1	Supplementary information
2	The underappreciated role of agricultural soil nitrogen oxide
3	emissions in ozone pollution regulation in North China
4	
5	Xiao Lu ^{1,2} , Xingpei Ye ¹ , Mi Zhou ¹ , Yuanhong Zhao ³ , Hongjian Weng ¹ , Hao Kong ¹ , Ke Li ⁴ ,
6 7	Meng Gao ⁵ , Bo Zheng ⁶ , Jintai Lin ¹ , Feng Zhou ⁷ , Qiang Zhang ⁸ , Dianming Wu ⁹ , Lin Zhang ^{1*} , Yuanhang Zhang ^{10*}
8	
9	¹ Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic
10	Sciences, School of Physics, Peking University, Beijing 100871, China ² School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
11 12	³ College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100,
12 13	China China
13 14	⁴ John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138,
14 15	United States
15	⁵ Department of Geography, Hong Kong Baptist University, Hong Kong 999077, China;
10	 ⁶ Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, UMR8212, Gif-
18	sur-Yvette, France
19	⁷ Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking
20	University, Beijing, 100871, China
21	⁸ Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System
22	Science, Tsinghua University, Beijing, China
23	⁹ Key Laboratory of Geographic Information Sciences, School of Geographic Sciences, East China
24	Normal University, Shanghai 200241, China
25	¹⁰ State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
26 27	Environmental Sciences and Engineering, Peking University, Beijing 100871, China
28	Correspondence and requests for materials should be addressed to:
29	L. Zhang (zhanglg@pku.edu.cn) and Y.H. Zhang (yhzhang@pku.edu.cn)
30	
31	This file includes:
32	Supplementary information on the Berkeley-Dalhousie Soil NO _x Parameterization (BDSNP)
33	Supplementary Figures 1-10
34 35	Supplementary Tables 1-6 SI References
36	

Supplementary information on the Berkeley-Dalhousie Soil NO_x Parameterization (BDSNP)

The BDSNP parameterizes global soil NO_x emissions (*Emis_{soil}*) as a function of available soil
 nitrogen content, climate and edaphic conditions following:

 $Emis_{soil} = A'_{biome}(N_{avail}) \times f(T) \times g(\theta) \times P(l_{dry}), (1)$

where N_{avail} represents available soil nitrogen mass, A'_{biome} denotes the biome-dependent emission factors, f(T) and $g(\theta)$ are the temperature and soil moisture dependences, and $P(l_{dry})$ describes the pulsed soil emissions from wetting of dry soils¹. A number of 24 soil biomes are considered in BDSNP following Steinkamp and Lawrence (2011)², and the model calculates the total emissions from all the biomes weighted by their relative fractions in the grid box.

48

41

49 The soil temperature and moisture term f(T) and $g(\theta)$ is given as:

50

 $f(T) \times g(\theta) = e^{0.103T} \times a\theta e^{-b\theta^2}, (2)$

where $T (0 \le T \le 30^\circ)$ is the soil temperature and $\theta (0 \le \theta \le 1)$ is the water-filled pore space. The exponential dependence on temperature followed the Yienger and Levy (1995) scheme³, where 0.103 is the weighted average of dependence for different biomes. Soil temperature is not available directly from the GEOS-Chem meteorological fields, instead it is converted from the surface air temperature separately for dry and wet soil and for different biomes.

56

57 The term $g(\theta)$ describes the Poisson function scaling for soil moisture. θ is defined as the ratio of the volumetric soil moisture content to the porosity, and is normalized by dividing by 58 59 the porosity so that $0 \le \theta \le 1$. It is available hourly from the GEOS-FP meteorological fields for the top 2 cm of soil, where the majority of the soil NO_x release. The values of a and b are 60 61 chosen such that $g(\theta)$ maximizes when $\theta = 0.2$ for arid soils and $\theta = 0.3$ elsewhere 62 according to laboratory and field measurements. As point out by Hudman et al. (2012)¹, there is uncertainty on how well θ can reflect the real-world water-filled pore space, but its use 63 64 represents a mechanistic approach for soil NO_x emission estimates in the atmospheric chemical 65 model that can take advantage of available assimilated meteorological fields.

66

The pulsing term $P(l_{dry})$ describes the pulsing of soil NO_x emissions from a reactivation of water-stressed bacteria when very dry soil is wetted due to irrigation and/or rainfalls. It follows Yan et al. (2005)⁴ and is given as:

70

$$P(l_{dry}) = [13.01 \ln(l_{dry}) - 53.6] \times e^{-ct}, (3)$$

where l_{dry} is the length of the antecedent dry period in hours which is updated in the model based on soil moisture from the meteorological fields, $c = 0.068 hour^{-1}$ is a constant rate denoting the rise/fall time of the pulse, and t is the model emission time step.

74

75 The BDSNP considers available soil nitrogen content from the natural pool, fertilizer

application, and nitrogen deposition. Fertilizer applications are obtained from the global 76 gridded chemical fertilizer and manure application inventory at $0.5^{\circ} \times 0.5^{\circ5}$, in which the 77 78 chemical fertilizers were spatially disaggregated from the International Fertilizer Association 79 (IFA) national totals for year 2000 conditions, and the manure fertilizer were obtained from the Food and Agriculture Organization of the United Nations (FAO) Gridded Livestock of the 80 World (GLW) project. We find that the Chinese chemical fertilizer application (straight N 81 application) from IFA as used in this study gives 19.6 Tg N a⁻¹ for 2000, which is close to the 82 estimate of 22.2 Tg N a⁻¹ for 2017 from the China Statistical Yearbook 83 (http://www.stats.gov.cn/tjsj/ndsj/). The China Statistical Yearbook estimates relatively stable 84 Chinese chemical fertilizer application of about 21-24 Tg N a⁻¹ in 2000-2017. The uncertainties 85 in the fertilizer input can be considered in our sensitivity simulations with different soil NO_x 86 87 scenarios.

88

The annual fertilizer applications are then distributed over the satellite-derived growing season at each grid, with 75% of which are distributed over the first month as a Gaussian distribution around the green-up day, and the rest 25% are distributed evenly over the remaining growing season. Multiple cropping or crop rotations are not considered here. The time-dependent N_{avail} from fertilizer application is then calculated following the mass-balance equation:

94

 $N_{avail}(t) = N_{avail}(0)e^{-t/\tau} + F \times \tau \times (1 - e^{-t/\tau}), (4)$

95 where $N_{avail}(0)$ is the initial state available in Hudman et al. $(2012)^1$, t is the time, τ is a 96 decay lifetime of 4 months for fertilizer nitrogen, F is the fertilizer application rate that varies 97 across the growing seasons as described above. We note here that daily N_{avail} from fertilizer 98 application is pre-calculated following the method introduced above and is a standard input for 99 BDSNP in GEOS-Chem.

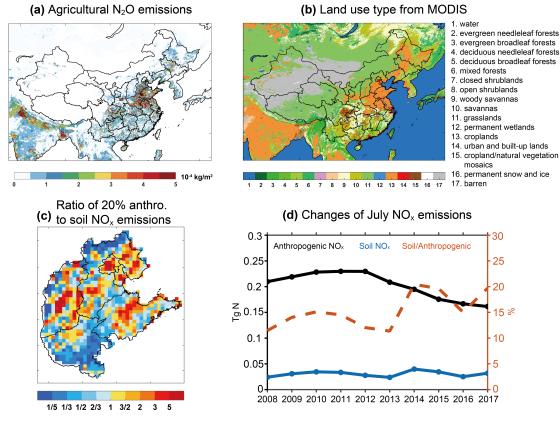
100

101 The N_{avail} from dry and wet nitrogen deposition takes the advantages of the on-line 102 deposition diagnostics in GEOS-Chem for each time step and is thus coupled to the model 103 chemistry and deposition of reactive nitrogen compounds. BDSNP assumes 60% of deposited 104 nitrogen enters the soil while the remainder is lost to runoff into waterways. $N_{avail}(t)$ from 105 deposition is then calculated following Eq. 4, where the decay constant τ is chosen to be 6 106 months based on measurements¹.

107

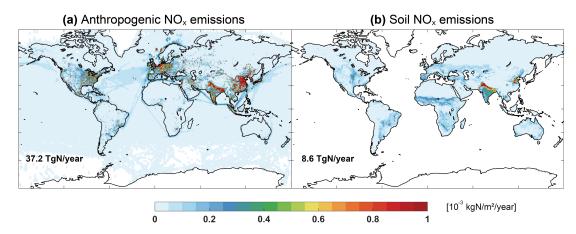
108 The biome emission factor $A'_{biome}(N_{avail})$ then measures the available nitrogen in soils 109 (natural pools) and incorporates those from fertilizer and deposition. $A'_{biome}(N_{avail})$ is 110 calculated as a function of $A_{w,biome}$ and N_{avail} :

111
$$A'_{biome}(N_{avail}) = A_{w,biome} + N_{avail} \times \overline{E}, (5)$$

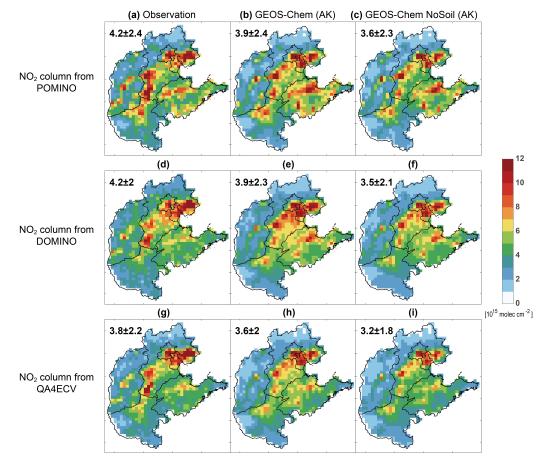

112 where $A_{w,biome}$ is the wet biome-dependent emission factors from Steinkamp and Lawrence 113 $(2011)^2$ which were derived from measurements, N_{avail} is the available nitrogen from the sum

- of fertilizer application and nitrogen deposition as described above, \overline{E} is the emission rate and 114 is scaled in BDSNP so that the total global above-soil NO_x emissions from fertilizer matches 115
- the observed estimates of 1.8 Tg N yr⁻¹ from Stehfest and Bouwman (2006)⁶. 116
- 117

The above descriptions summarize how BDSNP implemented in GEOS-Chem calculates global 118 soil NO_x emissions above soil at each model grid and time step as a function of available 119 nitrogen content and meteorological conditions. Soil NOx emissions above canopy 120 121 (*Emis_{soil_above_canopy}*) is then calculated as: 122


 $Emis_{soil_above_canopy} = Emis_{soil} \times (1 - CRF), (6)$

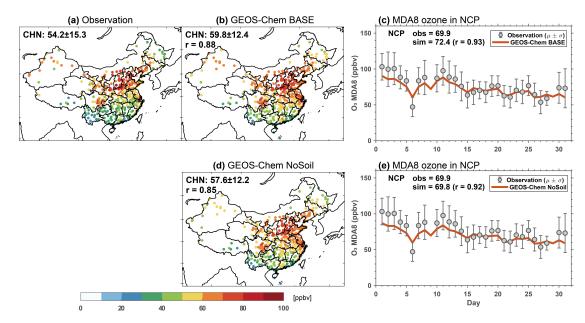
where CRF represents the canopy reduction factor that accounts for the fraction of the emitted 123 soil NO_x lost by deposition to vegetation during transport from the soil to canopy top as 124 125 described in Wang et al. $(1998)^7$.



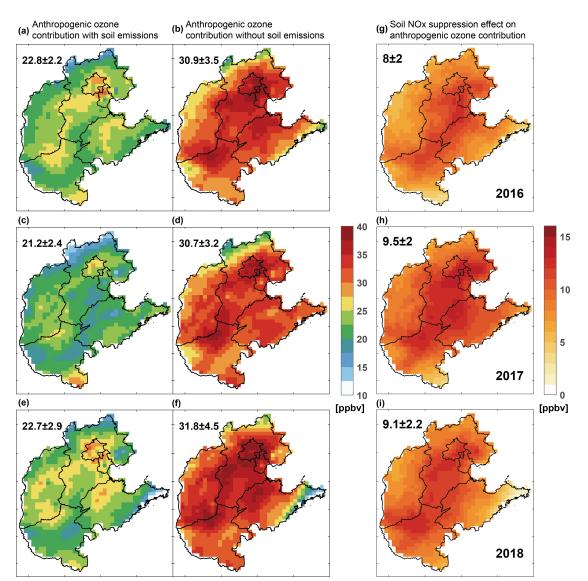
128 129 Supplementary Figure 1. Evidence of substantial soil NO_x emissions over the North China **Plain (NCP).** (a) Agriculture N_2O emissions averaged for 2010-2014 from croplands⁸. (b) Land 130 use type in July 2017 from the Terra and Aqua combined Moderate Resolution Imaging 131 Spectroradiometer (MODIS) Land Cover Climate Modeling Grid (CMG) (MCD12C1) Version 132 6 data (https://lpdaac.usgs.gov/products/mcd12c1v006/). (c) Ratio of 20% anthropogenic to 133 soil NO_x emissions over the NCP. Grids with the ratio greater than 2 are defined as high 134 135 anthropogenic NO_x emission model grids (accounting for 20% of the NCP grids), while grids with the ratio smaller than 0.5 are defined as high soil NO_x emission model grids (accounting 136 for 30% of the NCP grids). We use the emission ratio of 20% as the criteria here as the July soil 137 NO_x emissions in the NCP are about 20% of the anthropogenic NO_x emissions (Figs 1a and 1b). 138 (d) Time series of the total anthropogenic (black solid line) and soil NO_x emissions (blue solid 139 line) in the NCP in July 2008-2017. Also shown is the ratio of soil to anthropogenic NO_x 140 emissions (red dash line). 141 142

Supplementary Figure 2. Global annual (a) anthropogenic and (b) soil NO_x emissions
 averaged for 2015-2017. Anthropogenic emissions are from the CEDS_{GBD-MAPS} emission
 inventory⁹. Global soil NO_x emissions are calculated using the Berkeley-Dalhousie Soil NO_x
 Parameterization (BDSNP) archived in Weng et al. (2020)¹⁰.

150

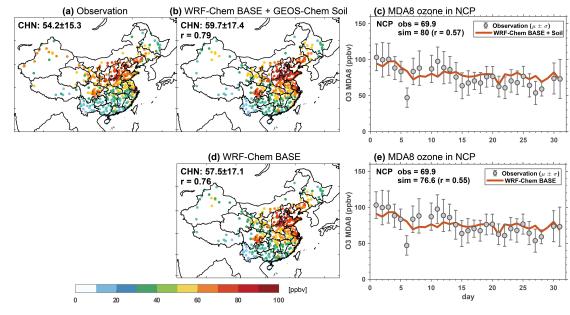

151 Supplementary Figure 3. Tropospheric NO₂ columns over the NCP from satellite products

and GEOS-Chem simulations. Panels (a), (d), and (g) show the spatial pattern of tropospheric
 NO₂ columns from the POMINO, DOMINO, and QA4ECV products, respectively. Panels (b),

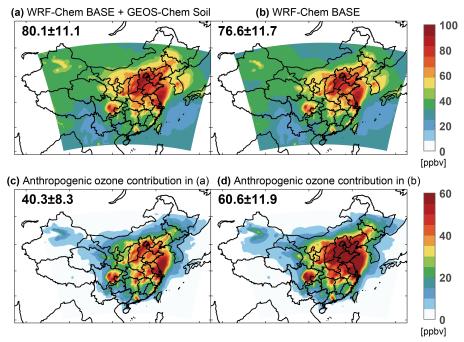

154 (e), and (h) show the results from the GEOS-Chem BASE model simulation with corresponding

averaging kernels applied. Panels (c), (f), and (i) are the same as panels (b), (e), and (h) but

- 156 from the GEOS-Chem NoSoil simulation (soil NO_x emissions are excluded from BASE). Mean
- 157 values \pm standard deviations are shown in the inset.
- 158

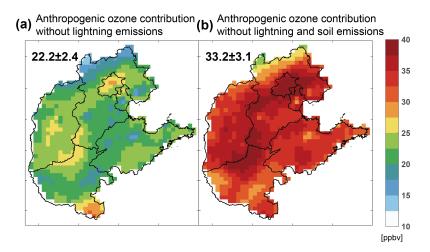


160 Supplementary Figure 4. Evaluation of the GEOS-Chem simulated surface daily maximum 8-h average (MDA8) ozone levels in Chinese urban sites in July 2017. Panel (a) 161 and (b) show the spatial distribution of (a) observed and (b) simulated mean MDA8 ozone at 162 1633 Chinese urban sites. Mean values and their correlation coefficients (r) are shown in the 163 inset. Panel (c) compares the time series of observed (grey circles, with bars representing the 164 standard deviation) and modeled ozone (red lines) averaged in the 55 NCP cities, with the 165 166 temporal correlation coefficients (r) shown in the inset. Panels (d) and (e) are the same as Panels 167 (b) and (c), but from the GEOS-Chem NoSoil simulation.

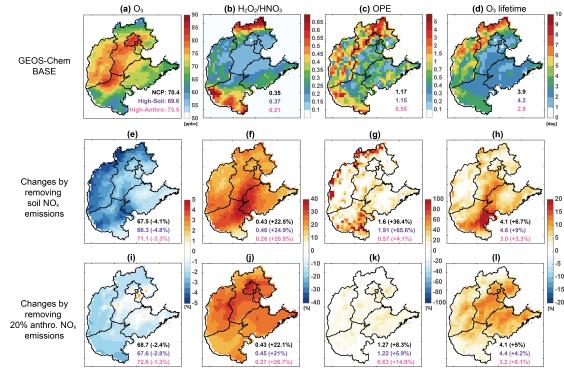


Supplementary Figure 5. Soil NO_x emission influences on estimated anthropogenic ozone contribution. Panels (a) and (b), (c) and (d), and (e) and (f) are the same as Figure 2 (c) and (d) but for July 2016, 2017, and 2018, respectively. Panels (g)-(i) show the difference in the estimated anthropogenic ozone contribution in the presence/absence of the soil NO_x emissions for individual years.

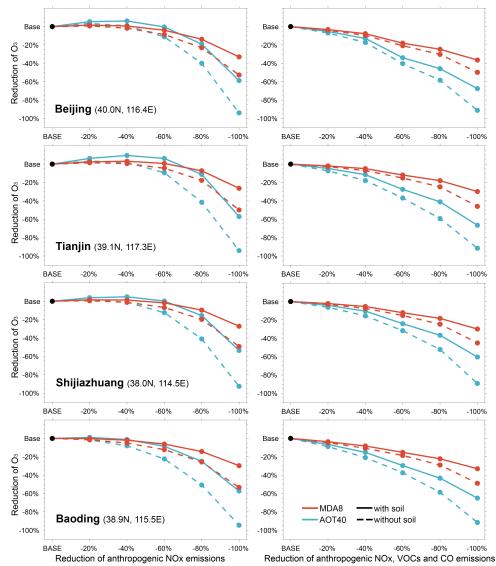
- 175
- 176



Supplementary Figure 6. Same as Figure S4, but for the WRF-Chem model.


180

Supplementary Figure 7. Soil NO_x emissions influence the estimated anthropogenic ozone contribution in the WRF-Chem model. Panels (a) and (b) show the WRF-Chem simulated MDA8 ozone with GEOS-Chem soil NO_x emissions applied and excluded, respectively. Panels (c) and (d) compare the anthropogenic ozone contributions in the WRF-Chem model in the presence and absence of soil NO_x emissions.


188 Supplementary Figure 8. Same as Figure 2 (c) and (d), but for anthropogenic ozone

189 contributions in the absence of (a) lightning emissions and (b) both lightning and soil190 emissions.

Supplementary Figure 9. Different influences of anthropogenic and soil NO_x emissions on 195 ozone formation in the NCP. Panels (a), (b), (c) (d) show the mean MDA8 ozone, H_2O_2/HNO_3 196 197 ratio, ozone production efficiency (OPE, mol mol⁻¹, defined as ozone chemical production per NO_x emitted), and ozone chemical lifetime over the NCP from the GEOS-Chem BASE 198 simulation. The mean values over all the NCP grids (black), high soil emission grids (20% 199 anthropogenic NO_x emissions/soil NO_x emissions < 0.5) (purple), and high anthropogenic 200 emission grids (20% anthropogenic NO_x emissions/soil NO_x emissions > 2) (pink) are shown 201 202 in the inset. Panels (e)-(h) are the same as panels (a)-(d), but show the relative changes if soil 203 NO_x emissions are excluded from the model. Panels (i)-(l) are the same as panels (a)-(d), but show the relative changes if 20% anthropogenic NO_x emissions are excluded from the model. 204 We use the emission ratio of 20% as the criteria here as the July soil NO_x emissions in the NCP 205 are about 20% of the anthropogenic NO_x emissions (Figs 1a and 1b). 206 207

208Reduction of anthropogenic NOx emissionsReduction of anthropogenic NOx, VOCs and CO emissions209Supplementary Figure 10. Responses of ozone MDA8 and AOT40 to the reductions of210anthropogenic NOx emissions, and the joint reductions of anthropogenic NOx/VOCs/CO211emissions. Values are GEOS-Chem model simulated ozone changes at the centers of four NCP212cities (Beijing, Tianjin, Shijiazhuang, and Baoding) in the presence (solid line) and absence213(dashed line) of soil NOx emissions.

Reference	Reference year	Above-canopy soil NO _x emissions	Description
		(Gg N a ⁻¹)	
This study	2017	770	The Berkeley-Dalhousie Soil NO _x Parameterization (BDSNP) mechanistic model as described in the text and in Hudman et al. (2012) ¹
Wang et al. (2005) ¹¹	1999	657	An empirical modeling approach of Yienger and Levy (1995) ³ (hereafter YL1995), with soil emissions parameterized by soil temperature and moisture.
Tie et al. (2006) ¹²	2004	1375	Soil emissions parameterized with an exponential dependence on soil temperature.
Yan et al. (2005) ⁴	/	480	A statistical model of soil NO _x emissions based on field measurements, considering the influences of soil organic carbon content, soil pH, land-cover type, climate condition, soil moisture, and nitrogen input.
Huang et al. (2014) ¹³	/	1226 (95% Confidence Limit: 588 to 2132)	Upscaling the field measurements of soil NO _x emissions at multiple sites to develop a national-scale inventory.
Wang et al. (2007) ¹⁴	1997– 1999	850 (East China only)	Using the YL1995 scheme in GEOS- Chem
Lin (2012) ¹⁵	2006	380 (East China only)	Top-down estimates using satellite NO ₂ retrievals

216 Supplementary Table 1. Comparison of Soil NO _x emission estimates in China.
--

219 Supplementary Table 2. Comparison of above canopy soil NO_x flux from the Berkeley-

220	Dalhousie Soil NO	Parameterization	(BDSNP)	implemented in	GEOS-Chem with	the
220	Damousic Son 100	and an an a contraction		implemented m	OLOS Chem when	unc

221 field measurements over China. Historical BDSNP soil NO_x emissions are archived in

222	Weng	ot al d	(2020).
	weng	et al.	(2020).

Location	Year	Longitude	Latitude	Land type	Flux [kg N]	ha ⁻¹ a ⁻¹]	Reference
					Observation	BDSNP	
1 Beijing	2017	116.5E	39.8N	Farmland	4.8	4.6	Wu et al. (2019) ¹⁶
2 Shandong	2017	119.0E	37.8N	Wetland	0.9	0.2	Wu et al. (2019) ¹⁶
3 Shanxi	2007-2009	110.7E	34.5N	Wheat–maize rotation field	2.4	2.3	Liu et al. (2011) ¹⁷
4 Hubei	2017	110.7E	32.1N	Farmland	0.9	0.1	Wu et al. (2019) ¹⁶
5 Jiangsu, Wuxi	2002-2003	120.5E	31.6N	Rice-wheat field	0.4	0.7	Zhou et al. (2010) ¹⁸
6 Jiangsu, Changshu	2005	120.7E	31.6N	Farmland	1.4	1.5	Liu et al. (2006) ¹⁹
7 Zhejiang	March-June 2006	120.7E	30.8N	Agricultural lands	1.7	0.6	Fang and Mu (2007) ²⁰
8 Guangdong	2005	112.5E	23.2N	Pine forest	4.0	0.6	Li et al. (2007) ²¹
9 Hainan	2009-2010	109.5E	19.5N	Orchard	0.1	0.7	Huo (2012) ²²

224	Supplementary	Table 3.	GEOS-Chem	model simulations	conducted in this study.
~~ '	~ appromented j				conducted in this study.

Simulation	Chinese An	Soil	Lightning		
	NOx	VOCs/CO	Others		
BASE	1 ^a	1	1	1	1
NoSoil	1	1	1	0	1
NoLight	1	1	1	1	0
NoSoilLight	1	1	1	0	0
NoAnthro	0	0	0	1	1
NoAnthroSoil	0	0	0	0	1
NoAnthroLight	0	0	0	1	0
NoAnthroSoilLight	0	0	0	0	0
Base_200%Soil	1	1	1	2	1
NoAnthro_200%Soil	0	0	0	2	1
0%AnthroNOx_200%Soil	0	1	1	2	1
Base_50%Soil	1	1	1	0.5	1
NoAnthro_50%Soil	0	0	0	0.5	1
0%AnthroNOx_50%Soil	0	1	1	0.5	1
Base_redAnthroNOx	0/0.2/0.4/0.6/0.8	1	1	1	1
NoSoil_redAnthroNOx	0/0.2/0.4/0.6/0.8	1	1	0	1
Base_redAnthroALL	0/0.2/0.4/0.6/0.8	0/0.2/0.4/0.6/0.8	1	1	1
NoSoil redAnthroALL	0/0.2/0.4/0.6/0.8	0/0.2/0.4/0.6/0.8	1	0	1

^avalues represent the scaling ratios applied to the 2017 emission levels, i.e., the MEIC
 anthropogenic emissions or soil/lightning emissions in the *BASE* simulation.

230 Supplementary Table 4. Responses of GEOS-Chem simulated ozone metrics to reduction

of anthropogenic NO_x, NMVOCs, and CO levels, in the presence vs. absence of soil NO_x

emissions.

Reducing NO _x emissions alone		h soil ssions		out soil ssions	Jointly reducing NO _x , NMVOCs, CO emissions		h soil ssions		out soil ssions
					MDA8 [ppbv]				
2017 level	72.4		69.8		2017 level	72.4		69.8	
20% Off	71.4	1.4%	68.0	2.6%	20% Off	69.4	4.1%	66.3	5.0%
40% Off	69.4	4.1%	64.9	7.0%	40% Off	65.9	9.0%	61.8	11.5%
60% Off	66.0	8.8%	59.7	14.5%	60% Off	61.4	15.2%	56.9	18.5%
80% Off	60.0	17.1%	50.6	27.5%	80% Off	56.2	22.4%	49.5	29.1%
100% Off	49.4	31.8%	33.0	52.7%	100% Off	48.0	33.7%	35.9	48.6%
					NDGT70 [day]				
2017 level	17.4		15.3		2017 level	17.4		15.3	
20% Off	16.6	4.6%	13.5	11.8%	20% Off	14.8	14.9%	12.1	20.9%
40% Off	14.8	14.9%	10.8	29.4%	40% Off	11.6	33.3%	8.2	46.4%
60% Off	11.5	33.9%	6.5	57.5%	60% Off	7.9	54.6%	4.0	73.9%
80% Off	7.2	58.6%	0.5	96.7%	80% Off	3.8	78.2%	0.2	98.7%
100% Off	0.9	94.8%	0.0	100.0%	100% Off	0.1	99.4%	0.0	100.0%
					AOT40 [ppbv hour	·]			
2017 level	9453		8733		2017 level	9453		8733	
20% Off	9240	2.3%	8256	5.5%	20% Off	8625	8.8%	7705	11.8%
40% Off	8736	7.6%	7380	15.5%	40% Off	7610	19.5%	6410	26.6%
60% Off	7775	17.8%	5866	32.8%	60% Off	6301	33.3%	4970	43.1%
80% Off	6071	35.8%	3346	61.7%	80% Off	4806	49.2%	2956	66.1%
100% Off	3242	65.7%	475	94.6%	100% Off	2747	70.9%	659	92.4%

Supplementary Table 5. Parameters of the logarithmic fitting function between the MDA8
ozone reduction (x, ppbv) and percentage reduction of anthropogenic emissions (y, %) as
listed in Supplementary Table 3.

	Logarith	mic fitting function:	$y=a \times \log(x+b)+c$	
	With soi	l emissions	Without s	oil emissions
Parameters	NO _x reduction alone	Joint NO _x -CO- VOCs reduction	NO _x reduction alone	Joint NO _x -CO- VOCs reductior
а	34.06	82.77	35.36	62.72
b	1.32	10.15	2.27	8.16
c	-8.99	-192.20	-29.12	-132.70
\mathbb{R}^2	>0.99	>0.99	>0.99	>0.99

241 Supplementary Table 6. WRF-Chem model configuration options.

Configuration	Schemes
Chemical initial and boundary conditions	CAM-Chem model (The Community Atmosphere Model with Chemistry) ²³
Cloud microphysics	Morrison scheme ²⁴
Longwave radiation	RRTM scheme ²⁵
Shortwave radiation	Goddard shortwave scheme ²⁶
Land surface model	Noah land surface scheme ²⁷
Planetary Boundary Layer	Yonsei University PBL scheme ²⁸
Gas phase chemistry	CBMZ scheme ²⁹
Aerosol scheme	the model for simulating aerosol interactions and chemistry (MOSAIC) for aerosol ³⁰

245 Reference 246 Hudman, R. C. et al. Steps towards a mechanistic model of global soil nitric oxide emissions: 1. 247 implementation and space based-constraints. Atmos. Chem. Phys. 12, 7779-7795 (2012). 248 Steinkamp, J. & Lawrence, M. G. Improvement and evaluation of simulated global biogenic soil 2. 249 NO emissions in an AC-GCM. Atmos. Chem. Phys. 11, 6063-6082 (2011). 250 3. Yienger, J. J., and Levy, H.: Empirical model of global soil-biogenic NOx emissions, J. Geophys. 251 Res., 100, 11447-11464, http://doi.org/10.1029/95jd00370, 1995. 252 Yan, X., Ohara, T. & Akimoto, H. Statistical modeling of global soil NOxemissions. Global 4. 253 Biogeochem. Cycles 19 (2005). 254 Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Characterizing the Spatial Patterns of 5. 255 Global Fertilizer Application and Manure Production. Earth Interactions 14, 1-22 (2010). 256 Stehfest, E. & Bouwman, L. N2O and NO emission from agricultural fields and soils under natural 6. 257 vegetation: summarizing available measurement data and modeling of global annual emissions. 258 Nutrient Cycling in Agroecosystems 74, 207-228 (2006). Wang, Y., Jacob, D. J. & Logan, J. A. Global simulation of tropospheric O3-NOx-hydrocarbon 259 7. 260 chemistry: 1. Model formulation. J. Geophys. Res. 103, 10713-10725 (1998). 261 8. Wang, Q. et al. Data-driven estimates of global nitrous oxide emissions from croplands. Natl. Sci. 262 Rev 7, 441-452 (2020). 263 9. McDuffie, E. E. et al. A global anthropogenic emission inventory of atmospheric pollutants from 264 sector- and fuel-specific sources (1970-2017): An application of the Community Emissions Data 265 System (CEDS). Earth Syst. Sci. Data (2020). 266 10. Weng, H. et al. Global high-resolution emissions of soil NOx, sea salt aerosols, and biogenic volatile 267 organic compounds. Sci Data 7, 148 (2020). 268 11. Wang, Q., Han, Z. & Higano, Y. An inventory of nitric oxide emissions from soils in China. Environ. 269 Pollut. 135, 83-90 (2005). 270 12. Tie, X., Li, G., Ying, Z., Guenther, A. & Madronich, S. Biogenic emissions of isoprenoids and NO 271 in China and comparison to anthropogenic emissions. Sci. Total Environ. 371, 238-251 (2006). 272 13. Huang, Y. & Li, D. Soil nitric oxide emissions from terrestrial ecosystems in China: a synthesis of 273 modeling and measurements. Sci. Rep. 4, 7406 (2014). 274 14. Wang, Y. et al. Seasonal variability of NOxemissions over east China constrained by satellite 275 observations: Implications for combustion and microbial sources. J. Geophys. Res. 112 (2007). 276 15. Lin, J. T. Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and 277 soil sources over East China on a high-resolution grid. Atmos. Chem. Phys. 12, 2881-2898 (2012). 278 16. Wu, D. et al. Soil HONO emissions at high moisture content are driven by microbial nitrate 279 reduction to nitrite: tackling the HONO puzzle. ISME J 13, 1688-1699, (2019). 280 17. Liu, C. et al. Effects of irrigation, fertilization and crop straw management on nitrous oxide and 281 nitric oxide emissions from a wheat-maize rotation field in northern China. Agric., Ecosyst. Environ. 282 140, 226-233 (2011). 283 18. Zhou, Z. et al. Nitric oxide emissions from rice-wheat rotation fields in eastern China: effect of 284 fertilization, soil water content, and crop residue. Plant Soil 336, 87-98 (2010). 285 19. Liu, L., Yin, B., Han, C. Effect of different basal-dressing methods on NO emission from winter 286 wheat field (in Chinese). Journal of Anhui Agri. Sci. 34, 3762-3763 (2006).

20. Fang, S. & Mu, Y. NOX fluxes from three kinds of agricultural lands in the Yangtze Delta, China.

288		Atmos. Environ. 41, 4766-4772.
289	21.	Li, D., Wang, X., Mo, J., Sheng, G. & Fu, J. Soil nitric oxide emissions from two subtropical humid
290		forests in south China. J. Geophys. Res. 112, (2007).
291	22.	Huo, M. Studies on the effects of type of N fertilizer on Carbon and Nitrogen fixization and
292		allocation of Banana Plant and Emission of N2O, NO from soil planted Banana of II Plantation (in
293		Chinese). Thesis for the master Degree in Agriculture, Hainan University, (2012)
294	23.	Lamarque, J. F. et al. CAM-chem: description and evaluation of interactive atmospheric chemistry
295		in the Community Earth System Model. Geosci. Model Dev. 5, 369-411 (2012).
296	24.	Morrison, H. & Pinto, J. O. Mesoscale Modeling of Springtime Arctic Mixed-Phase Stratiform
297		Clouds Using a New Two-Moment Bulk Microphysics Scheme. J Atmos Sci 62, 3683-3704 (2005).
298	25.	Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. & Clough, S. A. Radiative transfer for
299		inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys.
300		Res. 102, 16663-16682 (1997).
301	26.	Chou, M. D. & Suarez, M. J. An efficient thermal infrared radiation parameterization for use in
302		general circulation models. NASA Technical Memorandum 104606, Vol. 3 (1994).
303	27.	Chen, F. & Dudhia, J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-
304		NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev.
305		129 , 569-585 (2001).
306	28.	Hong, SY., Noh, Y. & Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of
307		Entrainment Processes. Mon. Weather Rev. 134, 2318-2341 (2006).
308	29.	Zaveri, R. A. & Peters, L. K. A new lumped structure photochemical mechanism for large-scale
309		applications. J. Geophys. Res. 104, 30387-30415 (1999).
310	30.	Zaveri, R. A., Easter, R. C., Fast, J. D. & Peters, L. K. Model for Simulating Aerosol Interactions
311		and Chemistry (MOSAIC). J. Geophys. Res. 113 (2008).