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1 Supplementary Methods: Details of parameter
values

Name Description Value
(INFL high) Units Source

p
Rate of proliferation

for tissue cells 0.28 Cycle−1 [15]

dC
Rate of apoptosis for

tissue cells 0.14 Cycle−1 [15]

ζ
Boolean for cell fate:
mesenchymal (1) or

epithelial (0)
{0, 1} NA NA

∆MIE
Mesenchymal immune

evasion (MIE) Varies NA This work

∆MGA
Mesenchymal growth

arrest (MGA) Varies NA This work

δA

Boolean for cell with
(1) or without (0)
apoptosis mutation

{0, 1} NA NA

∆A

Fractional decrease in
rate of apoptosis
following mutation

0.3 NA Estimated

δIE

Boolean for cell with
(1) or without (0)
immune evasion

mutation

{0, 1} NA NA

∆IE

Fractional increase in
rate of immune evasion
following mutation

0.48 NA Estimated

δP

Boolean for cell with
(1) or without (0)

proliferation mutation
{0, 1} NA NA

∆P

Fractional increase in
rate of proliferation
following mutation

0.36 NA Estimated

K0

EC50 term for negative
feedback of tissue cells
on own proliferation

80 Cells Estimated

K1

EC50 term for
probability of NK cell
finding mutant cell

8 Cells Estimated
from [29]
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K2

EC50 term for Treg
inhibition of cytotoxic

functions
5 (0.025) Cells /

Volume Simulated*

K3

EC50 term for
cumulative absorption

of TGF-β
200 Amount /

Volume Simulated*

K4
EC50 term for TGF-β
activation of Tregs 50 Amount /

Volume Simulated*

ENK
Rate of NKs clearing

mutants 10 (30) Cycle−1 [29]

ECTL
Rate of CTLs clearing

mutants 200 (600) Cycle−1 [29]

σNK NK source rate 1.3 Cells / Cycle [29]

σCTL
CTL source rate per
cleared mutant cell 100

Cells /
(Mutants ×
Cycles)

[32]

σTreg
Treg source rate per
cleared mutant cell 200

Cells /
(Mutants ×
[TGF-β] ×
Cycles)

[32]

dNK NK death rate 0.13 Cycle−1 [29]
dCTL CTL death rate 0.0260 Cycle−1 [32]
dTreg Treg death rate 0.0260 Cycle−1 [32]
kEMT Rate of EMT 0.01 [TGF-β]−1 Simulated*
kMET Rate of MET 0.02 [TGF-β]−1 Simulated*

σ
Standard deviation of

noise in [TGF-β] 6 [TGF-β] Estimated

τmax
Max amount of TGF-β

a cell can receive 500 [TGF-β] Estimated

τMUT
TGF-β production
rate by mutant cells 0.05 [TGF-β] /

Cell / Cycle Estimated

τTreg
TGF-β production

rate by Tregs 0.5 [TGF-β] /
Cell / Cycle Estimated

∆t Duration of cell cycle 18 Hours [9]

–
Relative population

threshold determining
time to invasion

0.5 NA Selected*

– INFL High Duration 30 Cycles Varied
– INFL Low Duration 30 Cycles Varied

TMES
Mesenchymal
threshold 0.7 NA Simulated*
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TEMT
Threshold for

undergoing EMT 2 NA Simulated*

–
Max initial mutation
probability after

warmup
0.01 NA [15]

–
Increase in probability
of mutation per cell

proliferation
0.0001 NA [15]

Table S1: Description of all parameters used for simulation, along with the
base values that define the low inflammatory state, and their units. Sec-
ondary value in parentheses is given if the parameter changes in the high
inflammatory state. [TGF-β]: concentration of TGF-β. *Simulated denotes
values that were identified following a parameter sweep. *Selected denotes
parameters that were fixed by experimental design.
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2 Supplementary Methods: Multiscale model de-
velopment

2.1 Tissue cell fate

During each cell cycle, every cell randomly is assigned a cell fate from the
following options:

• proliferation

• apoptosis

• immune clearance (by NKs or CTLs)

• rest in G0

For each cell, the rates are normalized to probabilities which then are
used to randomly determine what each cell does during the cell cycle.

2.1.1 Proliferation

There are four factors that contribute to the rate at which a cell proliferates.
The first is a base proliferation rate that all cells have, p. Second, if the cell
has a mutation in the proliferation pathway (δP = 1), then the rate for prolif-
eration is proportionally increased by ∆P . Third, if the cell is mesenchymal
(ζ = 1), then the rate for proliferation is proportionally decreased by ∆MGA,
which stands for mesenchymal growth arrest. This lost proliferation for mes-
enchymal cells will later be used to increase their chance of resting. Fourth,
there is a negative feedback of the cells on their own proliferation which is
quantified by a Hill factor as a function of the tissue cell population, NC ,
with EC50 term K0. In total, the rate for proliferation is given by

ρP = p︸︷︷︸
base

proliferation

(1 + δP∆P )︸ ︷︷ ︸
proliferation

pathway mutation

(1− ζ∆MGA)︸ ︷︷ ︸
mesenchymal
growth arrest

1

1 +NC/K0︸ ︷︷ ︸
resource

competition

(1)

2.1.2 Apoptosis

There are two factors that contribute to a cell’s rate for undergoing apoptosis.
There is a basal apoptosis rate that all cells experience, dC for death. Second,
if the cell has a mutation in the apoptosis pathway (δA = 1), then the rate
for undergoing apoptosis is proportionally decreased by ∆A. In total, the
rate for apoptosis is given by

ρA = dC︸︷︷︸
base

apoptosis

(1− δA∆A)︸ ︷︷ ︸
apoptosis

pathway mutation

(2)
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2.1.3 Immune Clearance

For both NK clearance and CTL clearance, the rates are built with the same
factors but have different parameter values for NK and CTLs. First of all,
the cell needs to be malignant (δMUT = 1). Second, there is a Hill factor that
captures the probability of an immune cell finding and interacting with the
given tissue cell with EC50 term K1. Third, NKs and CTLs have their own
efficacy parameters, ENK and ECTL, which can be understood as the rate of
immune clearance given an immune cell has found the mutated cell. Fourth,
there is a decreasing Hill factor based on the number of Treg cells present with
EC50 term K2. Finally, there are two factors that proportionally decrease
the rate of immune clearance depending on if the cell has an immune evasion
mutation (δIE = 1) or if it is mesenchymal (ζ = 1) with respective decreases
∆IE and ∆MIE. In total, the rate of NK clearance is given by

ρNK = δMUT︸ ︷︷ ︸
only target
invasive cells

NNK

NC/K1 +NNK︸ ︷︷ ︸
probability of
encounter

probability
of clearance︷︸︸︷
ENK

1 +NTreg/K2︸ ︷︷ ︸
Treg inhibition
of clearance

(1− δIE∆IE)︸ ︷︷ ︸
immune evasion

pathway mutation

(1− ζ∆MIE)︸ ︷︷ ︸
mesenchymal

immune evasion

(3)
A similar formula holds for CTLs with only the number of CTLs and

their efficacy being different from the above equation:

ρCTL = δMUT︸ ︷︷ ︸
only target
invasive cells

NCTL

NC/K1 +NCTL︸ ︷︷ ︸
probability of
encounter

probability
of clearance︷ ︸︸ ︷
ECTL

1 +NTreg/K2︸ ︷︷ ︸
Treg inhibition
of clearance

(1− δIE∆IE)︸ ︷︷ ︸
immune evasion

pathway mutation

(1− ζ∆MIE)︸ ︷︷ ︸
mesenchymal

immune evasion

(4)

2.1.4 Rest in G0

The rate associated with rest is taken as 1 except in the case of mesenchymal
cells. Recall that mesenchymal cells had their proliferation rate decreased by
1− ζ∆MGA (see Eq. 2.1). The biological assumption here is that mesenchy-
mal cells instead of proliferating will instead rest, so this lost proliferation
rate is added to the resting rate. Hence, the rate of rest is given by

ρR = 1︸︷︷︸
base

rest rate

+ ζp(1 + δP∆P )∆MGA
1

1 +NC/K0︸ ︷︷ ︸
loss of proliferation due to being mesenchymal

(5)
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Again, the reason for adding that term is due to the understanding that
overall mesenchymal cells proliferate less as individual cells rest longer in the
G0 phase.

2.1.5 Updating the immune system and EMT dynamics

After the cell fates are determined and the results reflected in the system,
additional steps are completed before the system moves on to a new cell
cycle. First, the NK and CTL populations are reduced by the number of
mutated cells that have been cleared. This represents the fact that individual
immune cells lose efficacy as they carry out their effector functions. Second,
all proliferating cells have a cell-specific probability of undergoing a driver
mutation in one of the three pathways. If a cell is selected to mutate, the
pathway mutation is chosen with probability 1/3 and the mutation is applied
to that cell. If the cell does not mutate, then its per-cell probability of
mutation during subsequent cell cycles increases by a fixed amount.

Next the EMT state of each cell is updated. This is achieved through
updating the EMT score for cell i at time step j, Si,j . Si,j takes values
between 0 (epithelial) and 1 (mesenchymal), and is given by:

Si,j+1 =

{
Si,j exp (kMET(τi − TEMT)) τi < TEMT

1− (1− Si,j) exp (kEMT(TEMT − τi)) τi ≥ TEMT,
(6)

where τi is the total level of TGF-β in cell i (given below), and the parameters
are given in Table S1. TEMT is a threshold value that defines cell fate, i.e.,
if τi > TEMT, then the cell state moves towards mesenchymal, and the EMT
score increases towards 1. Otherwise, the cell state moves towards epithelial,
and the EMT score decreases towards 0. The updated EMT score (Si,j+1)
is then compared to a threshold value, TMES, and the cell commits to a
mesenchymal (epithelial) state if the score is above (below) this threshold.

A key determinant of EMT is the level of TGF-β, both cell exogenous
and endogenous. The total amount of TGF-β in the TME available for
exogenous signaling, τ , is given by:

τ = τMUTNMUT + τTregNTreg, (7)

which depends on the total number of mutant cells, NMUT and the Treg cell
population NTreg. From this, the level of TGF-β in each individual cell i, τi,
is calculated by:

τi =
τmax

NC

τ/K3

1 + τ/K3
+ Si,j +Xi, Xi ∼ N(0, σ2) (8)

where the first term of the RHS represents the level of exogenous TGF-β,
which is modeled by a Hill function controlled by the total amount of TGF-β
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in the TME (Eqn. 7). The second term Si,j is the EMT score, defined in
Eqn. 6, and used here to characterize the endogenous TGF-β level. The
third and final term is a term to characterize the noise in the amount of
TGF-β received by each cell, which is assumed to be Gaussian. NB in Eqn.
8 the subscript j for time step is included on the EMT score S since there
is an explicit dependence of S on the previous time step in Eqn. 6. We do
not include the subscript j for other terms due to readability, although we
note that the variables τi, NC , and Xi are also dependent on the time step
j. The amount of TGF-β available in the next cell cycle (Eqn. 7) is updated
by determining the new number of mutated cells, NMUT, and the number of
Treg cells, NTreg at the end of the cell cycle.

Finally, the immune populations are updated. NK cells obey the follow-
ing differential equation:

N ′NK = σNK − dNKNNK (9)

which is discretized to

NNK(k + 1) =

(
NNK(k)− σNK

dNK

)
exp(−dNK∆t) +

σNK
dNK

(10)

CTL and Treg cells (adaptive immune components) are not activated
until malignant cells are being cleared from the system. Treg recruitment is
upregulated by TGF-β, which will be incorporated via a Hill function with
EC50 termK4. LetN∗MUT(k) represent the number of malignant cells cleared
by the immune system during cell cycle k. Then the following differential
equations govern the CTL and Treg population dynamics:

N ′CTL = σCTLN
∗
MUT − dCTLNCTL

N ′Treg = σTregN
∗
MUT

τ

1 + τ/K4
− dTregNTreg

(11)

Discretized, these are:

NCTL(k + 1) = (NCTL(k)− σCTLN∗MUT(k)/dCTL) exp(−dCTL∆t) + σCTLN
∗
MUT(k)/dCTL

NTreg(k + 1) =

(
NTreg(k)−

σTregN
∗
MUT(k)

dTreg

τ(k)

1 + τ(k)/K4

)
exp(−dTreg∆t)

+
σTregN

∗
MUT(k)

dTreg

τ(k)

1 + τ(k)/K4

(12)
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3 Supplementary Methods: Analysis of data from
TCGA

The Cancer Genome Atlas (TCGA) [7] provides multiple clinical endpoints,
including overall survival (OS) and disease-free interval (DFI) [23]. In order
to investigate the link between EMT, inflammation and invasive phenotype,
we corroborate our model with clinical data from TCGA in a two pronged
approach:

• Overall Survival: Test whether EMT and inflammation can jointly
separate clinical cohorts based on the OS endpoint for a selection of
cancer sub-types (Section 3.1).

• Disease-Free Interval: Identify pathway genes which regulate the
proliferation/tumor-invasiveness axis in the context of a synergistic
EMT/Inflam effect (Section 3.2).

Our analysis of tumor invasiveness due to mesenchymal growth arrest, in
the context of EMT and inflammation takes place in two steps (fig S5.A-D):
First, identify relevant cancers by A) defining sets of genes which represent
some union of inflammation and EMT pathways while simultaneously having
a quantitatively greater effect on overall survival than the component path-
ways acting alone, and B) simulating the dosage effect of proliferation mark-
ers on tumor invasiveness, for cancer types where a synergistic EMT/Inflam
pathway was identified in (A). Following guidelines published in [23], we in-
vestigated the 14 TCGA tumor types recommended for both OS and DFI
analysis.

3.1 Overall Survival

While immunological interactions and EMT are known to be related [14],
there is uncertainty regarding both the individual pathways which gov-
ern this dependence and the extent to which the interaction between in-
flammation and EMT is synergistic. Our approach identifies pathways by
gene set (among all pairwise combinations of EMT (GSEMT) and inflam-
mation (GSInflam) gene sets available from MSigDB [21] for which the syn-
ergistic relationship between EMT and inflammation has a greater effect
on OS than either process individually. Because only a subset of the 14
TCGA tumor-types we analyzed contains at least one such pathway, this
approach results in a search over tumor types whose biology is governed by
the EMT/inflammation/ interaction. Thus, OS analysis takes place in the
following steps, which we detail in the remainder of 3.1:

1. (3.1.1) For each tumor-type, check Cox model for
{(x, y)|x ∈ GSEMT ∧ y ∈ GSInflam}
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2. (3.1.2) For each (x, y), check KM model for unsupervised DBSCAN
clusters

3.1.1 Cox-PH Model: Synergistic Pathway Identification

For each combination of gene sets, we created three (one-dimensional) UMAP
projections [25] of the data, one each from A) the EMT genes, B) the In-
flammation genes, and C) the concatenation of (A) and (B). This yielded a
three-dimensional projection of the data, on which we build a Cox propor-
tional hazard model (CoxPH). We identified several gene set combinations
(combos) for which the global statistical significance (by likelihood ratio test)
of the corresponding model was high (pLR ≤ 5e−2), as were all three predic-
tors, but for which the hazard ratios for the concatenation embedding were
at least 5% greater in magnitude than either EMT or inflammation alone.

Prior to CoxPH analysis, the proportional hazard assumption was tested
and only tumor-type/combos were retained whose Schoenfeld residual was
equal to 0 [17]. Our screen identified 13 tumor-type/combos across 8 tumor
types: urothelial bladder carcinoma (BLCA, table S2), Cervical Squamous
Cell Carcinoma and Endocervical Adenocarcinoma (CESC, table S3), colon
adenocarcinoma (COAD, S4), esophageal carcinoma (ESCA, S5), cervical
kidney renal papillary cell carcinoma (KIRP, tables S6, S7), liver hepatocel-
lular carcinoma (LIHC, tables S8,S9), pancreatic adenocarcinoma (PAAD,
tables S10,S11), and uterine corpus endometrial carcinoma (UCEC, tables
S12,S13,S14). See supplementary file "OS_test_results.csv" for full results
(all tumor-type/combos).

3.1.2 KM Model: Synergistic Pathway Confirmation

In order to provide further confirmation of a relationship between survival
in these four cancers and the synergistic activation of relevant pathways, we
tested the separation (adjusted plog rank ≤ 0.05, [17]) of KM models fitted to
subgroups defined unsupervised hierarchical density-based clustering [5, 12]
(DBSCAN) of the UMAP-embedded combined gene set. We guided the
unsupervised clustering by scaling down the minimum neighborhood size
(starting with 30 patients) until the number of clusters was at least two. In
addition to assigning cluster labels, DBSCAN determines outliers based on
the the neighborhood structure of the graph [5,12]. In our KM models and in
subsequent analysis of DFI prediction, these outliers were discarded in order
to ensure that groups of patients were maximally homogeneous with respect
to EMT/inflammation. A single gene set combo met these criteria for the
following cancers: BLCA (table S15, survival plot fig.S6), LIHC (table S16,
survival plot fig.S7), and UCEC (table S17, survival plot fig.S8).

This analysis robustly identified BLCA, LIHC, and UCEC as cancers for
which synergistic interaction between EMT and inflammation is the primary
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driver of patient survival. Our approach has several advantages. First, we
utilized the MSigDB resource [21] in order to optimize the search space over
relevant pathways. This allows the large volume of prior knowledge encoded
in this database to guide exploratory data analysis that would otherwise
be impossible or impractical at the transcriptomic scale [37]. Second, our
use of dimensionality-reduction provides the following two-fold advantage:
clear interpretation of the synergistic response between EMT and INFLAM
and the compression of the parameter space to only three predictors, which
means that sensitive prediction of survival can be carried out on the limited
number of primary tumor samples in our data set. In the sequel, we address
the role of mesenchymal proliferation pathways in the invasiveness of these
tumors, by utilizing the disease-free interval (DFI) endpoint [23], rather than
the OS endpoint.

3.2 Disease-Free Interval

3.2.1 DFI is a Clinical Analogue of Tumor Time to Invasion

Our agent-based simulations cover the incremental progression from in-situ
to invasive disease from a homogeneous initial point, whereas the data in
TCGA address how cancer may progress following treatment, thus compar-
isons between model and data should be made carefully. Nonetheless recent
clinical and experimental evidence suggests that core cellular tumor dynam-
ics are at play both during the tumor progression addressed by the model,
and post-treatment progression described in data from TCGA. Of partic-
ular note, the plasticity of tumor cells allows them to evade treatment by
undergoing post-treatment processes resembling the de-novo appearance of
cancer [33].

3.2.2 Ontology-Based Investigation of Proliferation Pathways

As stated above, we predict that for certain EMT and inflammatory environ-
ments, the time to invasion is maximized by a specific proliferative regime,
where the proliferative potential of a transformed tumor cell is being held in
check by mesenchymal growth arrest programs. Therefore we investigate the
timing of invasion as a function of proliferation by searching for proliferative
regimes where the Disease Free Interval (DFI) is maximized for patients in
remission after treatment. In contrast to the search-based strategy above,
we used the Gene Ontology (GO) resource [1, 8] to select an appropriate
pathway for this analysis. GO is designed to provide a semantic index of
genes, allowing gene lists to be retrieved interactively by simply browsing
its hierarchy. We selected GO:0010463 (Mesenchymal Cell Proliferation) for
our analysis of proliferation-dependent DFI.
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3.2.3 Binary Classification of DFI Endpoints

Binarization of survival endpoints has previously been explored [3, 6, 10, 16,
18,20,22]. In contrast to previous approaches which utilize a pre-determined
time threshold for the response (e.g. early and late relapse), we utilized an
imputed high/low risk classification scheme based on a two-component Gaus-
sian mixture model, which implicitly deals with cancer-specific thresholds.
This approach was motivated by the observation that in all three cases, the
DFI exibited multiple modes with cancer-specific thresholds: BLCA (fig.S9),
LIHC (fig.S11), UCEC (fig.S10). Under this scheme, a tumor with a short
DFI represents highly invasive disease for which the time-to-invasion is short.

Summary of the Model
The log counts from TCGA bulk mRNA sequencing for 52 genes are used
to predict the computed DFI-class for each patient. The list of genes in-
cludes the 42 human genes from GO:0010463 "mesenchymal cell prolifera-
tion" (which omits all but LRP5 among known receptors for WNT2/11/5A)
augmented with missing receptors for those Wnts: FZD2, FZD4, FZD6,
FZD8, ROR1, ROR2, RYK, and LRP6. The model encodes the response
y as either +1 or -1 (Eq. 13) for high-DFI and low-DFI respectively and
is fitted via a generalized form of Bayesian logistic regression [30] using the
expression levels of these genes as predictors. Since the likelihood (Eq. 13)
is non-Gaussian, the posterior (Eq. 15) becomes analytically intractible, so
expectation propagation (EP) is used to approximate it during inference and
hyperparameter optimization [30]. Inference and hyperparameter optimiza-
tion were performed using the gpstuff toolbox for MATLAB [34].

Our model simultaneously considers the (gene-expression of) multiple
distinct biological pathways using the product of squared-exponential kernels
over the predictor genes (Eq. 16). Within the context of the GP classifier,
this kernel specifies the covariance of the joint distribution over any subset of
the input data. The constant term σ0, magnitude σ2, and gene-wise length
scale λd are given priors (Eq. 17, 18, 19, 20) which facilitate the discovery of
their MAP values by EP. This basic structure assumes little prior knowledge
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about the predictors, while offering good out of sample prediction accuracy.

p(y|f) =
n∏

i=1

1

1 + exp(yifi)
(13)

p(f |X, θ) = N (f |0,K) (14)

p(f |X,y, θ) =
p(f |X, θ)

p(X|θ)

n∏
i=1

p(yi|fi) (15)

K(x,x′) = σ0 + σ2exp

[
−1

2

D∑
d=1

(
x− x′

λd

)2
]

(16)

x and x′ any two patients
log(σ0) ∼ N (0, 0.1) (17)

log(σ2) ∼ N (1, 0.25) (18)
log(λd) ∼ N (1,Σ0) (19)

Σ0 ∼ IG(3, 1) (20)

This model achieves very high (∼ 1) LOO-CV accuracy on the training
data, so it is instructive to measure its performance relative to linear SVM
on the sub-cohorts (noisy resamplings of the patient data) used for cluster-
ing. the average classification performance over all 1000 subcohorts is shown
in the following table:

Type − log(p(y)) Naive Linear
SVM

GP

LIHC 197.800 0.582 0.582 1.0
BLCA 106.053 0.686 0.689 1.0
UCEC 62.321 0.708 0.726 1.0

Above, we list the leave-one-out cross-validated (LOO-CV) classi-
fication accuracy in each case for GP, and the 5-fold cross-validation accu-
racy for linear SVM, computed using the MATLAB Optimization Toolbox.
The LOO-CV approach of [28] utilizing the cavity distribution of the EP
likelihood approximation is utilized for tractability. This approach aims to
discover the out of sample prediction accuracy for the model while simul-
taneously using all the data [35]. Compared to linear SVM [13], the GP
classifier for all cancers achieves 100% LOO-CV, while SVM achieves only
a modest improvement over naive (selecting high-DFI for all patients) for
BLCA and UCEC, while failing improve the naive estimate for LIHC. This
latter result is consistent with the higher negative log marginal likelihood
(− log(p(y))) for LIHC, indicating that the association between our chosen
markers and the DFI endpoint is less justified. Therefore, LIHC was excluded
from further analysis.
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4 Supplementary Tables: Cox-PH tables

4.1 BLCA

Dependent variable:

time

EMT −0.045∗∗

(0.018)

INFLAM 0.025∗∗∗

(0.009)

BOTH 0.082∗∗∗

(0.021)

Observations 401
R2 0.056
Max. Possible R2 0.991
Log Likelihood −924.075
Wald Test 22.290∗∗∗ (df = 3)
LR Test 23.300∗∗∗ (df = 3)
Score (Logrank) Test 22.401∗∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S2: Gotzman EMT vs. GO Pos Acute Inflam Ant
GOTZMANN_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_UP
vs.
GO_POSITIVE_REGULATION_OF_ACUTE_INFLAMMATORY_RESPONSE_TO_ANTIGENIC_STIMULUS

4.2 CESC

Dependent variable:

time

EMT −0.100∗∗∗

(0.032)

INFLAM −0.067∗∗∗

(0.023)

BOTH 0.092∗∗

(0.041)

Observations 291
R2 0.060
Max. Possible R2 0.910
Log Likelihood −340.512
Wald Test 18.320∗∗∗ (df = 3)
LR Test 18.083∗∗∗ (df = 3)
Score (Logrank) Test 18.630∗∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S3: GO Pos EMT vs. GO Leuk Act
GO_POSITIVE_REGULATION_OF_EPITHELIAL_TO_MESENCHYMAL_TRANSITION
vs.
GO_LEUKOCYTE_ACTIVATION_INVOLVED_IN_INFLAMMATORY_RESPONSE

4.3 COAD
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Dependent variable:

time

EMT −0.142∗∗∗

(0.041)

INFLAM 0.067∗∗

(0.026)

BOTH 0.126∗∗∗

(0.048)

Observations 276
R2 0.048
Max. Possible R2 0.904
Log Likelihood −316.811
Wald Test 15.000∗∗∗ (df = 3)
LR Test 13.455∗∗∗ (df = 3)
Score (Logrank) Test 14.372∗∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S4: Hollern EMT Breast vs. GO Leuk Act
HOLLERN_EMT_BREAST_TUMOR_UP
vs.
GO_LEUKOCYTE_ACTIVATION_INVOLVED_IN_INFLAMMATORY_RESPONSE

4.4 ESCA

Dependent variable:

time

EMT 0.086∗∗

(0.038)

INFLAM −0.113∗∗∗

(0.042)

BOTH 0.185∗∗∗

(0.064)

Observations 183
R2 0.052
Max. Possible R2 0.972
Log Likelihood −321.566
Wald Test 9.760∗∗ (df = 3)
LR Test 9.838∗∗ (df = 3)
Score (Logrank) Test 9.802∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S5: GO Cardiac EMT vs. GO Neg Acute Inf
GO_CARDIAC_EPITHELIAL_TO_MESENCHYMAL_TRANSITION
vs.
GO_NEGATIVE_REGULATION_OF_ACUTE_INFLAMMATORY_RESPONSE

4.5 KIRP
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Dependent variable:

time

EMT −0.090∗∗

(0.041)

INFLAM −0.040∗∗∗

(0.015)

BOTH 0.103∗∗

(0.040)

Observations 287
R2 0.101
Max. Possible R2 0.769
Log Likelihood −194.964
Wald Test 35.480∗∗∗ (df = 3)
LR Test 30.644∗∗∗ (df = 3)
Score (Logrank) Test 41.090∗∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S6: GO Reg EMT vs. GO Neg Acute Inf
GO_REGULATION_OF_EPITHELIAL_TO_MESENCHYMAL_TRANSITION
vs.
GO_NEGATIVE_REGULATION_OF_ACUTE_INFLAMMATORY_RESPONSE

Dependent variable:

time

EMT −0.129∗∗∗

(0.033)

INFLAM −0.068∗∗∗

(0.026)

BOTH 0.121∗∗∗

(0.030)

Observations 287
R2 0.113
Max. Possible R2 0.769
Log Likelihood −193.046
Wald Test 44.270∗∗∗ (df = 3)
LR Test 34.480∗∗∗ (df = 3)
Score (Logrank) Test 52.588∗∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S7: GO Reg EMT vs. GO Neg Inf
GO_REGULATION_OF_EPITHELIAL_TO_MESENCHYMAL_TRANSITION
vs.
GO_NEGATIVE_REGULATION_OF_INFLAMMATORY_RESPONSE

4.6 LIHC
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Dependent variable:

time

EMT −0.029∗∗

(0.012)

INFLAM −0.159∗∗

(0.065)

BOTH 0.181∗∗∗

(0.062)

Observations 364
R2 0.058
Max. Possible R2 0.974
Log Likelihood −654.198
Wald Test 20.970∗∗∗ (df = 3)
LR Test 21.748∗∗∗ (df = 3)
Score (Logrank) Test 21.321∗∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S8: GO Cardiac EMT vs. Zhou Inf FIMA Up
GO_REGULATION_OF_CARDIAC_EPITHELIAL_TO_MESENCHYMAL_TRANSITION
vs.
ZHOU_INFLAMMATORY_RESPONSE_FIMA_UP

Dependent variable:

time

EMT −0.026∗∗

(0.012)

INFLAM −0.027∗∗∗

(0.010)

BOTH 0.033∗∗

(0.017)

Observations 364
R2 0.046
Max. Possible R2 0.974
Log Likelihood −656.570
Wald Test 16.730∗∗∗ (df = 3)
LR Test 17.005∗∗∗ (df = 3)
Score (Logrank) Test 17.070∗∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S9: GO Reg EMT Endo vs. GO Mac Inf Prot 1 Alpha
GO_REGULATION_OF_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_INVOLVED_IN_ENDOCARDIAL_CUSHION_FORMATION
vs.
GO_MACROPHAGE_INFLAMMATORY_PROTEIN_1_ALPHA_PRODUCTION

4.7 PAAD
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Dependent variable:

time

EMT −0.036∗∗

(0.018)

INFLAM −0.063∗∗

(0.029)

BOTH 0.052∗∗∗

(0.018)

Observations 177
R2 0.061
Max. Possible R2 0.991
Log Likelihood −407.162
Wald Test 10.610∗∗ (df = 3)
LR Test 11.187∗∗ (df = 3)
Score (Logrank) Test 10.742∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S10: Alonso Met EMT Down vs. GO Neg Reg Inf
ALONSO_METASTASIS_EMT_DN
vs.
GO_NEGATIVE_REGULATION_OF_INFLAMMATORY_RESPONSE

Dependent variable:

time

EMT −0.099∗∗∗

(0.033)

INFLAM −0.043∗∗

(0.022)

BOTH 0.070∗∗

(0.029)

Observations 177
R2 0.099
Max. Possible R2 0.991
Log Likelihood −403.487
Wald Test 17.620∗∗∗ (df = 3)
LR Test 18.536∗∗∗ (df = 3)
Score (Logrank) Test 17.776∗∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S11: Jechlinger EMT Down vs. GO Pos Reg Cyto Prod
JECHLINGER_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_DN
vs.
GO_POSITIVE_REGULATION_OF_CYTOKINE_PRODUCTION_INVOLVED_IN_INFLAMMATORY_RESPONSE

4.8 UCEC
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Dependent variable:

time

EMT −0.158∗∗∗

(0.045)

INFLAM −0.140∗∗

(0.062)

BOTH 0.216∗∗∗

(0.075)

Observations 174
R2 0.081
Max. Possible R2 0.789
Log Likelihood −127.984
Wald Test 14.660∗∗∗ (df = 3)
LR Test 14.652∗∗∗ (df = 3)
Score (Logrank) Test 14.971∗∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S12: Alonso Met EMT Up vs. Fulcher Inf Resp Lectin LPS Down
ALONSO_METASTASIS_EMT_UP
vs.
FULCHER_INFLAMMATORY_RESPONSE_LECTIN_VS_LPS_DN

Dependent variable:

time

EMT −0.179∗∗∗

(0.054)

INFLAM −0.047∗∗

(0.019)

BOTH 0.232∗∗∗

(0.079)

Observations 174
R2 0.088
Max. Possible R2 0.789
Log Likelihood −127.269
Wald Test 11.950∗∗∗ (df = 3)
LR Test 16.082∗∗∗ (df = 3)
Score (Logrank) Test 12.639∗∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S13: GO Cardiac EMT vs. GO Reg Inf Resp Wound
GO_CARDIAC_EPITHELIAL_TO_MESENCHYMAL_TRANSITION
vs.
GO_REGULATION_OF_INFLAMMATORY_RESPONSE_TO_WOUNDING
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Dependent variable:

time

EMT −0.038∗∗

(0.019)

INFLAM −0.172∗∗∗

(0.044)

BOTH 0.174∗∗∗

(0.050)

Observations 174
R2 0.094
Max. Possible R2 0.789
Log Likelihood −126.768
Wald Test 21.670∗∗∗ (df = 3)
LR Test 17.084∗∗∗ (df = 3)
Score (Logrank) Test 16.551∗∗∗ (df = 3)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S14: GO Card EMT vs. Wunder Inf Resp Chol Up
GO_CARDIAC_EPITHELIAL_TO_MESENCHYMAL_TRANSITION
vs.
WUNDER_INFLAMMATORY_RESPONSE_AND_CHOLESTEROL_UP

5 Supplementary Tables: KM tables

N Observed Expected (O-E)^2/E (O-E)^2/V
Cluster 1 118 35.00 54.28 6.85 11.61
Cluster 2 52 25.00 19.29 1.69 1.99
Cluster 3 38 20.00 15.50 1.31 1.49
Cluster 4 93 54.00 44.93 1.83 2.79

p=0.008

Table S15: Gotzman EMT vs. GO Pos Acute Inflam Ant
GOTZMANN_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_UP
vs.
GO_POSITIVE_REGULATION_OF_ACUTE_INFLAMMATORY_RESPONSE_TO_ANTIGENIC_STIMULUS

k
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N Observed Expected (O-E)^2/E (O-E)^2/V
Cluster 1 160 69.00 49.64 7.55 15.43
Cluster 2 110 32.00 51.36 7.30 15.43

p=5e-8

Table S16: GO Reg EMT Endo vs. GO Mac Inf Prot 1 Alpha
GO_REGULATION_OF_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_INVOLVED_IN_ENDOCARDIAL_CUSHION_FORMATION
vs.
GO_MACROPHAGE_INFLAMMATORY_PROTEIN_1_ALPHA_PRODUCTION

N Observed Expected (O-E)^2/E (O-E)^2/V
Cluster 1 88 21.00 14.86 2.54 5.12
Cluster 2 76 9.00 15.14 2.49 5.12

p=0.02

Table S17: GO Cardiac EMT vs. GO Reg Inf Resp Wound
GO_CARDIAC_EPITHELIAL_TO_MESENCHYMAL_TRANSITION
vs.
GO_REGULATION_OF_INFLAMMATORY_RESPONSE_TO_WOUNDING
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Gene(s) Cancer Effect Eff.Type Citation
Wnts Both Onc NA [2,4, 19, 26,27]
FGFR2 BLCA Supp NA [31]
FGFR2 UCEC Onc NA [11]
FBXW4 BLCA Supp NA [24]
HAND2 BLCA Supp NA [36]
HAND2 UCEC Supp NA [11]
FOXF1 BLCA Supp NA New
FGFR2+FBXW4 BLCA Supp Coop New
FGFR2+HAND2 UCEC Supp Ant New

Table S18: Summary of reported findings. Column Key: Genes = the genes
in the specified relationship, Cancer = BLCA or UCEC, Effect = Oncogenic
or Suppressor, Effect Type = NA (single gene), Antagonistic or Cooperative,
Status = Known or Unknown, Citation = reference utilized in the manuscript
to reference a known effect

6 Supplementary Figures
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B C

Figure S1: A. Single patient trajectory without immune cells targeting cells
with pathways mutations. Compare to Fig. 1B. B. Sample cohort survival
curve without immune cells targeting cells with pathways mutations. Com-
pare to Fig. 1C.

Figure S2: Morris-OAT global sensitivity without immune cells targeting
cells with pathways mutations. Compare to Fig. 2.
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Figure S3: Effects of mesenchymal tumor cell properties on the Time to Inva-
sion without immune cells targeting cells with pathways mutations. Compare
to Fig. 3.
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Figure S4: Summary of mesenchymal tumor cell properties on the Time
to Invasion without immune cells targeting cells with pathways mutations.
Compare to Fig. 4E.
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Figure S5: Schematic of overall survival (OS) and disease-free interval (DFI) analysis
on TCGA data. A-B (Step 1): Find cancer types in which EMT and inflammation act
synergistically on overall survival. C-D (Step 2): For cancer types identified in Step 1,
identify proliferation pathways that regulate the invasiveness of these cancers. A) For each
cancer type, identify pairs of inflammation and EMT gene sets where the UMAP projection
over their union has a higher (magnitude) hazard ratio than either of its constituents in a
three-predictor Cox-PH model with OS response in that cancer type. B) Identify cancer
types, for which unsupervised DBSCAN clustering over the 1D UMAP projection of one
or more EMT/Inflam union sets yields clusters whose KM survival curves are different. C)
Impute the DFI-high/low class based on a two-component Gaussian mixture model of the
published disease-free interval time in days. D) Identify relationships between proliferation
pathways and tumor invasiveness using a GP classifier trained on the computed DFI-class
from (C) and mRNA sequencing for the list of proliferation genes.
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TCGA−BLCA Clustering and Survival, UMAP Embedding of:
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 GO_POSITIVE_REGULATION_OF_ACUTE_INFLAMMATORY_RESPONSE_TO_ANTIGENIC_STIMULUS

A. DBSCAN clustering of BLCA using gene ontology terms indicative of EMT and INFLAMMATION signatures (min group size = 30). 
 B. Survival plots corresponding to the clustering on EMT and INFLAMMATION (p = 0.00823).

Figure S6: DBSCAN clusters for combined EMT+INFLAM embedding of
BLCA patients and corresponding Kaplan-Meier (KM) model.
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A. DBSCAN clustering of LIHC using gene ontology terms indicative of EMT and INFLAMMATION signatures (min group size = 30). 
 B. Survival plots corresponding to the clustering on EMT and INFLAMMATION (p = 8.555e−05).

Figure S7: DBSCAN clusters for combined EMT+INFLAM embedding of
LIHC patients and corresponding Kaplan-Meier (KM) model.
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A. DBSCAN clustering of UCEC using gene ontology terms indicative of EMT and INFLAMMATION signatures (min group size = 30). 
 B. Survival plots corresponding to the clustering on EMT and INFLAMMATION (p = 0.02372).

Figure S8: DBSCAN clusters for combined EMT+INFLAM embedding of
UCEC patients and corresponding Kaplan-Meier (KM) model.
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Figure S9: A. Classification of BLCA patients in short DFI (blue) and long
DFI (red). B. 2-component Gaussian mixture density corresponding to the
above classification. C. Histogram of DFI for patients.
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Figure S10: A. Classification of UCEC patients in short DFI (blue) and long
DFI (red). B. 2-component Gaussian mixture density corresponding to the
above classification. C. Histogram of DFI for patients.
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Figure S11: A. Classification of LIHC patients in short DFI (blue) and long
DFI (red). B. 2-component Gaussian mixture density corresponding to the
above classification. C. Histogram of DFI for patients.
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