted models, the association between the minor allele at 

rs71556729 with HDL-C concentrations was observed only among the highest SSB consumers 

[β (95% CI): 2.12 (1.16, 3.07) mg/dl, p<0.0001], and not the lowest SSB consumers (p=0.81; 

pDiff <0.0001). Similarly, two SNPs in low to moderate LD with rs71556729 (TBL2-rs35709627: 
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R2 with rs71556729=0.55; rs71556736: R2 with rs71556729=0.19) displayed similar statistically 

significant differences in effect by category of SSB intake (pDiff <0.0001). The SNP at 

rs55673514 displayed a suggestive interaction with TG concentrations in the CHARGE meta-

analysis and was statistically significant after including data from the UKB (Figure 1B, pDiff 

<0.0005). The association of the minor allele at rs55673514 with TG concentrations was 

observed only among the highest SSB consumers [β (95% CI): 0.06 (0.02, 0.09) ln-mg/dl, 

p=0.001], and not the lowest SSB consumers (p=0.84). The SNP at rs55673514 is not in 

appreciable LD with any of the top SNPs in the overall analysis for TG concentrations (R2<0.1). 

A heatmap of LD among top SNPs in overall and interaction analyses is provided in Figure II in 

the Supplemental Material. Sensitivity analyses examining the influence of adjustment for other 

dietary factors and fasting hours among UKB participants yielded similar results for the top 

SNPs identified in the meta-analysis (Supplemental Results in the Supplemental Material).  

 

Discussion 

In this study, including up to 86,241 participants for whom genetic and SSB consumption data 

were available, we identified novel interactions between genetic variants at the CHREBP locus 

and SSB consumption on HDL-C and TG concentrations. Our data suggest that the magnitude of 

the inverse association between SSB consumption and HDL-C concentrations is lower among 

individuals harboring genetic variants at rs71556729, rs35709627, and/or rs71556736 and the 

positive association between SSB consumption and TG concentrations is exacerbated among 

individuals harboring genetic variants at rs55673514. In the CHARGE cohorts, we also observed 

a consistent inverse association between SSB consumption on fasting HDL-C and positive 
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association on TG concentrations. We also replicated previously observed main associations 

between SNPs in the CHREBP locus and HDL-C and TG concentrations.  

Our study provides evidence that SSB consumption may modify the association of 

genetic variants in the CHREBP locus with HDL-C and TG concentrations. Participants with the 

minor allele at rs71556729, rs35709627, and/or rs71556736 and high SSB consumption had 

higher mean HDL-C concentrations than those with the major allele who also had high SSB 

consumption. This suggests that participants with the minor allele at rs71556729 (MAF = 0.05), 

rs35709627 (MAF = 0.05), and/or rs71556736 (MAF = 0.13) may be protected against SSB-

induced reductions in HDL-C concentrations. The region containing these SNPs is enriched for 

enhancer histone marks and these SNPs lie within putative regulatory motifs for transcription 

factors that could potentially regulate ChREBP expression and function in an SSB dependent 

manner.33 Similarly, rs55673514, which associates with TG only among the highest SSB 

consumers, lies within a region enriched for enhancer histone marks in several tissues, including 

liver.33 Given the strong inverse relationship between HDL-C and TG concentrations, additional 

investigation into how these SNPs may independently influence HDL-C or TG concentrations 

could provide new insights into the distinct mechanisms contributing to plasma HDL-C and TG 

concentrations. Additional discussion of main associations between SNPs and SSB on TG and 

HDL-C in the CHARGE cohorts is provided in the Supplemental Discussion in the Supplemental 

Material.  

The rs71556729 interaction was a top signal when testing for interactions using the 

difference test and the cross-product interaction test on HDL-C concentrations in the CHARGE 

cohorts. However, when applying the cross-product interaction test, the interaction appeared less 

significant than the result from the difference test. This may be due to heterogeneity in the 
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association between rs71556729 and HDL-C concentrations resulting from increased 

misclassification of SSB consumption among those reporting low (1-4 servings/month) to 

moderate (1-2 and 3-7 servings/week) SSB consumption (Figure IV in the Supplemental 

Material). These results suggest that the difference test may be a useful method for identifying 

gene-diet interactions in observational studies, and this could be due to a reduction in 

misclassification of SSB intake and the potential to detect non-linear interaction effects. 

However, we do not comprehensively compare the difference test to the cross-product 

interaction test. Future methodological studies comparing the usefulness of these two methods 

with varying degrees of misclassification and types of exposures may be useful to inform future 

gene-diet interaction studies.  

There is a limited body of evidence describing how genes implicated in various diseases 

may interact with SSB consumption to modify cardiometabolic health and noncommunicable 

disease risk.34 One large prospective cohort study among Swedish adults examined whether 

genetic risk for dyslipidemia (using a weighted genetic risk score) interacted with SSB 

consumption to influence plasma lipid concentrations, but no significant interactions were 

observed.35 Although genetic risk scores can be useful for translation, as previously shown for 

the interaction between SSB consumption and genetic risk for obesity,36 a weakness of genetic 

risk scores is that aggregation of multiple SNPs from across the genome does not allow inclusion 

of potential interacting SNPs that may not be associated with the outcome in overall analyses. In 

addition, interaction effects of SNPs may be mitigated by the null interaction effects of other 

SNPs included in the genetic risk score.  The candidate gene approach in the current study allows 

for the potential to generate hypotheses of the mechanisms underlying the interaction that could 

be tested using animal and human models in future studies.  
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No previous studies have examined the interaction between SNPs in the CHREBP region 

and SSB consumption on lipid concentrations. We previously investigated how selected SNPs in 

the ChREBP-FGF21 pathway interacted with SSB consumption to influence fasting insulin and 

glucose measures among 34,748 adults from CHARGE cohorts, but we did not identify a 

significant cross-product interaction that was consistent among the discovery and replication 

phases of that study.37 In the current study, we applied a comprehensive approach that tested a 

wide range of SNPs in the CHREBP region that were not necessarily identified in GWAS.  

Given that our suggestive interaction results do not include any SNPs that were statistically 

significant in the overall SNP analyses, our data indicate that there may be additional SNPs not 

identified in GWAS contributing to the heritability of HDL-C and TG concentrations, but their 

contribution is influenced by SSB consumption. Similar to previous GWAS for body mass index 

that have identified new loci when adjusting for environmental factors38,39, we provide an 

additional example of how missing genetic heritability may be revealed when accounting for 

environmental factors, such as SSB consumption in the current study. 

The strengths of our study include the large sample size attained through meta-analysis of 

multiple independent cohorts, the ability to standardize the analyses conducted in all cohorts 

through a collaborative approach, the use of an external cohort to validate findings, and the use 

of multiple methods to screen for potential interactions between SSB consumption and over 

1,606 SNPs in the CHREBP region on HDL-C and TG concentrations. The analytic approach 

revealed novel SNPs that may contribute to unexplained heritability of HDL-C and TG 

concentrations. Limitations of this study include its observational design that constrain our 

ability to infer causality, the sample of European-descent adults that limits generalizability, the 

use of self-reported dietary data from food frequency questionnaires and 24-hour recall that may 
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lead to misclassification of food and nutrient intakes, and the possibility of residual confounding, 

even after controlling for potential dietary and lifestyle factors that co-vary with SSB intake. Our 

focus on the comparison of the highest SSB consumers to the lowest SSB consumers helps 

minimize this potential misclassification by focusing on extreme consumption patterns. 

Misclassification in the UKB is likely given that a snapshot of intake on a single day cannot 

provide a reliable estimate of usual SSB consumption. However, this misclassification is likely 

non-differential by genotype, which would only result in attenuation of our results. Additionally, 

while our definition of SSB did consider a range of SSB, it was not comprehensive. For example, 

it did not include commonly consumed beverages, such as sweetened tea or coffee, and we 

included several types of SSB in the same exposure definition (colas and fruit drinks). The blood 

collection among UKB participants was conducted after less than the recommended 8 hours of 

fasting prior to measurement of lipids. We adjusted for fasting hours to help account for this 

variability and conducted a sensitivity analysis to examine the top interactions observed by 

fasting hours. The LD-based method used to estimate the number of independent tests in the 

region may be overly conservative, which could potentially lead to inflation of type II error rate. 

Thus, we additionally present suggestive results that did not reach statistical significance. Given 

these weaknesses, results from this study should be used to inform future studies with larger 

samples sizes or detailed experimental studies. Minority populations are disproportionality 

burdened by dyslipidemia and have higher SSB intake,40,41 and thus more studies in these 

populations may help reduce health inequality and disparity. 

In conclusion, our findings suggest that the minor alleles of three SNPs in the CHREBP 

region (rs71556729, rs35709627, and rs71556736) may be protective against SSB-induced low 

HDL-C concentrations and the minor allele at rs55673514 may exacerbate positive associations 
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between SSB consumption and TG concentrations. Several of the top SNPs identified in the 

interaction analyses were not top SNPs identified in the overall analyses, providing evidence that 

some genetic associations may be revealed only when conditioned on environmental factors, 

such as the range of SSB consumption in the current study. As larger datasets with genetics, diet, 

and lipids data become available, additional suggestive interactions between SSB consumption 

and SNPs within the CHREBP region on HDL-C and TG concentrations observed here may 

warrant further investigation. 
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Table 1. General characteristics of participating CHARGE consortium cohorts*  
 

 Raine 
Study ARIC FHS NEO Fenland YFS WGHS WHI MESA CHS RS 

Characteristics            
Country Australia USA USA Netherlands UK Finland USA USA USA USA Netherlands 
n 617 10,924 6,382 5,694 10,022 1,782 16,284 1,109 1,805 3,196 5,784 
Age (years) 20 (1) 55 (6) 49 (14) 56 (6) 49 (7) 38 (5) 55 (7) 65 (7) 70 (10) 72 (5) 66 (8) 
Sex (% women) 52.4 52.7 54.3 52.0 53.3 55.9 100 100 51.2 61.0 57.8 
Body Mass Index (kg/m2) 24.5 (5.2) 27.0 (4.8) 27.4 (5.5) 30.0 (4.8) 26.9 (4.8) 25.9 (4.6) 25.9 (4.9) 28.6 (5.7) 28.0 (5.3) 26.3 (4.4) 26.5 (3.7) 
Current Smoker (%) 13.5 24.2 13.4 16.0 12.0 27.6 11.7 10.1 7.0 11.4 23.4 
Completed High School (%) 81.5 84.9 98.0 93.0 81.8 75.4 100 94.7 96.5 75.1 60.8 
Fasting HDL-C (mg/dl) 51 (13) 51 (17) 54 (17) 55 (16) 59 (16) 52 (13) 54 (15) 58 (15) 57 (18) 55 (16) 53 (14) 
Fasting TG (mg/dl)  85 (2) 137 (90) 117 (87) 130 (85) 106 (81) 122 (82) 119 (89) 156 (92) 107 (59) 140 (76) 137 (71.0) 

Dietary Intakes            
SSB intake (servings/d) 0.7 (1.0) 0.5 (0.9) 0.4 (0.8) 0.4 (0.8) 0.3 (0.6) 0.3 (0.5) 0.3 (0.6) 0.2 (0.6) 0.1 (0.5) 0.1 (0.3) 0.1 (0.2) 
     <1 serving/month (%) 13.6 35.7 33.9 49.4 35.8 23.6 44.8 58.0 70.0 63.4 71.9 
     1-4 serving/month (%) 14.4 16.3 24.3 13.8 24.6 31.9 22.0 19.3 12.4 16.9 13.5 
     1-2 serving/week (%) 23.8 12.1 9.76 14.1 14.0 17.1 13.1 3.5 2.2 0.06 6.4 
     3-7 serving/week (%) 29.2 25.7 21.3 11.7 15.2 21.0 15.1 15.3 8.6 18.7 7.5 
     >1 serving/day (%) 19.0 10.3 10.8 11.0 10.4 6.3 5.0 3.9 2.3 0.9 0.8 

Energy Intake (kcal/d) 1,857 
(850) 

1,644  
(599) 

1,956  
(645) 

2,291  
(763) 

1,935 
(578) 

2,381  
(762) 

1,732 
(524) 

1,698  
(670) 

1708  
(734) 

2,024  
(654) 

2,046  
(1,409) 

Saturated Fat Intake (% total 
energy) 

16.1 (3.1) 12.2 (3.1) 11.1 (2.9) 12.4 (2.9) 12.5 (3.0) 11.8 (2.4) 10.2 (2.5) 11.6 (3.3) 11.3 (3.3) 10.4 (2.2) 14.4 (3.1) 

Fruit intake (servings/d) 1.9 (1.3) 1.5 (1.3) 1.1 (1.0) 1.1 (0.9) 2.7 (2.2) 3.4 (3.1) 1.9 (1.2) 1.8 (1.2) 2.1 (1.7) 2.7 (1.5) 1.2 (1.0) 
Vegetable Intake (servings/d) 1.7 (0.9) 1.7 (1.2) 2.0 (1.1) 2.8 (1.5) 5.0 (2.5) 1.4 (1.8) 3.9 (2.3) 2.2 (1.3) 2.4 (1.5) 2.8 (1.5) 2.8 (2.1) 

Whole Grain Intake (servings/d) 
0.8 (1.0) 1.1 (1.1) 1.2 (1.2) NA 1.8 (1.4) 3.2 (1.9) 1.5 (1.2) 1.2 (0.8) 1.0 (0.8) 1.0 (0.7) 3.4 (2.9) 

Fish Intake (servings/d) 0.4 (0.6) 0.3 (0.3) 0.4 (0.4) 0.2 (0.2) 0.4 (0.3) 1.3 (0.9) 0.3 (0.2) 0.2 (0.2) 0.3 (0.3) 0.3 (0.3) 0.1 (0.2) 
Nuts/Seeds Intake (servings/d) 0.1 (0.2) 0.4 (0.6) 0.6 (0.9) 0.8 (1.0) 0.2 (0.3) 0.1 (0.1) 0.3 (0.4) 0.2 (0.3) 0.5 (0.6)  0.2 (0.3) 0.2 (2.1) 
Alcohol Intake (g/d) 7.8 (8.9)b 6.7 (13.5) 10.5 (14.8) 15.5 (17.4) 9.5 (12.7) 8.6 (13.4) 4.3 (8.5) 5.0 (10.2) 8.8 (15.5) 5.5 (12.9) 11.1 (15.5) 
*Means (standard deviation) or percentage for maximum observations available for analysis. Sample sizes may vary depending on availability of genotype and covariate information. Cohorts are 
ordered by estimate of sugar-sweetened beverage intake. Cohort study abbreviations: The Raine Study (Raine Study), Atherosclerosis Risk in Communities Study (ARIC), Framingham Heart Study 
(FHS), Netherlands Epidemiology in Obesity Study (NEO), The Fenland Study (Fenland), Young Finns Study (YFS), Women’s Genome Health Study (WGHS), Women’s Health Initiative (WHI), 
Multi-Ethnic Study of Atherosclerosis (MESA), Cardiovascular Health Study (CHS), and the Rotterdam Study (RS). 
CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; HDL-C, high-density lipoprotein cholesterol concentrations; n, total sample size; SSB, sugar-sweetened beverages; TG, 
triglyceride concentrations.  
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Table 2. Top SNPs in meta-analysis of difference test (pDiff<0.005) and cross-product (pinteract<0.005) interactions between SSB 
consumption and SNPs on HDL-C and TG concentrations in CHARGE consortium cohorts* 
 

SNP Location 

(Hg19) 
Alleles 
(E/A)† 

Minor 
Allele 

Frequency 
Model‡ SSB Intake 

Category n Effect Size  
(SE)§ P-value Direction|| I2 p # 

HDL-C (mg/dl)           
Difference Test          pDiff 
rs35709627†† 72999171 A/G 0.05 Model 1 <1 serving/month 24,389 -0.01 (0.04) 0.86 +-++--+++?? 23% 1.98E-05** 
   >1 serving/day 4,033 3.23 (0.77) 2.94E-05 +?+?+?+?+?? 0%  
    Model 2 <1 serving/month 23,801 0.006 (0.04) 0.86 +-++--+++?? 30% 0.0001 
    >1 serving/day 3,955 2.72 (0.72) 0.0002 +?+?+?+?+?? 0%  
rs71556729†† 72989516 

 
T/C 0.05 Model 1 <1 serving/month 23,974 0.02 (0.06) 0.77 +?++-+++-?? 0% 4.78E-05** 

   >1 serving/day 3,359 4.47 (1.10) 5.02E-05 ??+?+?+?+?? 0%  
    Model 2 <1 serving/month 22,835 0.01 (0.05) 0.83 +?++-+-?-?? 0% 0.0001 
    >1 serving/day 3,299 3.89 (1.04) 0.0002 ??+?+?+?+?? 0%  
rs71556736 73034929 T/C 0.13 Model 1 <1 serving/month 24,389 -0.0005 (0.02) 0.98 +-+++--++?- 60% 0.0003 
   >1 serving/day 4,033  1.65 (0.47) 0.0004 +?+?+?+?+?? 0%  
    Model 2 <1 serving/month 23,801 0.007 (0.02) 0.69 +-++++-++?? 67% 0.002 
    >1 serving/day 3,955 1.34 (0.43) 0.002 +?+?+?+?+?? 0%  
rs73137017 72974413 

 
G/A 0.04 Model 1 <1 serving/month 24,020 -0.05 (0.06) 0.46 -+--+-++-?? 0% 0.002 

   >1 serving/day 3,933 -3.13 (0.99) 0.002 -?-?-?-?-?? 0%  
    Model 2 <1 serving/month 23,437 -0.008 (0.05) 0.88 ++--+-++-?? 0%  
    >1 serving/day 3,855 -2.64 (0.91) 0.004 -?-?-?-?-?? 0% 0.003 
Cross-Product Interaction Test         pinteract 
rs71556729 72989516 T/C 0.03 Model 1 - 55,418 0.66 (0.21) - +++++?+-+-- 0% 0.001 
   Model 2 - 53,394 0.68 (0.20) - ++-++?+++?- 26% 0.0007 
rs79578725 73002455 A/G 0.05 Model 1 - 53,662 -0.51 (0.18) - +?-+-?----- 0% 0.005 
    Model 2 - 52,328 -0.18 (0.17) - +?++-?----- 0% 0.28 
TG (ln-mg/dl)           
Difference Test          pDiff 
rs799157 73020301 T/C 0.05 Model 1 <1 serving/month 23,974 0.01 (0.01) 0.11 +?++++-++?? 59% 0.005 
    >1 serving/day 4,033 0.11 (0.03) 0.002 +?+?+?+?+?? 0%  
    Model 2 <1 serving/month 23,403 0.02 (0.01) 0.17 +?++--?+? 68% 0.008 
     >1 serving/day 3,955 0.09 (0.03) 0.004 +?+?++?+? 0%  
Cross-Product Interaction Test         pinteract 
rs55673514 73021456 G/A 0.04 Model 1 - 57,977 0.02 (0.01) - -+++++++?++ 17% 0.04 
    Model 2 - 56,578 0.02 (0.01) - -+++++++++? 0% 0.005 

*Top signals represent suggestive interactions pDiff<0.005 or pinteract<0.005c 

†Alleles presented as effect (E)/alternative (A) alleles 
‡Model 1 adjusted for age (years), sex (male/female), total energy intake (kcal/day) field center (CHS, FHS, YFS, Fenland, RS, MESA), and accounted for family or population structure where applicable (FHS, YFS, Fenland, NEO, MESA, WGHS, 
Raine Study, MESA); Model 2 adjusted for Model 1 covariates plus cohort-specific definition of education, smoking, physical activity, alcohol intake, and body mass index (kg/m2). 
§For the difference test, β (SE) represents the direction and magnitude of the difference in the outcome trait with each additional effect allele among categories of SSB consumption. For the cross-product interaction test, β (SE) represents the 
direction and magnitude of the difference in the outcome trait with each additional effect allele, per each increase in category of SSB intake (<1 serving/month, 1-4 servings/month, 1-2 servings/week, 3-7 servings/week, >1 serving/day). 
||Order of cohorts for regression coefficient directions: Framingham Heart Study, Young Finns Study, Fenland Study, Cardiovascular Health Study, Netherlands Epidemiology in Obesity Study, Rotterdam Study, Women’s Genome Health Study, 
Women’s Health Initiative, Atherosclerosis Risk in Communities Sutyd, The Raine Study, Multi-Ethnic Study of Atherosclerosis (+, positive effect size; -, negative effect size; ?, SNP not available in cohort). 
#P represents pDiff for the difference test for the highest and lowest category of SSB intake (<1 serving/month vs. >1 serving/day). P represents pinteract for the cross-product interaction regression coefficient of additive SSBxSNP categories. 
††Linkage disequilibrium (R2) between rs13240662 and rs71556729=0.55 in European ancestry groups of Phase 3 (Version 5) of the 1000 Genomes Project. 
**Indicates a statistically significant interaction based on Bonferonni-corrected pDiff  or pinteract<0.0001 
CHARGE, Cohorts for Heart and Aging Research in Genetic Epidemiology; HDL-C, high-density lipoprotein cholesterol concentrations; SE, standard error; SNP, single nucleotide polymorphism; SSB, sugar-sweetened beverages; TG, triglyceride 
concentrations.  



DOI: 10.1161/CIRCGEN.120.003288 

 

Table 3. Meta-analysis of top candidate SNPs for difference test interactions between SSB consumption and SNPs on HDL-C and TG 
concentrations in CHARGE consortium cohorts and UKB* 

 

SNP Location 
(Hg19) 

Alleles 
(E/A)† MAF SSB Intake 

Category n Effect Size 
(SE) P-value Direction‡ I2 pDiff 

HDL-C (mg/dl) 
rs71556729§ 72989516 T/C 0.05 Low 68,701 0.01 (0.05) 0.81 ++ 0 % 1.5E-06|| 

   High 15,227 2.06 (0.44) 3.48E-06 ++ 74 %  

rs35709627§ 72999171 A/G 0.05 Low 69,667 0.01 (0.04) 0.74 ++ 0 % 1.0E-05|| 
   High 15,883 1.37 (0.32) 2.15E-05 ++ 87 %  
rs71556736 73034929 T/C 0.13 Low 69.667 0.02 (0.02) 0.33 ++ 93 % 2.5E-05|| 
   High 15,882  0.84 (0.20) 3.27E-05 ++ 42 %  
rs73137017 72974413 G/A 0.04 Low 69,303 0.01 (0.05) 0.82 ++ 0 % 0.04 
   High 15,783 0.73 (0.37) 0.05 ++ 81 %  
rs79578725 73002455 A/G 0.05 Low 68,929 -0.02 (0.04) 0.64 -- 21 % 0.55 
   High 15,783 -0.22 (0.36) 0.53 -- 0 %  
TG (ln-mg/dl) 
rs55673514 73021456 G/A 0.04 Low 69,096 -0.002 (0.01) 0.84 +- 29 % 0.0005|| 
   High 15,395 -0.06 (0.02) 0.001 -- 0 %  
rs799157 73020301 T/C 0.05 Low 70,235 0.03 (0.01) 2.55E-07 ++ 59 % 0.05 
   High 16,006 0.06 (0.02) 0.0002 ++ 19 %  

*Top candidates represent statistically significant or suggestive interactions (pDiff<0.005 or pinteract<0.005) in CHARGE cohort meta-analysis. Models adjusted for 
age, sex, total energy intake, field center and accounted for family or population structure where applicable plus education, smoking, physical activity, alcohol 
intake, and body mass index (kg/m2). For the difference test, interaction coefficients are shown as β (SE), where β represents the direction and magnitude of 
change in the outcome trait with each additional effect allele among participants with low (CHARGE:<1 serving/month; UKB: non-consumers) or high 
(CHARGE: >1 serving/day; UKB: consumers) SSB consumption. 
†Alleles presented as effect (E)/alternative (A) alleles 
‡Order of cohorts for regression coefficient directions: CHARGE cohorts, UKB (+, positive effect size; -, negative effect size). 
§Linkage disequilibrium (R2) between rs13240662 and rs71556729=0.55 in European ancestry groups of Phase 3 (Version 5) of the 1000 Genomes Project. 
||Indicates a statistically significant interaction based on Bonferroni-corrected pDiff<0.01 (0.05/5 top signals) for HDL-C and pDiff<0.025 (0.05/2 top signals) for 
TG concentrations 
CHARGE, Cohorts for Heart and Aging Research in Genetic Epidemiology; HDL-C, high-density lipoprotein cholesterol concentrations; SNP, single nucleotide 
polymorphism; SSB, sugar-sweetened beverages; TG, triglyceride concentrations; UKB, UK Biobank. 
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Figure Legends: 

 

Figure 1. Associations between top candidate SNPs and HDL-C and TG concentrations 

stratified by category of SSB intake in a meta-analysis of the CHARGE cohorts and the UKB. A) 

In a meta-analysis of the CHARGE cohorts and the UKB, the association of the minor allele at 

TBL2-rs71556729 with HDL-C concentrations was observed only among the highest SSB 

consumers [β (95% CI): 2.12 (1.16, 3.07) mg/dl, p<0.0001], and not the lowest SSB consumers 

(p=0.81; pDiff<0.0001); B) In a meta-analysis of the CHARGE cohorts and the UKB, the 

association of the minor allele at CHREBP-rs55673514 with TG concentrations was observed 

only among the highest SSB consumers [β (95% CI): 0.06 (0.02, 0.09) ln-mg/dl, p=0.001], and 

not the lowest SSB consumers (p=0.84; pDiff<0.0005); Linear regression models represent 

associations between each additional effect allele and HDL-C (mg/dl) or TG (ln-mg/dl) 

concentrations among SSB consumption categories accounting for family, population structure, 

and/or field center (where applicable) and adjusting for age, sex, total energy intake, education, 

smoking, physical activity, alcohol intake, and body mass index. Intake categories are different 

for the highest SSB consumers (CHARGE: >1 serving/day; UKB: SSB consumers) and lowest 

SSB consumers (CHARGE: <1 serving/month; UKB: SSB non-consumers) in the two samples. 

CI, confidence interval; CHARGE, Cohorts for Heart and Aging Research in Genetic 

Epidemiology; HDL-C, high-density lipoprotein cholesterol concentrations; I2, percentage of 

variance in a meta-analysis that is attributable to study heterogeneity; SSB, sugar-sweetened 

beverage consumption; TG, triglyceride concentrations; UKB, UK Biobank. 
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