
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

C-Quark is a nice and new implementation for the improvment of ab-initio folding predictions. A 

relevant point is the efficacy of the new energy function which apparently allows the correct prediction 

of the structure of proteins starting from their sequence with very few homologous and with sparse 

predicted contact maps. 

 

Major observations: 

It is not perfectly clear to which extent the new energy function differs from the previous ones already 

present in QUARK. It is evident that the ne implemntation overpasses the previous one. However 

some more detials will add to the validity of the method 

Is there any other possible method to compare with? Starting from the observation that Quark is 

already top category, according to CASP benchmarks, C-Quark is only scored against Quark in present 

paper. Also this should be discussed. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The manuscript by S. M. Mortuza et al. describes a new folding method C-QUARK for protein structure 

prediction. The method is a significant extension of QUARK, an excellent software in the field. C-

QUARK extends the QUARK force field with predicted contact map and then uses the extended force 

field to guide Monte Carlo fragment assembly simulations. One of the key elements of C-QUARK is 3G 

contact potential that selects contacts predicted by multiple programs. Experimental results suggest 

that C-QUARK outperforms QUARK and CNS in ab initio protein structure prediction, especially for hard 

targets, i.e., the beta/alpha-beta proteins with complicated topologies or low Nf value. Another 

advantage of C-QUARK is its robustness to the falsely predicted contacts (and even corrects the false-

positive contacts), which is mainly due to the complementation between contacts and the QUARK 

force field. I also appreciate the failure analysis of C-QUARK, which is very interesting and instructive 

for further improvement. 

 

Major comments: 

1. The comparison is not enough to show the advantage of C-QUARK over other contact/distance-

based methods. The authors shall compare their method with advanced contact-based approaches, 

such as AlphaFold and trRosetta. 

2. The construction of the benchmark dataset (lines 95-97) is not very clear. Are these 247 test 

proteins collected in a fair way? Are they already in the training set of the used contact predictors 

(e.g. ResPRE and DeepCov)? The authors shall clearly indicate the potential overlap between test and 

training sets for all used contact predictors. 

3. The performance for free-modeling targets is ambiguous. The authors shall evaluate CASP13 FM, 

FM/TBM, and TBM-hard targets separately. 

4. The comparisons over CASP10-12 targets are not very fair. The authors use newer sequence and 

structure databases, thus obtain significantly better contacts than other predictors. It is recommended 

to remove these comparisons. 

By the way, are these CASP10-12 targets excluded from the training set for all used contact 

predictors? 

5. It is interesting to know how fragments affect performance as fragments key parts of C-QUARK. 

Although fragment-assembly has been shown successfully in QUARK, it is expected to show the 

necessity of fragments when high-quality contacts are given. I recommend the authors to carry out 

the following experiments: 

a. To show the effects of fragments in the score function, the author might compare C-QUARK with a 

baseline model that discards all fragment-related energy items (e.g. fragment-based distance profile) 



in the C-QUARK force field. 

b. To show the effects of fragments in the optimization method, the author might compare C-QUARK 

with a fragment-free optimization method, such as gradient descent (as the contact-map energy 

function is differentiable). 

6. It is hard to judge the advantage of C-QUARK when lacking homologous sequences. For the 59 

targets with low accuracy contacts (line 254-263), the authors compared C-QUARK with CNS. 

However, even if the authors have provided case studies, it is still not clear whether C-QUARK could 

perform better than QUARK with low-quality contacts. The authors shall explicitly show the 

performance of QUARK over these 59 targets. 

7. The performance of CNS is inconsistent with that of RaptorX, which uses CNS to construct 

prediction models. The authors showed C-QUARK performs better than CNS (0.606 vs 0.530 in TM-

score); however, C-QUARK didn’t show such a superiority over RaptorX (51.396 vs 49.457 in 

GDT_TS). An in-depth examination of this issue is expected. 

8. The 3G contact potential term (Eq. 1) is the key element of C-QUARK; however, this term seems ad 

hoc. What are the intuition and physics underlying this term? 

9. The authors stated that besides 3G contact potential, another key contribution to the success of C-

QUARK is the effective fragment assembly simulations. Is there any significant difference between the 

fragment assembly strategies used by QUARK and C-QUARK? 

 

Minor comments: 

1. Why only single-domain proteins are chosen? Can C-QUARK build structures for multi-domain 

proteins? Further experiments on these proteins will be very instructive. 



Response to Reviewer #1 
 

We very much appreciate the comments and suggestions from the Reviewer, which we 

found very helpful for improving the quality of the manuscript. The major concerns from 

the Reviewer were regarding details of the C-QUARK pipeline and comparison of C-

QUARK with more methods. In the revision, we have added significantly more details in 

the methods section and selected more contact/distance-based folding methods to compare 

C-QUARK to. In the following, we include point-by-point replies to the comments of the 

Reviewer, where all changes have been highlighted in yellow in the manuscript. 

 

1. The Reviewer commented: 

 
C-Quark is a nice and new implementation for the improvment of ab-initio folding 

predictions. A relevant point is the efficacy of the new energy function which apparently 

allows the correct prediction of the structure of proteins starting from their sequence 

with very few homologous and with sparse predicted contact maps. 

 

We appreciate the positive comments from the Reviewer on the work. 

 

 

2. The Reviewer commented: 

 
Major observations: 

It is not perfectly clear to which extent the new energy function differs from the previous 

ones already present in QUARK. It is evident that the ne implemntation overpasses the 

previous one. However some more detials will add to the validity of the method. 

 

Thank you for the question and suggestion. The C-QUARK force field contains twelve 

energy terms as described in Eq. S2 in Text S3. While the first ten energy terms in Eq. S2 

are extended from the QUARK force field, the major new term accounts for deep-learning 

contact-map restraints and is defined by 3-gradient (3G) potential. Besides this 3G potential, 

we also added a new energy term, which accounts for the distances between adjacent Cα 

atoms (𝐸𝑐𝛼 in Eq. S2 and Eq. S3), in order to penalize chain breaking, i.e., with adjacent 

residue pairs with a Cα-Cα distance > 4Å, as we found that this happens more often after 

the introduction of contact-maps. Finally, all the parameters and weight factors have been 

re-balanced and optimized after the introduction of the new contact maps.  

 

To clarify the differences in the energy terms, we have partly rewritten the “C-QUARK 

force field” section in page 11-12 of the Main Text, and Text S3 in the SI entitled “Text 

S3. C-QUARK force field used to guide the REMC simulations” as following: 

 

Main Text: 
 

C-QUARK force field. The C-QUARK force field contains twelve energy terms as 

described in Eq. S2 in Text S3. While most of the energy terms were extended from the 

QUARK force field with appropriate re-parameterization, the major new term accounts for 

the predicted contact-map restraints and is defined with a 3-gradient (3G) form (Fig. S17): 



𝐸𝑐𝑜𝑛(𝑑𝑖𝑗) =
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where 𝑑𝑖𝑗 is the 𝐶𝛽-distance between the residue pair (i, j). The depth of the potential, 𝑈𝑖𝑗, 

is proportional to the confidence score of the contact prediction and calculated by Eq. S4 

in Text S4.  

Overall, the 3G potential contains a negative well at an 8 Å cutoff, with a strong force 

from 8 Å to 𝐷 (=8 Å + 𝑑𝑏), followed by a weaker force from 𝐷 to 80 Å being introduced 

to push the target residue pairs towards the well when they are a long distance apart (Fig. 

S17). Here, the gradient width (𝑑𝑏) of the contact well is the only free parameter of the 3G 

potential which depends on the protein size and determines the convergence speed and 

satisfaction rate of the contact-maps in combination with the inherent QUARK potential. 

As shown in Table S15, 𝑑𝑏 is typically narrow, e.g., 6 Å, when the length of the target is 

relatively small, e.g., < 100. On the other hand, the gradient width increases to 12 Å when 

the length is >200, since simulations with larger size proteins are more difficult to converge 

and C-QUARK needs to use a wider well to draw the candidate residue pairs that are further 

apart in distance to the well smoothly and bring the residues pairs within 8 Å quickly. It is 

important that Eq. 1 is designed in a way that the potential curve is continuous and smooth 

(with 𝜕𝐸/𝜕𝑑 = 0) at all three transition points of 𝑑𝑖𝑗 = 8, 𝐷 and 80 Å, so that the contact 

restraints can be implemented smoothly without singularities. Furthermore, since contact 

prediction can only tell whether the distance between a residue pair i-j is below 8 Å or not, 

we designed the 3G potential as a constant when the distance is < 8 Å. As almost all of the 

residue-residue distances in a normal size protein are lower than 80 Å, the potential is also 

designed as flat beyond the maximal distance threshold (80 Å). However, between 8 Å and 

80 Å, we set the potential as two regions split at the transition point (𝑑𝑖𝑗 = 𝐷). In the region 

above D, a relatively weaker force is used to avoid structural overpacking due to false 

positive contact predictions, while in the region below D, a stronger force is used to push 

contact restraints quickly satisfied since in this region the contact accuracy of the target 

residue pairs is supposed to be higher than that in the longer-distance regions (-because 

most of the adjacent residue pairs in the structure decoys are supposed to be more consistent 

with the inherent QUARK potential after the equilibrium of Monte Carlo simulations). 
Two trigonometric function style potentials are selected in the two regions to connect the 

flat areas, since trigonometric functions are simple, continuous, smooth, and differentiable.  

Besides the newly developed contact energy term (3G potential), the other energy 

terms have also been adjusted to maximize the folding performance of the 243 training 

proteins. For instance, the weight (𝑤7) of the distance-profile energy term (𝐸𝑑𝑝 in Eq. S2) 

was increased from 0.60 to 3.00 in the C-QUARK force field to allow the fragment-based 

potential to help filter out false positive contacts. Furthermore, we added a new energy 

term, which accounts for the distance between adjacent Cα atoms (𝐸𝑐𝛼 in Eq. S2 and Eq. 

S3), to penalize adjacent residue pair with Cα-Cα distances > 4Å. This term is specifically 

designed to penalize backbone breaks that can occur after fragment movements, as a 

stronger trend of bond-breaking was seen after the introduction of contact predictions in 

C-QUARK. 

 

Text S3: 
  

Text S3. C-QUARK force field used to guide the REMC simulations 

In order to guide its REMC simulations, C-QUARK uses the following force field that 

calculates the total energy of a conformation by summing up 12 energy terms12: 



𝐸𝑡𝑜𝑡 = 𝑤1𝐸𝑝𝑟𝑚 + 𝑤2𝐸𝑝𝑟𝑠 + 𝑤3𝐸𝑒𝑣 + 𝑤4𝐸ℎ𝑏 + 𝑤5𝐸𝑠𝑎 + 𝑤6𝐸𝑑ℎ + 𝑤7𝐸𝑑𝑝 + 𝑤8𝐸𝑟𝑔 +

𝑤9𝐸𝑏𝑎𝑏 + 𝑤10𝐸ℎ𝑝 + 𝑤11𝐸𝑐𝛼 +𝑤12𝐸𝑐𝑜𝑛     (S2) 

Here, the terms account for the backbone atomic pairwise potential (𝐸𝑝𝑟𝑚), side-chain 

center pairwise potential (𝐸𝑝𝑟𝑠), excluded volume (𝐸𝑒𝑣), hydrogen bonding (𝐸ℎ𝑏), solvent 

accessibility (𝐸𝑠𝑎), backbone torsion angles (𝐸𝑑ℎ), fragment-based distance profiles (𝐸𝑑𝑝), 

radius of gyration (𝐸𝑟𝑔), strand-helix-strand packing (𝐸𝑏𝑎𝑏), helix packing (𝐸ℎ𝑝), distance 

between adjacent Cα atoms (𝐸𝑐𝛼), and the contact potential (𝐸𝑐𝑜𝑛). While the first ten terms 

are used in both QUARK and C-QUARK, the final term, 𝐸𝑐𝑜𝑛, is unique to the C-QUARK 

force field and accounts for the contact restraints from the predicted contacts (see Eq. 1 

and Fig. S17). In addition to the contact potential term, the 11th energy term, which factors 

in the distance between adjacent Cα atoms (𝐸𝑐𝛼), is also a newly added term and takes the 

following form: 

𝐸𝑐𝛼 = ∑ 𝐼[𝑑𝑖,𝑖+1 > 4](𝑑𝑖,𝑖+1 − 4)
2𝐿−1

𝑖=1    (S3) 

where 𝑑𝑖,𝑖+1  is the Cα-Cα distance between residues i and i+1, and I[ ] is the Iverson 

bracket, i.e., 𝐼[𝑑𝑖,𝑖+1 > 4]=1 if 𝑑𝑖,𝑖+1 > 4 , and 0 otherwise. This term is designed to 

penalize backbone breaking with adjacent residue pairs with Cα-Cα distances > 4Å which 

can occur after fragment movements. All the weighting parameters in C-QUARK were re-

tuned on the training protein set listed in Dataset S1, to appropriately balance the inherent 

force field with the contact restraints by maximizing the TM-score of the predicted models. 

As a result, most of the weighting parameters in 𝑤1−10 are similar to what was used in 

QUARK12 despite the use of different training proteins, showing the robustness of the 

QUARK force field. It is interesting that the weight (𝑤7) of the distance-profile energy 

term increased from 0.60 to 3.00 in the C-QUARK force field to enlarge the effect of 

filtering out false positive contacts. The last parameter 𝑤12 is equal to 0.426 when Nf >50, 

and 0.355 otherwise. 

 

 

3. The Reviewer commented: 

 
Is there any other possible method to compare with? Starting from the observation that 

Quark is already top category, according to CASP benchmarks, C-Quark is only scored 

against Quark in present paper. Also this should be discussed. 

 

Thank you for the suggestion. In the revised manuscript, in addition to QUARK we now 

made comparisons of C-QUARK with three contact/distance-based folding methods, 

including CNS, DConStruct and trRosetta (using only contact as restraints). Overall, the 

results show that C-QUARK significantly outperforms any of these state-of-the-art control 

methods. These results are summarized in Fig. 4 and Fig. S9, and Tables S5-S7, and 

discussed in Page 6-8 of Main Text: 
 

To further quantitatively examine the importance of the comprehensive force field, we 

compared the performance of C-QUARK with three other programs that build structural 

models mainly based on predicted contacts or distances, including CNS44, DConStruct45 

and trRosetta7. Here, CNS constructs protein structures primarily based on the satisfaction 

of distance geometries. The DConStruct algorithm is similar to CNS, but also considers 

idealized secondary structure geometries and produces models using the Limited-memory 

Broyden–Fletcher–Goldfarb–Shanno46 (L-BFGS) procedure found in the MODELLER 

package47. trRosetta builds the model with two steps. The first is on L-BFGS energy 

minimization with a restrained version of Rosetta, where the restraints contain inter-residue 

distance and orientation distributions from deep residual neural network predictions. In the 

second step, statistical energy functions are added to the force field to relax the model. 



Here, we implement CNS through the CONFOLD package48. The input features for CNS 

and DConStruct are built on the same set of contact and secondary structure predictions as 

what are used in C-QUARK. Since trRosetta generates restraints on its own, we provided 

the same MSAs but used only the contact restraints (i.e., distances where the peak of the 

predicted distance distribution was lower than 8Å or the sum of probabilities below 8Å 

was greater than 0.5), to provide a fair comparison with C-QUARK. 

The modeling results of C-QUARK, CNS and DConStruct on the 247 test proteins are 

summarized in Table S5, where the average TM-score of the first models by C-QUARK 

(0.606) was 14% and 16% higher than that of CNS (0.530) and DConStruct (0.524), 

respectively; the differences corresponded to p-values of 3.5 × 10−20 and 1.5 × 10−25 in 

Student’s t-tests. Figs. S9A and S9B present a head-to-head TM-score comparison between 

the methods, where the first models from C-QUARK had a higher TM-score than CNS 

(DConStruct) in 199 (198) out of the 247 cases, while the CNS (DConStruct) models did 

so for only 48 (49) of the cases. Notably, out of the 59 targets which had either a low Nf  

(<15) or a low contact-map accuracy (<30%), C-QUARK generated correct folds for 24 

cases (i.e., 41% of the cases), while CNS (DConStruct) obtained correct folds for only 4 

(4) of the cases (Table S6). Since contact prediction with low Nf MSAs has been an 

outstanding bottleneck in contact-guided ab initio modeling11, such a significantly 

increased success rate of C-QUARK in generating correct models for these challenging 

targets is particularly encouraging. Meanwhile, the TM-score of C-QUARK (0.428) for 

these 59 targets was also significantly (p-value=1.36 × 10−6) higher than that of QUARK 

(0.348), showing that contact-map predictions are still helpful for folding despite the 

relatively lower accuracy (Fig. S9C and Table S6). 

Since the same contact-maps were used by all three programs, it is of interest to 

examine why C-QUARK could create models with obviously better quality, particularly 

for the cases with low Nf and low contact prediction accuracy. Here, we used models 

produced by C-QUARK and CNS to highlight the reasons. Figs. 4A and 4D show an 

example from 3teqB, an alpha-protein packed with two anti-parallel, long helices. The Nf 

value for this target was relatively low (=12.2), which resulted in the contact-map (red 

circles in Fig. 4D) being comprised of many falsely predicted contacts. Overall, the contact 

prediction accuracy was 0.273 and 0.213 for long- and all-range contacts, respectively. 

With the help of the SSE prediction and pair-wise atomic and helix packing interactions 

contained in the inherent C-QUARK force field, C-QUARK eliminated the majority of the 

false-positive contacts during the simulations, as observed in the contact-map of the final 

model in Fig. 4D (blue circles in the left triangle) with accuracies of 0.667 and 0.500 for 

long- and all-range contacts, respectively. As a result, C-QUARK generated a model with 

a similar fold to the native of a TM-score of 0.658, shown in blue in Fig. 4A. On the other 

hand, the helices in the CNS model (shown in green in Fig. 4A) were bent in an unrealistic 

fashion due to the satisfaction of false-positive contacts (blue circles in the right triangle of 

Fig. 4D), resulting in a model with a low TM-score (0.289). It is noted that without contact 

information, C-QUARK would not be able to obtain a correct model as the TM-score of 

the QUARK model was only 0.44 for this target, demonstrating again the importance of 

the complementarity of the QUARK force field and the contact restraints even at a low 

accuracy. 

Figs. 4B and 4E show another example from 1zuuA, which is a small beta-protein 

with 56 residues. Here, the Nf was very high (=1504.9), and hence the contact prediction 

accuracy for short-, medium, long- and all-range contacts was relatively high with 

accuracies of 0.6, 0.625, 0.659 and 0.627, respectively. The accuracies of the contact-maps 

derived from the final C-QUARK models increased further to 0.897, 0.836, 0.775 and 

0.831, respectively, due to the removal of false positive contacts that clashed with the 

pairwise atomic interactions and hydrogen bonding between the beta-strands that formed 

the beta-sheets. As a result, the TM-score of the C-QUARK model for this target was 

0.808. On the other hand, the TM-score of the CNS model was only 0.271, mainly due to 

false-positive contacts (highlighted by the dashed circles in Fig. 4E) that were correctly 

filtered out by C-QUARK but that incorrectly guided the CNS modeling. 



One of the hallmarks of C-QUARK is that even if contact restraints are not present for 

some region of the query, the inherent QUARK potential can often help compensate for 

their absence and create correct full-length models. Fig. 4C shows such an example from 

4yy2A, for which the native contacts between the N- and C-terminal helices (HN and HC) 

were not predicted (i.e., the red circles are largely absent in the rectangles in Fig. 4F). 

Additionally, due to the low Nf (=0.402), numerous false positive contacts were scattered 

around the contact-map. Despite the lack of contacts in the helix regions and the use of 

noisy contact restraints, the inherent QUARK potential correctly captured the interaction 

of the terminal helices and generated a model with a correct fold and a high TM-score of 

0.813. On the other hand, CNS generated a completely wrong model with a TM-

score=0.290 by satisfying too many of the false positive contacts. In particular, due to the 

missing HN-HC contact restraints, the N-terminal helix was positioned far away from the 

C-terminal helix in the CNS model.  

It is important to note that in the construction of our test dataset, homologous entries 

with sequence identities >30% to the training proteins of C-QUARK were filtered out. 

However, sequences homologous to the training sets of ResPRE and other third-party 

contact predictors, whose contact predictions are used by C-QUARK, were not particularly 

excluded from our test dataset. One reason is that the training sets for contact predictors 

are very large (e.g., the ResPRE training set included about 5,600 high-resolution protein 

structures and DeepContact utilized around 14,000 proteins from SCOPe 2.06 to train the 

method, etc.,), to facilitate effective deep-learning training. Thus, the filtering of 

homologous proteins from these training sets would result in an insufficient number of 

proteins in the test dataset. Furthermore, C-QUARK, CNS and DConStruct utilized the 

same set of contacts, thus we did not specifically filter out the homologous proteins in the 

test set. However, since trRosetta generates spatial restraints using its own deep-learning 

predictor, to provide a fair comparison, we constructed a new test dataset by removing 

proteins with a 50% sequence identity to not only the training sets of all the contact 

predictors used by C-QUARK, but also the training set of trRosetta. This resulted in only 

57 proteins being left in our new test dataset. Table S7 shows the results for the modeling 

performance of C-QUARK, CNS, DConStruct and trRosetta on this reduced test set. The 

TM-score of the C-QUARK models on this reduced dataset was slightly lower than that of 

the entire test set (compared to Table S6), probably due to the fact that this sub-dataset is 

non-redundancy with the training set thus more difficult for contact prediction as the 

average accuracy was also reduced for CNS and DConStruct. Nevertheless, C-QUARK 

still significantly outperformed all the other control methods on this reduced dataset. It is 

notable that C-QUARK was 13.4% better than trRosetta, which was modified to only use 

predicted contacts derived from the distance predictions as restraints, in terms of the 

average TM-score of the first models (Fig S9D). Despite the relax step of trRosetta also 

used physical and knowledge-based potential, the global fold was primarily decided by the 

energy minimization step that only used predicted restraints. These results again 

demonstrate that C-QUARK outperforms other contact-based folding programs, mainly 

due to the help from its comprehensive force field used in the structural assembly 

simulations. 

 

We also provided more specific comparisons between C-QUARK with RaptorX-

DeepModeller, RaptorX-Contact, RaptorX-TBM, BAKER-ROSETTASERVER and 

Zhou-SPOT-3D servers on 64 CASP13 targets, results of which are summarized in Table 

S8. The revised text is in page 8-9 of Main Text. 

 
Performance of C-QUARK on CASP13 targets 

Not all methods have standalone packages available. To compare C-QUARK directly 

with other state-of-the-art structure prediction programs, C-QUARK participated in the 

13th Critical Assessment of Structure Prediction (CASP13) experiment as “QUARK” 

server. Here, we analyzed the performance of C-QUARK on the 64 CASP13 FM, 

FM/TBM and TBM-hard targets (Dataset S3 in SI). By definition, these targets are 



challenging since homologous templates are absent or difficult to detect from the PDB 

library. Table S8 lists the average TM-scores and GDT_TS scores of the first predicted 

models by C-QUARK and the other best five server groups in the CASP13 experiment. 

Here, GDT_TS is the standard score metric used by the CASP assessors. We collected the 

models directly from the “QUARK” server which ran C-QUARK. 

This dataset should provide a relatively fairer test with state-of-the-art structure 

modeling programs since most programs used sequence-based contact-maps and all the 

programs had access to the most recent sequence databases released before CASP13. Based 

on the experimental structures of 64 CASP13 targets, the average GDT_TS of C-QUARK 

was higher than that of all other participating servers with p-values <0.05 as calculated by 

Student’s t-tests (Table S8). Especially in the TBM-hard and FM categories, C-QUARK 

was 4% and 5% better than the second-best method, respectively. For FM/TBM targets, 

BAKER-ROSETTASERVER (60.58) was slightly better than C-QUARK (58.94), but the 

difference was not statistical significantly. Some programs, such as the RaptorX servers, 

also used sequence-based distance map predictions50. It is notable that RaptorX-Contact 

predicted the residue-residue distances, and then fed the restraints into CNS to reconstruct 

the 3D models. The average GDT_TS score of the C-QUARK first models (52.09) was 

still 12% higher than that of the RaptorX-Contact server (46.56). This gap was slightly 

smaller than the difference between C-QUARK and CNS in our benchmark test set (Table 

S5, where C-QUARK was 16% better than CNS), which is probably because, compared to 

contact prediction, additional information can be extracted from distance predictions to 

help guide the CNS modeling in RaptorX-contact. In Fig. S12, we highlight one of the FM 

targets, T0980s1-D1, which contains 105 residues with a 5-strand fold packed with an 

opposite helix. The TM-score of the first C-QUARK model was 0.540 for this domain, 

while the models generated by all other servers had TM-scores below 0.5. The poorer 

prediction for this target by other programs may be partially attributed to a low Nf value 

(8.2) and, subsequently, low accuracy in predicted contacts with numerous false positives 

(highlighted by the rectangles in Fig. S12B). On the other hand, most of the falsely 

predicted contacts were avoided in the C-QUARK models, due to the complementary effect 

of the inherent knowledge-based force field and the fragment-based distance profiles, 

which helped to correctly fold this target. 

 

  



Response to Reviewer #2 
 

We very much appreciate the comments and suggestions from the Reviewer, which points 

out multiple unclear places of the current manuscript, that help to significantly improve the 

quality and description of the manuscript. The major concerns from this Reviewer are on 

(i) the way of benchmark test set construction; (ii) the unclear roles played by fragment 

modules in C-QUARK; (iii) lack of comparisons with some of the most state-of-the-art 

methods; (iv) outdated results from early CASP datasets; (v) lack of rational of 3D contact 

potentials; and (vi) lack of results on multi-domain proteins. We carefully addressed the 

Reviewer’s comments and suggestions by adding and discussing additional experimental 

data in the revised manuscript. Below, we include point-by-point replies to the comments 

of the Reviewer, where all changes have been highlighted in yellow in the manuscript. 

 

1. The Reviewer commented: 

 
The manuscript by S. M. Mortuza et al. describes a new folding method C-QUARK for 

protein structure prediction. The method is a significant extension of QUARK, an 

excellent software in the field. C-QUARK extends the QUARK force field with predicted 

contact map and then uses the extended force field to guide Monte Carlo fragment 

assembly simulations. One of the key elements of C-QUARK is 3G contact potential that 

selects contacts predicted by multiple programs. Experimental results suggest that C-

QUARK outperforms QUARK and CNS in ab initio protein structure prediction, 

especially for hard targets, i.e., the beta/alpha-beta proteins with complicated topologies 

or low Nf value. Another advantage of C-QUARK is its robustness to the falsely predicted 

contacts (and even corrects the false-positive contacts), which is mainly due to the 

complementation between contacts and the QUARK force field. I also appreciate the 

failure analysis of C-QUARK, which is very interesting and instructive for further 

improvement. 

 

We appreciate the positive comments of the Reviewer on the work, and the nice summary 

of the strength of the C-QUARK algorithm. 

 

 

2. The Reviewer commented: 

 
Major comments:  

1. The comparison is not enough to show the advantage of C-QUARK over other 

contact/distance-based methods. The authors shall compare their method with advanced 

contact-based approaches, such as AlphaFold and trRosetta. 

 

We thank the Reviewer’s suggestion. Following this, we first added a comparison between 

C-QUARK, AlphaFold and trRosetta, which focused on 64 CASP13 targets since there is 

no standalone package or server for AlphaFold. Since trRosetta did not participate in 

CASP13 (developed after CASP13), we run trRosetta standalone package using the default 

setting with the same MSA that we used for C-QUARK during CASP13. Here, we were 

unable to use the MSAs from the trRosetta paper, as we could not obtain the scripts or 

databases of trRosetta for MSA generation, and the MSAs provided on the trRosetta 

website are only for 25 CASP targets, furthermore their MSA collected from a sequence 

database constructed after CASP13.  



 

The comparison results between C-QUARK and AlphFold and trRosetta are summarized 

in Table S9. Overall, although C-QUARK outperformed trRosetta and AlphaFold for the 

TBM-hard targets, the TM-score of C-QUARK was lower than the latter two on FM/TBM 

and FM targets, which resulted in a lower average TM-score on all 64 targets. These results 

are discussed in page 10 of the Main Text: 

 
Third, although C-QUARK outperformed most of the servers, including those using 

distance restraints, in CASP13, the most recent progress of the field showed advancement 

in modeling accuracy using deep-learning distance, inter-residue torsion angle and 

hydrogen bonding restraints for ab initio structure predictions6, 7, 31, 52. Due to the limited 

information provided by the binary distance classification in contact prediction, folding 

programs that solely use contact restraints may not be comparable with the most advanced 

programs that combine contact restraints with those new categories of spatial restraints (see 

the comparisons between C-QUARK, AlphaFold and trRosetta in Table S9 on the 64 

CASP13 FM targets). 

 

Table S9: The average TM-scores and GDT_TS scores of the first models produced by C-

QUARK, AlphaFold and trRosetta on the CASP13 targets in the FM, FM/TBM and TBM-

hard categories. The values in the parentheses are the p-values calculated by Student’s t-

tests between C-QUARK and the other control programs. 

 
Target 

type 
Methods 

Average 

TM-score 
Average GDT_TS 

All 

(64 targets) 

C-QUARK 0.588 52.09 

AlphaFold 0.648 (1.00 × 10+0) 58.43 (1.00 × 10+0) 

trRosetta 0.619 (9.99 × 10−1) 55.34 (9.97 × 10−1) 

TBM-hard 

(21 targets) 

C-QUARK 0.720 61.03 

AlphaFold 0.710 (5.41 × 10−1) 61.80 (5.90 × 10−1) 

trRosetta 0.680 (1.92 × 10−1) 57.93 (1.64 × 10−1) 

FM/TBM 

(12 targets) 

C-QUARK 0.598 58.94 

AlphaFold 0.695 (9.98 × 10−1) 68.22 (9.89 × 10−1) 

trRosetta 0.622 (7.50 × 10−1) 61.56 (8.03 × 10−1) 

FM 

(31 targets) 

C-QUARK 0.495 43.38 

AlphaFold 0.589 (1.00 × 10+0) 52.35 (1.00 × 10+0) 

trRosetta 0.577 (1.00 × 10+0) 51.17 (1.00 × 10+0) 

 

This result is understandable because both AlphaFold and trRosetta (developed after 

CASP13) used distance prediction instead of contact prediction as restraints and predicted 

distances can provide additional information beyond the contact prediction. Additionally, 

AlphaFold is a human group in CASP13 while C-QUARK is an automated server group. 

The human group has 21 days for modeling one protein while server group only 72 hours. 

Consider the resources used by AlphaFold, these may not be an entirely fair comparison. 

 

Nevertheless, given the special role of contact-map prediction in protein folding and the 

fact that most of the predicted distances and orientations are on the residue pairs with short 

distance (i.e., in contact), we believe it is of critical importance to study and benchmark 

separately the impact of contact-maps on the problem of ab initio protein structure 

prediction, and systematically examine the critical weakness and strength of deep-learning 



contact restraints when coupled with the advanced protein folding simulation algorithms. 

Thus, we further compared C-QUARK with trRosetta that only used contact-like distances, 

i.e., the distance restraints with a peak of predicted distance distribution lower than 8Å or 

the sum probabilities below 8Å is greater than 0.5. Furthermore, we make a comparison 

with other two contact-based folding programs, CNS in CONFOLD package and 

DConStruct. Overall, C-QUARK outperforms all three contact-based modeling methods, 

showing the advantage of optimized combination of contact restraints with the advanced 

folding simulations in C-QUARK. These results are summarized in Fig. 4 and Fig. S9, and 

Tables S5-S7, and discussed in Page 6-8 of Main Text: 
 

To further quantitatively examine the importance of the comprehensive force field, we 

compared the performance of C-QUARK with three other programs that build structural 

models mainly based on predicted contacts or distances, including CNS44, DConStruct45 

and trRosetta7. Here, CNS constructs protein structures primarily based on the satisfaction 

of distance geometries. The DConStruct algorithm is similar to CNS, but also considers 

idealized secondary structure geometries and produces models using the Limited-memory 

Broyden–Fletcher–Goldfarb–Shanno46 (L-BFGS) procedure found in the MODELLER 

package47. trRosetta builds the model with two steps. The first is on L-BFGS energy 

minimization with a restrained version of Rosetta, where the restraints contain inter-residue 

distance and orientation distributions from deep residual neural network predictions. In the 

second step, statistical energy functions are added to the force field to relax the model. 

Here, we implement CNS through the CONFOLD package48. The input features for CNS 

and DConStruct are built on the same set of contact and secondary structure predictions as 

what are used in C-QUARK. Since trRosetta generates restraints on its own, we provided 

the same MSAs but used only the contact restraints (i.e., distances where the peak of the 

predicted distance distribution was lower than 8Å or the sum of probabilities below 8Å 

was greater than 0.5), to provide a fair comparison with C-QUARK. 

The modeling results of C-QUARK, CNS and DConStruct on the 247 test proteins are 

summarized in Table S5, where the average TM-score of the first models by C-QUARK 

(0.606) was 14% and 16% higher than that of CNS (0.530) and DConStruct (0.524), 

respectively; the differences corresponded to p-values of 3.5 × 10−20 and 1.5 × 10−25 in 

Student’s t-tests. Figs. S9A and S9B present a head-to-head TM-score comparison between 

the methods, where the first models from C-QUARK had a higher TM-score than CNS 

(DConStruct) in 199 (198) out of the 247 cases, while the CNS (DConStruct) models did 

so for only 48 (49) of the cases. Notably, out of the 59 targets which had either a low Nf  

(<15) or a low contact-map accuracy (<30%), C-QUARK generated correct folds for 24 

cases (i.e., 41% of the cases), while CNS (DConStruct) obtained correct folds for only 4 

(4) of the cases (Table S6). Since contact prediction with low Nf MSAs has been an 

outstanding bottleneck in contact-guided ab initio modeling11, such a significantly 

increased success rate of C-QUARK in generating correct models for these challenging 

targets is particularly encouraging. Meanwhile, the TM-score of C-QUARK (0.428) for 

these 59 targets was also significantly (p-value=1.36 × 10−6) higher than that of QUARK 

(0.348), showing that contact-map predictions are still helpful for folding despite the 

relatively lower accuracy (Fig. S9C and Table S6). 

Since the same contact-maps were used by all three programs, it is of interest to 

examine why C-QUARK could create models with obviously better quality, particularly 

for the cases with low Nf and low contact prediction accuracy. Here, we used models 

produced by C-QUARK and CNS to highlight the reasons. Figs. 4A and 4D show an 

example from 3teqB, an alpha-protein packed with two anti-parallel, long helices. The Nf 

value for this target was relatively low (=12.2), which resulted in the contact-map (red 

circles in Fig. 4D) being comprised of many falsely predicted contacts. Overall, the contact 

prediction accuracy was 0.273 and 0.213 for long- and all-range contacts, respectively. 

With the help of the SSE prediction and pair-wise atomic and helix packing interactions 

contained in the inherent C-QUARK force field, C-QUARK eliminated the majority of the 



false-positive contacts during the simulations, as observed in the contact-map of the final 

model in Fig. 4D (blue circles in the left triangle) with accuracies of 0.667 and 0.500 for 

long- and all-range contacts, respectively. As a result, C-QUARK generated a model with 

a similar fold to the native of a TM-score of 0.658, shown in blue in Fig. 4A. On the other 

hand, the helices in the CNS model (shown in green in Fig. 4A) were bent in an unrealistic 

fashion due to the satisfaction of false-positive contacts (blue circles in the right triangle of 

Fig. 4D), resulting in a model with a low TM-score (0.289). It is noted that without contact 

information, C-QUARK would not be able to obtain a correct model as the TM-score of 

the QUARK model was only 0.44 for this target, demonstrating again the importance of 

the complementarity of the QUARK force field and the contact restraints even at a low 

accuracy. 

Figs. 4B and 4E show another example from 1zuuA, which is a small beta-protein 

with 56 residues. Here, the Nf was very high (=1504.9), and hence the contact prediction 

accuracy for short-, medium, long- and all-range contacts was relatively high with 

accuracies of 0.6, 0.625, 0.659 and 0.627, respectively. The accuracies of the contact-maps 

derived from the final C-QUARK models increased further to 0.897, 0.836, 0.775 and 

0.831, respectively, due to the removal of false positive contacts that clashed with the 

pairwise atomic interactions and hydrogen bonding between the beta-strands that formed 

the beta-sheets. As a result, the TM-score of the C-QUARK model for this target was 

0.808. On the other hand, the TM-score of the CNS model was only 0.271, mainly due to 

false-positive contacts (highlighted by the dashed circles in Fig. 4E) that were correctly 

filtered out by C-QUARK but that incorrectly guided the CNS modeling. 

One of the hallmarks of C-QUARK is that even if contact restraints are not present for 

some region of the query, the inherent QUARK potential can often help compensate for 

their absence and create correct full-length models. Fig. 4C shows such an example from 

4yy2A, for which the native contacts between the N- and C-terminal helices (HN and HC) 

were not predicted (i.e., the red circles are largely absent in the rectangles in Fig. 4F). 

Additionally, due to the low Nf (=0.402), numerous false positive contacts were scattered 

around the contact-map. Despite the lack of contacts in the helix regions and the use of 

noisy contact restraints, the inherent QUARK potential correctly captured the interaction 

of the terminal helices and generated a model with a correct fold and a high TM-score of 

0.813. On the other hand, CNS generated a completely wrong model with a TM-

score=0.290 by satisfying too many of the false positive contacts. In particular, due to the 

missing HN-HC contact restraints, the N-terminal helix was positioned far away from the 

C-terminal helix in the CNS model.  

It is important to note that in the construction of our test dataset, homologous entries 

with sequence identities >30% to the training proteins of C-QUARK were filtered out. 

However, sequences homologous to the training sets of ResPRE and other third-party 

contact predictors, whose contact predictions are used by C-QUARK, were not particularly 

excluded from our test dataset. One reason is that the training sets for contact predictors 

are very large (e.g., the ResPRE training set included about 5,600 high-resolution protein 

structures and DeepContact utilized around 14,000 proteins from SCOPe 2.06 to train the 

method, etc.,), to facilitate effective deep-learning training. Thus, the filtering of 

homologous proteins from these training sets would result in an insufficient number of 

proteins in the test dataset. Furthermore, C-QUARK, CNS and DConStruct utilized the 

same set of contacts, thus we did not specifically filter out the homologous proteins in the 

test set. However, since trRosetta generates spatial restraints using its own deep-learning 

predictor, to provide a fair comparison, we constructed a new test dataset by removing 

proteins with a 50% sequence identity to not only the training sets of all the contact 

predictors used by C-QUARK, but also the training set of trRosetta. This resulted in only 

57 proteins being left in our new test dataset. Table S7 shows the results for the modeling 

performance of C-QUARK, CNS, DConStruct and trRosetta on this reduced test set. The 

TM-score of the C-QUARK models on this reduced dataset was slightly lower than that of 

the entire test set (compared to Table S6), probably due to the fact that this sub-dataset is 

non-redundancy with the training set thus more difficult for contact prediction as the 

average accuracy was also reduced for CNS and DConStruct. Nevertheless, C-QUARK 



still significantly outperformed all the other control methods on this reduced dataset. It is 

notable that C-QUARK was 13.4% better than trRosetta, which was modified to only use 

predicted contacts derived from the distance predictions as restraints, in terms of the 

average TM-score of the first models (Fig S9D). Despite the relax step of trRosetta also 

used physical and knowledge-based potential, the global fold was primarily decided by the 

energy minimization step that only used predicted restraints. These results again 

demonstrate that C-QUARK outperforms other contact-based folding programs, mainly 

due to the help from its comprehensive force field used in the structural assembly 

simulations. 

 

 

3. The Reviewer commented: 

 
2 The construction of the benchmark dataset (lines 95-97) is not very clear. Are these 

247 test proteins collected in a fair way? Are they already in the training set of the used 

contact predictors (e.g. ResPRE and DeepCov)? The authors shall clearly indicate the 

potential overlap between test and training sets for all used contact predictors. 

 

The Reviewer raised an important question. In the construction of our testing dataset, the 

homologous entries with sequence identities >30% to the training proteins of C-QUARK 

were filtered out. However, sequences homologous to the proteins in the ResPRE and other 

contact predictor training set, whose contact predictions are used by C-QUARK, were not 

particularly excluded from our testing datasets. One reason is that the training sets for 

contact predictor are very large (e.g., the ResPRE training set included about 5,600 high-

resolution protein structures to facilitate effective deep-learning training, the DeepContact 

utilized around 14,000 proteins from SCOPe 2.06 to train the method, etc.,). Thus, the 

filtering of homologous proteins from those training set would result in an insufficient 

number of proteins in the testing dataset. 

 

To partially address this issue, we collected a new testing dataset by removing proteins 

with a sequence identity <50% to not only the training sets for all contact predictors used 

by C-QUARK, but also the training set of trRosetta, which resulted in only 57 proteins left. 

The results are shown in Table S7 in SI. Overall, C-QUARK outperforms all these contact-

based folding methods in our comparison based on this set of non-redundancy test proteins. 

We clarify this problem in page 7 of the Main Text: 

 
It is important to note that in the construction of our test dataset, homologous entries with 

sequence identities >30% to the training proteins of C-QUARK were filtered out. However, 

sequences homologous to the training sets of ResPRE and other third-party contact 

predictors, whose contact predictions are used by C-QUARK, were not particularly 

excluded from our test dataset. One reason is that the training sets for contact predictors 

are very large (e.g., the ResPRE training set included about 5,600 high-resolution protein 

structures and DeepContact utilized around 14,000 proteins from SCOPe 2.06 to train the 

method, etc.,), to facilitate effective deep-learning training. Thus, the filtering of 

homologous proteins from these training sets would result in an insufficient number of 

proteins in the test dataset. Furthermore, C-QUARK, CNS and DConStruct utilized the 

same set of contacts, thus we did not specifically filter out the homologous proteins in the 

test set. However, since trRosetta generates spatial restraints using its own deep-learning 

predictor, to provide a fair comparison, we constructed a new test dataset by removing 

proteins with a 50% sequence identity to not only the training sets of all the contact 

predictors used by C-QUARK, but also the training set of trRosetta. This resulted in only 



57 proteins being left in our new test dataset. Table S7 shows the results for the modeling 

performance of C-QUARK, CNS, DConStruct and trRosetta on this reduced test set. The 

TM-score of the C-QUARK models on this reduced dataset was slightly lower than that of 

the entire test set (compared to Table S6), probably due to the fact that this sub-dataset is 

non-redundancy with the training set thus more difficult for contact prediction as the 

average accuracy was also reduced for CNS and DConStruct. Nevertheless, C-QUARK 

still significantly outperformed all the other control methods on this reduced dataset. It is 

notable that C-QUARK was 13.4% better than trRosetta, which was modified to only use 

predicted contacts derived from the distance predictions as restraints, in terms of the 

average TM-score of the first models (Fig S9D). Despite the relax step of trRosetta also 

used physical and knowledge-based potential, the global fold was primarily decided by the 

energy minimization step that only used predicted restraints. These results again 

demonstrate that C-QUARK outperforms other contact-based folding programs, mainly 

due to the help from its comprehensive force field used in the structural assembly 

simulations. 

 

Table S7: Average TM-scores, GDT_TS scores and RMSDs for the first models generated 

by C-QUARK, QUARK, CNS, DConStruct and trRosetta on the 57 targets of the test set 

without redundancy to the trRosetta training set and all training sets of the contact 

predictors used by C-QUARK. Here, trRosetta used only the contact restraints, i.e., 

distances where the peak of the predicted distance distribution was lower than 8Å or the 

sum of probabilities below 8Å was greater than 0.5, to provide a fair comparison with C-

QUARK. The values in the parentheses of the second, third and fourth columns represent 

the p-values based on Student’s t-tests. Additionally, the values in parentheses of the fifth 

column represent the percentage of the cases where the models obtained similar folds as 

the corresponding native structures.  

 

Method TM-score GDT_TS RMSD 
Number of cases with 

TM-score≥0.5 

C-QUARK 0.525 48.19 8.64 30 (53%) 

QUARK 0.418 (8.63 × 10−7) 39.19 (3.84 × 10−6) 13.09 (6.28 × 10−7) 17 (30%) 

CNS 0.440 (2.61 × 10−9) 39.70 (4.34 × 10−9) 10.48 (2.70 × 10−6) 21 (37%) 

DConStruct 0.438 (3.64 × 10−9) 39.07 (2.38 × 10−9) 9.95 (6.83 × 10−4) 21 (37%) 

trRosetta (contact) 0.463 (3.96 × 10−2) 42.31 (5.43 × 10−2) 10.47 (4.91 × 10−3) 20 (35%) 

 

In addition, in our comparison with CNS and DConStruct on the 247 test proteins, the same 

set of contacts was utilized in C-QUARK, CNS and DConStruct. Therefore, this part of 

results was not related with whether homology proteins from the training set of contact 

predictors are filtered or not. Since trRosetta needs to use the restraints generated by its 

own format of deep-learning predictions, it was not included in the tests on the 247 

proteins. 
 

 

4. The Reviewer commented: 

 
3 The performance for free-modeling targets is ambiguous. The authors shall evaluate 

CASP13 FM, FM/TBM, and TBM-hard targets separately.   

 

Thank you for Reviewer’s suggestion. Following this, we separately evaluated the CASP13 

targets based on FM, FM/TBM, TBM-hard and All (combine all three categories) targets, 

with results summarized in Tables S8. Here, we remove three server-only targets in Table 

S8, in order to make the dataset being the same with Table S9 in which the CASP13 human 



group (AlphaFold) was compared with C-QUARK. Thus, the average value and p-value 

could change accordingly compared to the SI in the last version.  

 

Overall, C-QUARK outperforms all other servers in All, TBM-hard and FM categories of 

CASP13, but slightly (or statistically insignificantly) worse than BAKER-

ROSETTASERVER in TBM/FM targets. These results are discussed in the following 

paragraphs (Page 8-9): 

 
Performance of C-QUARK on CASP13 targets 

Not all methods have standalone packages available. To compare C-QUARK directly 

with other state-of-the-art structure prediction programs, C-QUARK participated in the 

13th Critical Assessment of Structure Prediction (CASP13) experiment as “QUARK” 

server. Here, we analyzed the performance of C-QUARK on the 64 CASP13 FM, 

FM/TBM and TBM-hard targets (Dataset S3 in SI). By definition, these targets are 

challenging since homologous templates are absent or difficult to detect from the PDB 

library. Table S8 lists the average TM-scores and GDT_TS scores of the first predicted 

models by C-QUARK and the other best five server groups in the CASP13 experiment. 

Here, GDT_TS is the standard score metric used by the CASP assessors. We collected the 

models directly from the “QUARK” server which ran C-QUARK. 

This dataset should provide a relatively fairer test with state-of-the-art structure 

modeling programs since most programs used sequence-based contact-maps and all the 

programs had access to the most recent sequence databases released before CASP13. Based 

on the experimental structures of 64 CASP13 targets, the average GDT_TS of C-QUARK 

was higher than that of all other participating servers with p-values <0.05 as calculated by 
Student’s t-tests (Table S8). Especially in the TBM-hard and FM categories, C-QUARK 

was 4% and 5% better than the second-best method, respectively. For FM/TBM targets, 

BAKER-ROSETTASERVER (60.58) was slightly better than C-QUARK (58.94), but the 

difference was not statistical significantly. Some programs, such as the RaptorX servers, 

also used sequence-based distance map predictions50. It is notable that RaptorX-Contact 

predicted the residue-residue distances, and then fed the restraints into CNS to reconstruct 

the 3D models. The average GDT_TS score of the C-QUARK first models (52.09) was 

still 12% higher than that of the RaptorX-Contact server (46.56). This gap was slightly 

smaller than the difference between C-QUARK and CNS in our benchmark test set (Table 

S5, where C-QUARK was 16% better than CNS), which is probably because, compared to 

contact prediction, additional information can be extracted from distance predictions to 

help guide the CNS modeling in RaptorX-contact. In Fig. S12, we highlight one of the FM 

targets, T0980s1-D1, which contains 105 residues with a 5-strand fold packed with an 

opposite helix. The TM-score of the first C-QUARK model was 0.540 for this domain, 

while the models generated by all other servers had TM-scores below 0.5. The poorer 

prediction for this target by other programs may be partially attributed to a low Nf value 

(8.2) and, subsequently, low accuracy in predicted contacts with numerous false positives 

(highlighted by the rectangles in Fig. S12B). On the other hand, most of the falsely 

predicted contacts were avoided in the C-QUARK models, due to the complementary effect 

of the inherent knowledge-based force field and the fragment-based distance profiles, 

which helped to correctly fold this target. 

 
Table S8: The average TM-scores and GDT_TS scores of the first models by C-QUARK 

on the CASP targets in comparison to the top five servers on FM, FM/TBM and TBM-hard 

targets in CASP13. The values in the parentheses are the p-values calculated by Student’s 

t-tests between C-QUARK and the other control programs. We did not show ‘Zhang-Server’ 

in CASP13 because it used C-QUARK models as the starting models for FM targets. 

 
Target 

type 
Methods 

Average 

TM-score 
Average GDT_TS 



All 

(64 targets) 

C-QUARK (participated as “QUARK”) 0.588 52.09 

RaptorX-DeepModeller 0.558 (2.24 × 10−2) 49.38 (1.89 × 10−2) 

RaptorX-Contact 0.531 (3.31 × 10−4) 46.56 (8.90 × 10−5) 

RaptorX-TBM 0.521 (1.94 × 10−6) 45.92 (2.99 × 10−6) 

BAKER-ROSETTASERVER 0.513 (2.47 × 10−4) 45.76 (6.86 × 10−4) 

Zhou-SPOT-3D 0.447 (1.15 × 10−9) 38.77 (7.61 × 10−10) 

TBM-hard 

(21 targets) 

C-QUARK (participated as “QUARK”) 0.720 61.03 

RaptorX-DeepModeller 0.682 (7.35 × 10−2) 58.04 (3.58 × 10−2) 

RaptorX-Contact 0.613 (5.88 × 10−4) 50.97 (3.60 × 10−4) 

RaptorX-TBM 0.686 (8.39 × 10−2) 58.11 (3.55 × 10−2) 

BAKER-ROSETTASERVER 0.644 (1.96 × 10−1) 54.69 (2.47 × 10−1) 

Zhou-SPOT-3D 0.576 (3.04 × 10−4) 46.40 (1.09 × 10−3) 

FM/TBM 

(12 targets) 

C-QUARK (participated as “QUARK”) 0.598 58.94 

RaptorX-DeepModeller 0.572 (3.39 × 10−1) 56.45 (1.79 × 10−1) 

RaptorX-Contact 0.525 (4.47 × 10−2) 51.54 (1.78 × 10−2) 

RaptorX-TBM 0.538 (1.05 × 10−2) 53.21 (2.89 × 10−2) 

BAKER-ROSETTASERVER 0.609 (6.54 × 10−1) 60.58 (7.01 × 10−1) 

Zhou-SPOT-3D 0.489 (3.36 × 10−2) 48.91 (2.88 × 10−2) 

FM 

(31 targets) 

C-QUARK (participated as “QUARK”) 0.495 43.38 

RaptorX-DeepModeller 0.468 (1.32 × 10−1) 40.79 (9.62 × 10−2) 

RaptorX-Contact 0.477 (1.60 × 10−1) 41.64 (1.51 × 10−1) 

RaptorX-TBM 0.402 (1.23 × 10−4) 34.84 (1.24 × 10−4) 

BAKER-ROSETTASERVER 0.388 (5.92 × 10−5) 33.98 (8.85 × 10−5) 

Zhou-SPOT-3D 0.343 (7.87 × 10−8) 29.68 (1.07 × 10−7) 

 
 

5. The Reviewer commented: 

 
4. The comparisons over CASP10-12 targets are not very fair. The authors use newer 

sequence and structure databases, thus obtain significantly better contacts than other 

predictors. It is recommended to remove these comparisons. By the way, are these 

CASP10-12 targets excluded from the training set for all used contact predictors? 

 

We agree with the Reviewer that the comparisons over CASP10-12 targets are unfair. 

Accordingly, we removed the CASP10-12 targets from manuscript, and only kept CASP13 

targets for the comparison.  

 

Multiple independent contact predictors, including those developed by the third-party 

groups, were used in C-QUARK. Some of them were developed after CASP12, and we do 

not believe that the CASP10-12 targets have been specifically excluded from the training 

set of these contact predictors. 
 

 

6. The Reviewer commented: 
 

5. It is interesting to know how fragments affect performance as fragments key parts of 

C-QUARK. Although fragment-assembly has been shown successfully in QUARK, it is 



expected to show the necessity of fragments when high-quality contacts are given. I 

recommend the authors to carry out the following experiments: 

a. To show the effects of fragments in the score function, the author might compare C-

QUARK with a baseline model that discards all fragment-related energy items (e.g. 

fragment-based distance profile) in the C-QUARK force field. 

b. To show the effects of fragments in the optimization method, the author might 

compare C-QUARK with a fragment-free optimization method, such as gradient descent 

(as the contact-map energy function is differentiable). 

 

Thanks for the excellent suggestion, which should help clearly highlight the importance of 

fragments in C-QUARK. For suggestion (a), we built a baseline pipeline that removes the 

fragments-based energy potential (i.e., distance-profile energy term) from C-QUARK. For 

suggestion (b), since most of the energy terms of C-QUARK force field are not 

differentiable, implementing a gradient descent-based fragments-free optimization method 

is not feasible. Alternatively, we completely removed the fragment module from C-

QUARK, including the fragments-based energy potential and fragments replacement 

movements in the Replica Exchange Monte Carlo assembly simulation stage. We 

compared the performance of C-QUARK and these two variant C-QUARK baseline 

pipelines on the 247 test proteins. Overall, both baseline methods, especially the baseline 

(b), have significantly worse performance than the complete C-QUARK pipeline. Those 

results show that the fragments module affects the performance of C-QUARK even when 

high-quality contacts are given. 

 

The result of the comparison is summarized in Table S4 in SI. We added the following 

paragraph to discuss the data in Page 6 of the Main Text: 

 
While contact-map predictions greatly help in ab initio folding, other physical and 

knowledge-based energy terms, including pairwise atomic potentials, solvation, hydrogen 

bonding, secondary structure element (SSE) packing and fragment-based distance profile 

in C-QUARK (Eq. S2), also play important roles in improving modeling accuracy, e.g., by 

filtering out contacts that are physically unrealistic. Such complementarity between the 

contact potential and the inherent QUARK force field is vital in ab initio modeling. For 

instance, if the fragment-based distance-profile term is removed from the C-QUARK force 

field, the average TM-score of the first models by C-QUARK decreases from 0.606 to 

0.593 with a p-value of 4.16 × 10−4  (Table S4). Furthermore, if the entire fragments 

module, including the fragment-profile energy term and the fragment replacement 

movements in the simulation optimization (see details in Methods), is excluded from C-

QUARK, the performance will become much worse with TM-score reduced from 0.606 to 

0.553 with a p-value of 1.59 × 10−30 . These data indicate that the structural fragment 

module plays an important role in C-QUARK, which further demonstrate that the success 

of C-QUARK should be attributed to the interplay of predicted residue-residue contacts 

and the inherent force field and structural assembly simulation process. 

 

Table S4: Average TM-scores and GDT_TS scores (Global Distance Test Total Score) for 

the first models generated by C-QUARK, C-QUARK without the distance profile energy 

term, and C-QUARK without fragment-based optimization on the test set. The values in 

the parentheses of the second and third columns represent the p-values calculated by 

Student’s t-tests. The values in parentheses in the fourth column represent the percentage 

of cases where the models obtained similar folds as the corresponding native structures. As 

per the CASP evaluation measurement, GDT_TS is calculated by GDT_TS = (GDT_P1 + 

GDT_P2 + GDT_P4 + GDT_P8)/4, where GDT_Pn denotes the percent of residues under 

the distance cut-off ≤ n Å. 



 

Method Average TM-score Average GDT_TS 
Number of cases with  

TM-score≥0.5 

C-QUARK 0.606 53.90 186 (75%) 

C-QUARK (no distance profile term) 0.593 (4.16 × 10−4) 52.51 (1.70 × 10−5) 184 (74%) 

C-QUARK (no fragments) 0.553 (1.59 × 10−30) 48.41 (2.79 × 10−33) 162 (66%) 

 

 

7. The Reviewer commented: 

 
6. It is hard to judge the advantage of C-QUARK when lacking homologous sequences. 

For the 59 targets with low accuracy contacts (line 254-263), the authors compared C-

QUARK with CNS. However, even if the authors have provided case studies, it is still not 

clear whether C-QUARK could perform better than QUARK with low-quality contacts. 

The authors shall explicitly show the performance of QUARK over these 59 targets. 

 

Thank you for raising this issue. To address this issue, we listed in Table S6 and Figure 

S9C the results of QUARK on the 59 targets, in comparison with C-QUARK. Although 

QUARK slightly outperforms CNS and DConStruct, demonstrating the advantage of 

fragment-assembly based simulations, C-QUARK still significantly outperformed 

QUARK. This data shows that the low-accuracy contact could still help C-QUARK 

modeling, probably due to the complementarity that can partly filter out the noise of the 

contact maps. We added the following paragraph to discuss the results (Page 6): 

 
Notably, out of the 59 targets which had either a low Nf  (<15) or a low contact-map 

accuracy (<30%), C-QUARK generated correct folds for 24 cases (i.e., 41% of the cases), 

while CNS (DConStruct) obtained correct folds for only 4 (4) of the cases (Table S6). 

Since contact prediction with low Nf MSAs has been an outstanding bottleneck in contact-

guided ab initio modeling11, such a significantly increased success rate of C-QUARK in 

generating correct models for these challenging targets is particularly encouraging. 

Meanwhile, the TM-score of C-QUARK (0.428) for these 59 targets was also significantly 

(p-value=1.36 × 10−6) higher than that of QUARK (0.348), showing that contact-map 

predictions are still helpful for folding despite the relatively lower accuracy (Fig. S9C and 

Table S6). 

 

Table S6: Average TM-scores, GDT_TS scores and RMSDs for the first models generated 

by C-QUARK, QUARK, CNS and DConStruct on the 59 targets of the test set with low 

contact-map prediction accuracy. The values in the parentheses of the second, third and 

fourth columns represent the p-values calculated by Student’s t-tests. Additionally, the 

values in parentheses of the fifth column represent the percentage of the cases where the 

models obtained similar folds as the corresponding native structures.  

 

Method TM-score GDT_TS RMSD 
Number of cases 

with TM-score≥0.5 

C-QUARK 0.428 39.98 10.21 24 (41%) 

QUARK 0.348 (1.36 × 10−6) 33.37 (6.53 × 10−6) 14.15 (1.13 × 10−6) 7 (12%) 

CNS 0.324 (1.52 × 10−9) 30.25 (1.66 × 10−9) 12.65 (4.06 × 10−7) 4 (7%) 

DConStruct 0.326 (3.02 × 10−9) 30.14 (3.46 × 10−9) 12.16 (6.59 × 10−5) 4 (7%) 

 



 
Figure S9C: TM-score comparison between the first models produced by C-QUARK and 

QUARK for 59 test proteins with low accuracy of contact-map prediction. The dashed lines 

indicate the TM-score cut-off of 0.5, beyond which models are considered to obtain similar 

folds as the corresponding native structures. Points above the diagonal line indicate models 

with better quality by C-QUARK than the control methods, and vice versa.  

 
 

8. The Reviewer commented: 
 

7. The performance of CNS is inconsistent with that of RaptorX, which uses CNS to 

construct prediction models. The authors showed C-QUARK performs better than CNS 

(0.606 vs 0.530 in TM-score); however, C-QUARK didn’t show such a superiority over 

RaptorX (51.396 vs 49.457 in GDT_TS). An in-depth examination of this issue is 

expected. 

 

Thanks for raising the interesting question. To answer the question, we first add TM-score 

and GDT_TS to both benchmark (Table S5) and CASP (Table S8) targets, which let us 

make directly comparisons of the methods by either TM-score or GDT_TS. As shown in 

Table S8, there three versions of RaptorX servers. Based on the CASP13 Abstract book, 

the RaptorX-Contact server predicted the residue-residue distances and then fed the 

predicted distances into CNS as restraints to construct the 3D model. Thus, when 

comparing C-QUARK with the RaptorX server purely based on CNS, we should compare 

it with RaptorX-Contact server, instead of the RaptorX-DeepModeller server which is a 

meta-server combining the results from RaptorX-Contact and RaptorX-TBM (a distance-

based threading server).  

 

Based on Table S8, the GDT_TS score by C-QUARK and the RaptorX-Contact server that 

used CNS are 52.09 and 46.56, respectively (-please note that we removed three server-

only targets in Table S8 in order to facilitate the comparison with the human group of 



AlphaFold in Table S9, thus the result is slightly different that from the former SI). This 

result is roughly consistent with the comparison of C-QUARK and CNS in the benchmark 

set which have GDT_TS of 53.90 and 46.51, respectively (Table S5). Here, the gap 

between C-QUARK and RaptorX-contact is still slightly smaller than that between C-

QUARK and CNS. This might be due to the fact that RaptorX-contact uses distance 

restraints. Meanwhile, there are also variations in the number of testing targets and the 

contact map predictions between the benchmark test of CNS here and the RaptorX-Contact 

in CASP13. 

 

We added the following paragraph to clarify the point in Main Text (Page 9): 

 
Some programs, such as the RaptorX servers, also used sequence-based distance map 

predictions50. It is notable that RaptorX-Contact predicted the residue-residue distances, 

and then fed the restraints into CNS to reconstruct the 3D models. The average GDT_TS 

score of the C-QUARK first models (52.09) was still 12% higher than that of the RaptorX-

Contact server (46.56). This gap was slightly smaller than the difference between C-

QUARK and CNS in our benchmark test set (Table S5, where C-QUARK was 16% better 

than CNS), which is probably because, compared to contact prediction, additional 

information can be extracted from distance predictions to help guide the CNS modeling in 

RaptorX-contact.  

 

 

9. The Reviewer commented: 
 

8. The 3G contact potential term (Eq. 1) is the key element of C-QUARK; however, this 

term seems ad hoc. What are the intuition and physics underlying this term? 

 

Thank you for raising this question. Overall, as shown in Fig. S17, the 3G contact potential 

is centered with a negative well at 8 Å cutoff, with a strong force in 8 Å to 𝐷 (=8 Å + 𝑑𝑏), 

followed by a weaker force in 𝐷 to 80 Å, being introduced to push the target residue pairs 

towards the well when they are in a long distance. 

 

The physical and intuitive consideration of the 3D contact potential is following. Since the 

contact prediction can only tell whether the distance between residue pair i-j below 8 Å or 

not, we design the 3G potential as a flat well when distance < 8 Å. Since almost all of the 

residue-residue distance in normal size protein is lower than 80 Å, the potential is also 

designed as flat when distance is beyond the maximal distance threshold 80 Å. Between 8 

Å and 80 Å, we split the potential into two regions by a dynamic threshold of 𝐷 (=8 Å +
𝑑𝑏), with 𝑑𝑏 changing from 6 to 12 Å depending on the target size (Table S15). In the 

region above D, a relatively weaker force is used to avoid structural overpacking due to 

false positive contact predictions, while in the region below D, a stronger force is used to 

push contact restraints quickly satisfied since in this region the contact accuracy of the 

target residue pairs is supposed to be higher than that in the longer-distance regions (-

because most of the adjacent residue pairs in the structure decoys are supposed to be more 

consistent with the inherent QUARK potential after the equilibrium of Monte Carlo 

simulations). We selected trigonometric function style potential in these two regions, since 

trigonometric functions are the simple, continuous, smooth, and differentiable functions, 

which can easily make the connect points (8, 𝐷 and 80 Å) differentiable.  



 

We have revised the text in page 12 according to the Reviewer’s comments. 

 
Overall, the 3G potential contains a negative well at an 8 Å cutoff, with a strong force from 

8 Å to 𝐷 (=8 Å + 𝑑𝑏), followed by a weaker force from 𝐷 to 80 Å being introduced to push 

the target residue pairs towards the well when they are a long distance apart (Fig. S17). 

Here, the gradient width (𝑑𝑏) of the contact well is the only free parameter of the 3G 

potential which depends on the protein size and determines the convergence speed and 

satisfaction rate of the contact-maps in combination with the inherent QUARK potential. 

As shown in Table S15, 𝑑𝑏 is typically narrow, e.g., 6 Å, when the length of the target is 

relatively small, e.g., < 100. On the other hand, the gradient width increases to 12 Å when 

the length is >200, since simulations with larger size proteins are more difficult to converge 

and C-QUARK needs to use a wider well to draw the candidate residue pairs that are further 

apart in distance to the well smoothly and bring the residues pairs within 8 Å quickly. It is 

important that Eq. 1 is designed in a way that the potential curve is continuous and smooth 

(with 𝜕𝐸/𝜕𝑑 = 0) at all three transition points of 𝑑𝑖𝑗 = 8, 𝐷 and 80 Å, so that the contact 

restraints can be implemented smoothly without singularities. Furthermore, since contact 

prediction can only tell whether the distance between a residue pair i-j is below 8 Å or not, 

we designed the 3G potential as a constant when the distance is < 8 Å. As almost all of the 

residue-residue distances in a normal size protein are lower than 80 Å, the potential is also 

designed as flat beyond the maximal distance threshold (80 Å). However, between 8 Å and 

80 Å, we set the potential as two regions split at the transition point (𝑑𝑖𝑗 = 𝐷). In the region 

above D, a relatively weaker force is used to avoid structural overpacking due to false 

positive contact predictions, while in the region below D, a stronger force is used to push 

contact restraints quickly satisfied since in this region the contact accuracy of the target 

residue pairs is supposed to be higher than that in the longer-distance regions (-because 

most of the adjacent residue pairs in the structure decoys are supposed to be more consistent 

with the inherent QUARK potential after the equilibrium of Monte Carlo simulations). 

Two trigonometric function style potentials are selected in the two regions to connect the 

flat areas, since trigonometric functions are simple, continuous, smooth, and differentiable. 

 

 

10. The Reviewer commented: 
 

9. The authors stated that besides 3G contact potential, another key contribution to the 

success of C-QUARK is the effective fragment assembly simulations. Is there any 

significant difference between the fragment assembly strategies used by QUARK and C-

QUARK? 

 

Thank you for the question, where the simple answer to the question is ‘no’, as the core 

part of the inherent fragment assembly strategies, including the major energy terms and 

REMC simulations, is largely the same between QUARK and C-QUARK. However, there 

are indeed some important differences between the two programs, in addition to the 3G 

contact potential. The most important change is the reparameterization of the force field to 

rebalance the contact restraints and the inherence QUARK potential based on the 243 

training proteins. For instance, the weight (𝑤7) of the distance-profile energy term (𝐸𝑑𝑝 in 

Eq. S2) was increased from 0.60 to 3.00 in the C-QUARK force field to allow the 

fragment-based potential to help filter out false positive contacts. Furthermore, we added 

a new energy term, which accounts for the distance between adjacent Cα atoms (𝐸𝑐𝛼 in Eq. 

S2 and Eq. S3), to penalize adjacent residue pair with Cα-Cα distances > 4Å. This term is 



specifically designed to penalize broken backbones caused by fragment movements, as we 

have seen a stronger trend of chain breaking after introducing the strong contact restraints. 

 

We added the following paragraph to discuss these changes (Page 12): 

 
Besides the newly developed contact energy term (3G potential), the other energy terms 

have also been adjusted to maximize the folding performance of the 243 training proteins. 

For instance, the weight (𝑤7) of the distance-profile energy term (𝐸𝑑𝑝 in Eq. S2) was 

increased from 0.60 to 3.00 in the C-QUARK force field to allow the fragment-based 

potential to help filter out false positive contacts. Furthermore, we added a new energy 

term, which accounts for the distance between adjacent Cα atoms (𝐸𝑐𝛼 in Eq. S2 and Eq. 

S3), to penalize adjacent residue pair with Cα-Cα distances > 4Å. This term is specifically 

designed to penalize backbone breaks that can occur after fragment movements, as a 

stronger trend of bond-breaking was seen after the introduction of contact predictions in 

C-QUARK. 

 

 

11. The Reviewer commented: 
 

Minor comments: 

1. Why only single-domain proteins are chosen? Can C-QUARK build structures for 

multi-domain proteins? Further experiments on these proteins will be very instructive. 

 

Thank you for raising this important question. The major reason for the selection of single-

domain proteins in the original version was the follow-up of the convention of the CASP 

experiment in which all the tertiary structure modeling results have been assessed at the 

domain-level, although many of the CASP targets contain multiple domains. This in fact 

reflects the relatively low ability of the field in modeling multi-domain proteins, probably 

because (1) multi-domain proteins have additional degree of freedom in domain orientation 

and therefore is difficult to model and (2) most of the current methods, including 

QUARK/C-QUARK, have been optimized for folding single-domain structures. 

 

Nevertheless, following the Reviewer’s suggestion, we selected 21 multi-domain proteins 

from CASP13, which contains in total 62 individual domains, for benchmarking the quality 

of multi-domain and single-domain modeling of C-QUARK. The result was summarized 

in Table S10 and Fig. S14, and discussed in page 10 of the Main Text: 

 
Finally, modeling multi-domain proteins is much harder than folding single-domain 

structures because of the introduction of additional degree of freedom in inter-domain 

orientations. For instance, the average TM-score (0.47) of the full-length models predicted 

by C-QUARK for the 21 multi-domain targets in CASP13 was much lower than that (0.65) 

for the individual domains (Fig. S14 and Table S10). This is mainly due to the low 

accuracy of inter-domain contact prediction compared to intra-domain contact prediction, 

where the low contact accuracy is probably originated from the less-well constructed 

MSAs for the multi-domain sequences. Meanwhile, many energy terms of C-QUARK 

force field, including solvation and radius of gyration, have been designed and optimized 

for single-domain structure folding. 



 
 

 
Figure S14: Boxplot and distribution of TM-scores for the first models produced by C-

QUARK on 21 CASP13 multi-domain targets and the corresponding 62 individual 

domains. 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors clearly answered to the questions I raised and edited the manuscript accordingly 

 

 

 

Reviewer #2: 

Remarks to the Author: 

All of my comments have been addressed. I have no further comments. 
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1. The Reviewer commented: 

 

The authors clearly answered to the questions I raised and edited the manuscript 

accordingly. 

 

We appreciate that the Reviewer satisfied with our revised manuscript. 
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All of my comments have been addressed. I have no further comments. 

 

We are glad to hear that the Reviewer satisfied with our revised manuscript. 

 


