
S1 Text

Our agent-based model (ABM) includes both people and mosquitoes as agents. These agents interact 

with each other in an environment represented by a set of locations, including houses, schools, parks, 

cemeteries, and churches. This environment also incorporates temporally varying climatic conditions, 

which affect mosquito biting frequency, survival, and extrinsic incubation period for dengue virus 

(DENV). The environment is based on the city of Iquitos in Peru, and we represent all 92,891 buildings

in the city. We use exact spatial coordinates and location type for the 38,835 locations for which these 

data were available. For locations without these data, we randomly distributed the locations and 

assigned a location type so that they were evenly spaced and representative of the location types we 

had data on. 

We modeled approximately 450,000 humans in our model, chosen to reflect the demography of 

Iquitos and its surroundings [1]. We based the overall age and sex distribution on U.N. estimates of 

these for Peru, and based the demographic profile of each household on survey data from a prior study 

[2]. This synthetic population also realistically captured how people are distributed across houses and 

how demographics changed over time. We achieved this by simulating human births and deaths that 

match those estimated by the U.N. for Iquitos and simultaneously preserved realistic household 

compositions by placing newborn children in houses with appropriately aged mothers as determined by

U.N. estimates of age-specific fertility of Peru [1]. All human agents in the model went through daily 

human movement patterns using a model previously described by Perkins et al. [3], except when this 

was modified by lockdown policies which meant they stayed home (see Methods). To describe these 

movement patterns, each agent has five daily movement trajectories. At the start of each day one of 

these five trajectories is chosen, with equal probability, for each agent. The human movement patterns 

were fitted to data from retrospective, semi-structured interviews with inhabitants of Iquitos [4,5].

Immature mosquitoes were modeled deterministically and independently at each location. They 

transitioned through three immature stages: eggs, larvae, and pupae, with the number of pupae in a 
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house determining the rate of emergence of adult mosquitoes in that house. The rate of transition 

between each of these stages was temperature dependent. All stages also underwent temperature-

dependent mortality. Larval stages underwent an additional density-dependent mortality [6,7]. Both the

larval and pupal stages also underwent an additional rate of mortality that was calibrated so that adult 

abundance matched a statistical estimate of the spatio-temporal adult abundance in Iquitos [8]. Adult 

mosquitoes are modeled as agents, and take blood-meals upon co-located human agents. When a 

mosquito takes a blood-meal, the time of its next blood-meal is determined according to an exponential

distribution with a temperature-dependent gonotrophic rate parameter, based on temporal trends in 

temperature and empirical relationships between these rates and temperature [7,9]. The daily 

gonotrophic rate is  
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where T is the daily mean temperature in Kelvin and all other parameters are given in S1 Table. When 

the mosquito’s next blood-meal is due, it will take it unless there is no human present. This means that 

the number of blood-meals taken by a mosquito is not determined by the local density of humans, 

except in the unusual instance in which no human is present at a location. The mosquito determines 

which human it will bite as a function of the body sizes of humans present at that time – the mosquito 

chooses who to bite with probability proportional to the surface-area of individuals in the building at 

that time [2]. Each day, each mosquito moves to another location with probability 0.3, and will only 

move to a location within 100 m of its starting location, consistent with another agent-based model of 

Ae. aegypti population dynamics [6]. 

S1 Table: definition of parameters governing gonotrophic rate

Parameter Definition Gonotrophic cycle
ρ i Development rate per hour at 25ºC 

assuming no temperature inactivation of 
0.00898
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the critical enzyme (hr-1)
ΔA ,i Enthalpy of activation of the reaction 

catalyzed by the enzyme (cal/mol)
15,725.23

ΔH ,i Enthalpy change associated with high 
temperature inactivation of the enzyme 
(cal/mol)

1,756,481.07

T1 /2 Temperature at which 50% of the 
enzyme is inactivated from high 
temperature

447.17

When a mosquito takes a blood-meal on a human and one of them is infected, transmission can 

occur. The probability that transmission occurs from humans to mosquitoes is determined by the time 

since the human was infected, with this probability based on the viremia levels of the infecting human 

at the time of the bite [10]. For transmission from mosquitoes to humans, infectious mosquitoes 

transmitted DENV to susceptible humans with a fixed probability of 1.0, providing the extrinsic 

incubation period has been completed [11,12]. Once infected humans develop symptoms following a 

latent period derived from timing of peak viraemia [11]. Following recovery, humans become 

permanently immune to that serotype and also have temporary heterologous immunity to all other 

serotypes. This temporary immunity lasts for an exponentially distributed period with mean of 686 

days, estimated in a previous modeling study of time-varying serotype-specific dengue incidence [13]. 

The initial level of immunity in the model was calibrated to an analysis of longitudinal serological data 

[14].
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