Supplemental Material:

RNAi-mediated gene knockdown of progesterone 5β-reductases in *Digitalis lanata* reduces 5β-cardenolide content and modifies stress responses.

Jan Klein^a, Elisa Horn^a, Mona Ernst^a, Tim Leykauf^a, Tamara Leupold^a, Maja Dorfner^a, Laura Wolf^a, Anastasiia Ignatova^a, Wolfgang Kreis^a, Jennifer Munkert^{a,b}

^aDepartment of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany. ^bCorresponding Author: jennifer.munkert@fau.de

Figure legends:

- Fig S1: Identification of T-DNA insertion into the plant genome. Results of PCRs with genomic DNA from wildtype (wt/WT) and transgenic (1, 2) *Digitalis lanata* shoots. (-) negative water control, (+) positive control vector control or respectively agrobacterium culture (*virD2*). (a) Results of PCR against *virD2*; (b) Results of PCR against *spec*. No bacterial DNA including plasmid signals were detected in wildtype nor in transgenic shoots. (c) Results of PCR against *nptII*; (d) Results of PCR against *GUS* gene. In both cases signals were detected in transgenic, but not in wildtype shoots. (e, f) *nptII*-expression in transgenic *D*. *lanata P5βR-RNAi* knockdown shoots confirmed by PCR against cDNA. Expression of selection gene *nptII* was verified by PCR with cDNA of wildtype and transgenic shoots and primer system *nptII*. No expression of *nptII* was detected in wildtype (WT).
 - **Fig S2: RNAi cloning strategy.** Schematic diagram of recombination reactions with pHellsgate8 vector. PCR products flanked by attB sites are recombined with pDONR221 vector in a BP clonase reaction. The resulting clone in pDONR221 can be recombined with pHellsgate8 in an LR clonase reaction.
 - Figure S3: Heterologous expression of CDS of *DI*P5βR2 in pDEST17 vector in *E. coli*.
 (a) SDS-Page analysis of recombinant *DI*P5βR2 (1). Purified r*DI*P5βR2 protein has a size of about 43 kDa and was visualized with Coomassie-Brilliant-Blue R 250; (b) Immunoblot analysis of r*DI*P5βR2 (2) using anti-His antibodies (primary) and anti-mouse IgG-peroxidase antibodies (secondary). Chemiluminescence was used for detection. (M) Marker.

- Figure S4: Relative transcripts of *P5βRs* (*DIP5βR1* and *DIP5βR2*) in *D. lanata* WT shoots and shoots transformed with 679p935s-GusIo-rbs (VC). 679p935s-GusIo-rbs transformed shoots were used as control to exclude artificial effects created by agrobacteria transformation process. The relative RNA expression levels were calculated by qPCR method by applying the $2^{-\Delta\Delta CT}$ method using actin as reference gene. The y axis denotes the normalized relative transcript accumulation of the PRISE genes indicated in the x axis. (mean ± SEM; n = 3).
- Figure S5: Progesterone and cardenolide levels in *Dl* WT and stable transformed shoots of *D. lanata* including progesterone and 5β-pregnane-3,20-dione treatment and estimation of GSH levels. (a,b) Effects of 5β-pregnane-3,20dione (PR) treatment on cardenolide level in *D. lanata* WT shoots (a) and on GSH pool in *Dl* WT and *Dl P5βR-RNAi* knockdown lines calculated by measuring t-GSH and GSSG (b). (c) Progesterone (PO) was identified by GC-MS and quantified by UPLC.(d) Quantification of digoxigenin and digitoxigenin in *D. lanata* WT and *P5βR-RNAi* knockdown shoots after progesterone treatment. (e) Relative expression of *glutathione reductase* (*GR*) in *D. lanata* WT and *Dl P5βR-RNAi* knockdown shoots either untreated or progesterone treated. RNA expression levels were calculated using the qPCR method by applying the 2^{-ΔΔCT} method with actin as the reference gene. The y axis denotes the normalized relative transcript accumulation of the *GR* in the individual lines indicated in the figure legend. (f) Decrease of progesterone and 5β-pregnane-3,20-dion level after feeding in the medium. (Mean ± SEM are shown; n = 3).
- Figure S6: Detoxification mechanism of reactive electrophile species (RES) in planta. Detoxification e.g. of MVK can either happen by reduction ((a); Chapellin et al., 2019) or via GST-catalyzed reaction forming a glutathione conjugate ((b); Yin et al., 2017)
- Figure S7: Gene expression of Act, P5βR1 and P5βR2 in D. lanata WT shoots. PCR results for gene expression of Act, P5βR1 and P5βR2 in D. lanata WT shoots after treatment with 2 µmol/ L airvolume MVK or MEK diluted in potable water for 3 h. Control shoots were treated with pure potable water.

Supplement Tables:

Table S1:	Primers used for the verification of T-DNA integration into Digitalis lanata
	genome.

Name	Sequence in 5'-3' direction	TA in ° C
nptII for:	TGA ATG AAC TGC AGG ACG AG	65
nptII rev:	AAT ATC ACG GGT AGC CAA CG	
GUS for:	GCA AAG TGT GGG TCA ATA AT	55
GUS rev:	ATC ACA CTC TGT CTG GCT TT	
SmR for:	GGT CCA GAA CCT TGA CCG AA	57
SmR rev:	CCA CGG AAT GAT GTC GTC GT	
virD2 for:	ATG CCC GAT CGA GCT CAA GT	55
virD2 rev:	CCT GAC CCA AAC ATC TCG GCT GCC CA	

Table S2:Primer used for quantification of gene expression by qPCR in Digitalis
lanata. Analyzed genes: $actin, P5\beta R1, P5\beta R2, glutathione-reductase (GR),$ and
glutathione S-transferase (GST)

Name	Sequence in 5'-3' direction	T _A in ° C
EH_qDlAct for:	ATT CAG ATG CCC AGA AGT	62
<i>EH_qDlAct rev:</i>	GGA GAT CCA CAT CTG CTG GAA	
$JK_qDlP5\beta R1$ for:	TGC AAA CAC GAG GGA AAG GT	66
$JK_qDlP5\beta R1$ rev:	AAG CCA TGC TCC TTG CTC TT	
$JK_qDlP5\beta R2$ for:	CTG CAG GAC ACA AAA CGG TG	66
$JK_qDlP5\beta R2$ rev:	TCG TCC CAT ACC GAG TCC TT	
JK_qDlGR1 for:	GGT AGG GCT CCA AAC ACG AA	66
JK_qDlGR1 rev:	TCC TCG CTG AGA CCA ACA AC	
JK_qDlGST1 for:	GGT CCA TGG CAA CCC TAT CT	62
JK_qDlGST1 rev:	GCC TCA ACT TCA AGC CAC AC	

Sequences:

>D. lanata GST (MT948956)

>D. lanata Act-Fragment (MT948955)

TCCAATCCAAACACTGTACTTCCTCTCTGGTGGTGCAACAACCTTTATCTTCATGCTGCTAGGAGCCAATGCTGT GATTTCCTTGCTCATACGGTCAGCAATACCAGGGAACATGGTTGAACCACCACTGAGGACAATATTACCATAGAG ATCCTTCCTAATATCAACATCACACTTCATGATGGAGGTGTACGTAGTCTCATGGATTCCAGCTGCTTCCATGCC AGTTAAAGAAGGCTGGTATAGGACTTCTGGGCATCTGAATATCTTTCTAGAAGATCTCCTACAATATTCTCAGCT GCCATGGAAAATCGATGTTCTTCTTTTATTCTCTCAAGATTTTCAGGCTGTATATTAAAACTTATATAAGAACT ATGCTAACCACCTCATCAGGAACCGTTGTAGGTGGCGTGGGTTTTCTTGGCAATCGACTCTCATGAAAACTACGA GCTAAATATTCAATATGTTCCTCTTGACCAACTTTATTCTGCATTTTTTTGAACGAGGTTTAGAGCAAGCTTCA GGAAAACTGAGACAGGAATTTTATAAAATTTAAAATTTTGAAGAAAGTTCAGGGTTAATAGCATCCATTTTTTG CTTTGCAAGTTCCTA

>D. lanata P5\u03c8R1-Fragment(AY585867.1)

>D. lanata P5 β R2-Fragment(HM210089.1)

>D. lanata GR-Fragment(MT948958)

GGTAGGGCTCCAAACACGAAAAGGTTAAATCTGGAATCTGTAGGGGTTGAACTCGATAAATATGGAGCTGTGGTG GTTGATGATTACTCTCGAACCAAAGTACCTAGCATATGGGCCATAGGTGATGTTACAAACCGTATGAATCTTACT CCTGTTGCCTTAATGGAAGGAACCTGTTTTGCCAAAACTGTGTTCGGTGGGCAGCCTTCCAAACCAGACTACGAC CATATTCCTTGCGCTGTCTTCTGCATCCCACCACTTTCAGTTGTTGGTCTCAGCGAGGA

>D. lanata GST-Fragment

GSH

