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Other Supplementary Materials for this manuscript include the following:

Supplementary Data 1: Broad sense heritability (H2) and narrow sense heritability (h2) of phenotypic traits
measured in centralized stations. For each trait, the table reports heritability values for different location and
year combinations. DB, days to booting; DF, days to flowering; DM, days to maturity; PH, plant height;
NET, number of effective tillers; SPL, spike length; SPS, seeds per spike; BM, biomass; GY, grain yield;
TGW, thousands grain weight.

Supplementary Data 2: Broad sense heritability (H2) and narrow sense heritability (h2) of overall appreciation
(OA) provided by farmers in centralized stations. The table reports heritability values for different location
and gender combinations.

Supplementary Data 3: Prediction accuracy of the benchmark for GY and OA in different prediction scenarios.
For each scenario, the table report a brief description. Training set and validation set are reported with
the corresponding number of genotypes in brackets. For both training and validation, total number of data
points is derived from number of genotypes, replicas, years, locations. Accuracy and standard deviation of
each scenario are provided.

Supplementary Data 4: Mean and standard deviation of the prediction accuracy (Kendall τ) of 3D-breeding
in 100 simulations run for each of five reduced scenarios.
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Supplementary Note
Derivation of best linear unbiased prediction (BLUP) values
GYSTATION and OASTATION measured in centralized trials were used to derive best linear unbiased
prediction (BLUP) values using the R package ASReml1. BLUPs for GYSTATION were derived with the
following model:

Equation [s1]

yijkn = µ+ gi + yj + lk + glij + yljk + bn(jk) + e

In Equation s1, yijkn is the observed phenotypic value, µ is the overall mean, gi is the random effect of
genotype for entry i, yj is the random effect for year j, lk is the fixed effect for location k, glik is the random
interaction effect between genotype i and location k, yljk is the random interaction between year j and
location k, b is the random effect of replicated block nested within year j and location k, and e is the error.
The model considers locations a fixed factor included by experimental design. The year effect is considered
random because it cannot be controlled experimentally.

For calculation of BLUPs with a single location, the data was sub-set by location and Equation [s1] was
reduced as follows:

Equation [s1.1]

yijn = µ+ gi + yj + bn(j) + e

Where, yijn is the observed phenotypic value, µ is the overall mean, gi is the random effect of genotype for
entry i, yj is the random effect for year j, b is the random effect of replicated block nested within year j and
e is the error. This model was calculated independently for each location.

Likewise, for calculation of BLUPs with a single year, the data was subset by year and Equation [s1] was
reduced to:

Equation [s1.2]

yikn = µ+ gi + lk + glik + bn(k) + e

Where, yikn is the observed phenotypic value, µ is the overall mean, gi is the random effect of genotype for
entry i, lk is the fixed effect for location k, glik is the random interaction between genotype i and location k,
b is the random effect of replicated block nested within location k, and e is the error.

Broad-sense heritability (H2) of measured traits was derived from the variance component estimates from
Equation [s1] as follows:

Equation [s2]

H2 = σg
(σg + σgl

nloc
+ σgy

nyear
+ σe

nrep∗nloc∗nyear
)

Where σg is the genetic variance, σgl is the genotype by location variance, and σe is the error variance, nloc
is the number of locations, nyear is the number of years, and nrep is the number of replications.

For calculation of heritability within a location, variance components were estimated from Equation [s1.1]
and broad-sense heritability was calculated as follows:

Equation [s2.1]
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H2 = σg
(σg + σgy

nyear
+ σe

nrep∗nyear
)

For calculation of heritability within a single year, variance components were estimated from Equation [s2.2]
and broad-sense heritability calculated as:

Equation [s2.2]

H2 = σg
(σg + σgl

nloc
+ σe

nrep∗nloc
)

With each component defined as in Equation [s2].

Finally, for estimation of broad-sense heritability within a location – year the following equation was used:

Equation [s2.3]

H2 = σg
(σg + σe

nrep
)

Narrow sense heritability (h2) of measured traits was obtained linking the inverse genetic relationship matrix
derived from the R package AGHmatrix2 to regressor variables in Equation [s1] and using the deriving
variance components in Equation [s2] and derived Equation [s2.1], Equation [s2.2], and Equation [s2.3].

The general model to derive BLUPs of OASTATION was similar to the equations used for metric traits with
the addition of variance estimates for gender, farmer groups and individual farmers. For analysis of this
data we considered gender similar to a two-factor treatment with farmer groups as a blocking effect and
individual farmers as repeated measures. This provides a nested blocking design. As the farmer scores were
only recorded in one year, the model terms are consistent with the evaluation of metric traits in multiple
locations within a single year (Equation [s1.2]).

Equation [s3]

yikmnqtxy = µ+gi+lk+pm+glik+plmk+bn(k)+dq(mk)+gplimk+gdiq(mk)+ft(qmk)+rx(nk)+cy(nk)+grclixyk+e

In Equation s3, yijk is the observed trait value, µ is the overall mean, gi, lk, glik, and r(l)nk are consistent
with Equation [2], pm is the random effect for gender m, plmk is the interaction between gender and location,
gpim is the genotypic interaction with gender, d(q(mk)) is the random effect of group q nested within gender
and location, gplimk is the interaction of genotype with gender and location, gd(iq(mk)) is the interaction
of genotype by group within gender and location, r(x(nk)) and c(y(nk)) are the random effect of row x and
column y nested within replication and location. Finally, we model the within plot variance considering
farmers as repeated measures where f(t(qmk)) is the random effect of farmer nested within group, gender
and location and the within plot variance is captured in the term grclixyk which is the random interaction
of genotype by row and column within location (e.g. a single plot). Finally, e is the residual model error
assumed to be random and normally distributed.

As with the metric traits, the above model was reduced to estimate variance components to calculate BLUPs
within each location, using subsets of the data by location as follows:

Equation [s3.1]

yimnqtxy = µ+ gi + pm + dq(mk) + gpim + gdiq(m) + ft(qm) + rx(n) + cy(n) + grclixy + e

Equation [s3.1] is a reduced form of Equation [s3] where, yimnqtxy is the observed trait value, µ is the overall
mean, gi is the random genotypic effect, pm is the random effect for genderm, gpim is the genotypic interaction
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with gender, d(q(m)) is the random effect of group q nested within gender, gd(iq(m)) is the interaction of
genotype by group within gender, r(x(n)) and c(x(n)) are the random effect of row x and column y nested
within replication. As previously, the within plot variance considering farmers as repeated measures is
modeled where f(t(qm)) is the random effect of farmer nested within group and gender. The within plot
variance is designated grcixy which is the random interaction of genotype by row and column (e.g. a single
plot). Finally, e is the residual model error assumed to be random and normally distributed.

To calculate BLUPs and estimate variance components for each gender, the data was subset by gender and
Equation [s3] was reduced to:

Equation [s3.2]

yiknqtxy = µ+ gi + lk + glikbn(k) + dq(mk) + gdiq(k) + ft(qk) + rx(nk) + cy(nk) + grclixyk + e

Each of these terms are consistent with Equation [s3], with specification that d(q(k)) is the random effect of
group q nested within location, gd(iq(k)) is the interaction of genotype by group within location, and f(t(qk))
is the random effect of farmer nested within group and location. The within plot variance is again captured
in the term grclixyk which is the random interaction of genotype by row and column within location (e.g. a
single plot). Finally, e is the residual model error assumed to be random and normally distributed.

Finally, we calculated BLUPs for each gender within each location, subsetting the data by both gender and
location, using the following model:

Equation [s3.3]

yinqtxy = µ+ gi + bn(k) + dq + gdiq + ft(q) + rx(n) + cy(n) + grclixy + e

Each of these terms are consistent with Equation [s3] and Equation [s3.2], with specification that dq is the
random effect of group q, gdiq is the interaction of genotype by group, and f(t(q)) is the random effect of
farmer nested within group. The within plot variance is captured in the term grcixy which is the random
interaction of genotype by row and column (e.g. a single plot). Finally, e is the residual model error assumed
to be random and normally distributed.

The H2 of OA was derived according to a repeated measures design from the following equation: Equation
[s4]

H2 = σg
(σg + σgd

ngender
+ σgl

nloc
+ σgdl

ngender∗nloc
+ σw

nrep∗nloc) + σw

nrep∗nloc∗nfarmer
)

In Equation [s4], σg is the genetic variance, σgd is the variance of genotype by gender interaction divided
by two (for genders), σgl is the genotype by location variance, σgdl is the genotype by gender by location
variance, σw is the within plot genetic variance from sub-sampling specified in Equation [3] as grclixyk and σe
is the error variance. The variance components are respectively divided by the number of locations (nloc = 2),
the number of replication blocks (nrep = 2), and the total number of farmers (nfarmer = 30).

For the reduced models in Equation [s3.1], Equation [s3.2] and Equation [s3.3] the above heritability calculation
was modified as follows.

For the model by location the following calculations were used:

Equation [s4.1]

H2 = σg
(σg + σgd

ngender
+ σw

nrep
+ σe

nrep∗nfarmer
)

These terms are consistent with Equation [s4]
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For the model reduced to within gender estimates the heritability was calculated as follows:

Equation [s4.2]

H2 = σg
(σg + σgl

nloc
+ σw

nrep∗nloc
+ σe

nrep∗nloc∗nfarmer
)

In this case the number of farmers is reduced by half (n=15). All terms are likewise consistent with Equation
[s4].

Finally, the heritability was estimated for each gender separately within each location as:

Equation [s4.3]

H2 = σg
(σg + σw

nrep
+ σe

nrep∗nfarmer
)

In this case the number of farmers is again half of the total (n=15) and terms are consistent with Equation
[s4].

Narrow sense heritability (h2) of OA was derived linking the inverse genetic relationship matrix derived
from the R package AGHmatrix2 to regressor variables in Equation [s3]. Variance components were used to
calculate (h2) with Equation [s4] and derived Equation [s4.1], Equation [s4.2], and Equation [s4.3].

Influence of data volume on the comparison between 3D-breeding vs centralized
breeding
The comparison between the two approaches should be fair. We consider that the two setups are comparable
in terms of the costs and efforts but this is difficult to quantify for a situation in which each of these approaches
would be used on a routine basis. One key difference, however, is the volume of data available to each, and
this is also a key cost driver. Centralized breeding involved 8 plots per genotype (two locations, two years,
two replications per location), while decentralized observations were conducted on 113 plots per genotype in
the tricot incomplete block design. So, 3D-breeding has many more datapoints per genotype. To assess the
sensitivity of 3D-breeding to the data volume for its prediction accuracy, we created 5 scenarios that represent
different data volumes available. Each scenario is a subset of the plots containing respectively 75% (85 plots),
50% (56 plots), 25% (28 plots), 15% (17 plots) and 5% (5 plots) of the data. We selected plots randomly,
keeping balance between seasons, and always including all 41 genotypes evaluated. For each prediction we
calculated the Kendall τ correlation with the observed data. This process was repeated 100 times per scenario
and averaged. We report the average Kendall τ correlation for the different scenarios in Table S4.
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Supplementary figures

Supplementary Figure 1. Accuracy of genomic prediction within centralized trials, using GYSTATION and
OASTATION from 2012 to predict traits measured in 2013 data in the same locations (Ge, Geregera; Hs,
Hagreselam).
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Supplementary Figure 2. Farmer scores agreement across genders in the two centralized stations, Geregera
and Hagreselam. On the x-axis, BLUP values for male farmers’ OA. On the y-axis, BLUP values for female
farmers’ OA. A linear model fit is displayed with the corresponding R2 with colors according to legend.
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Supplementary Figure 3. Accuracy of genomic prediction by gender (M, men; W, women). In the first panel,
gender-specific OASTATION is used to predict GYSTATION and OASTATION . In the second panel, the same
predictors are applied to GYFARM and OAFARM
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Supplementary Figure 4. Spearman correlations between traits measured in stations and farms. Also given
for each location (Ge, Geregera; Hs, Hagreselam) values are derived from log-worth across all decentralized
trials. Non-significant correlations are crossed out
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Supplementary Figure 5. Accuracy of genomic prediction using OASTATION and GYSTATION to predict
GYFARM and OAFARM across seasons.
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Supplementary Figure 6. Accuracy of genomic prediction using OASTATION and GYSTATION to predict
GYFARM and OAFARM , restring farm data individual seasons (2013, 2014, 2015)
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Supplementary Figure 7. Accuracy of genomic prediction using OASTATION and GYSTATION to predict
GYFARM and OAFARM , training and testing the model on the subset of cold adapted genotypes (left) or
warm adapted genotypes (right).

12



Supplementary Figure 8. Distribution of environmental distance across the test sites, by multidimensional
scaling (MDS) of temperature variables. The first MDS dimension is given in the left panel, while the second
MDS is given in the panel to the right. The histogram represents the distribution of decentralized fields,
while stations are highlighted with dots colored according to legend.
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Supplementary Figure 9. A principal components (PC) analysis reporting the environmental diversity at the
test sites. PC1 and PC2 are reported with the corresponding proportion of variance explained. Symbols
represent test sites with shapes according to administrative regions of Ethiopia. Colored shapes represent
farm sites and are colored in increasing shades of red proportionally to the maximum night temperature
during reproduction (maxNT) as reported in legend. Stations are represented in bigger size and grey color.
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Supplementary Figure 10. Accuracy of genomic prediction using GYSTATION and OASTATION to predict
GYFARM and OAFARM in increasingly different climatic conditions. GYFARM and OAFARM are computed
for farms in the first, second, third, and fourth quantiles (Q1 to Q4) of environmental distances from Geregera
(left panel) and Hagreselam (right panel).
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Supplementary Figure 11. A map of Ethiopia reporting the agroecological zones, with colors according
to legend. Yellow crosses on the map represent farm sites, red crosses represent stations. A summary is
given in the table to the right. Decentralized farms are located in Amhara, Oromia and Tigray and cover
warm sub-moist highlands (SM2), tepid sub-moist highlands (SM3), and cool sub-moist highlands (SM4).
centralized stations are located in Geregera (Amhara) and Hagreselam (Tigray), and cover SM2 and SM4,
though the three agroecologies are in close connection.
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Supplementary Figure 12. Plackett-Luce Tree of decentralized trial data and associated environmental and
genomic data for durum wheat in Ethiopia. Intervals show quasi-standard errors. The grey vertical lines
indicate the average probability of winning (1 / number of genotypes). In this case, the model selected
minNT, the minimum night temperature (Celsius) during the vegetative and maxNT, the maximum night
temperature (Celsius) during reproductive period, as the covariate.
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Supplementary Figure 13. Kendall correlation of crop performance on OAFARM across the decentralized
plots in Ethiopia
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Supplementary Figure 14. Goodness-of-fit (pseudo-R2) of Plackett-Luce Trees determined with blocked
cross-validation for 3D-breeding with grain yield (GY) and farmers’ overall appreciation (OA).
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Supplementary Figure 15. Location of origin of the top 41 durum wheat (Triticum durum Desf.) genotypes
selected for the decentralized trials.
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Supplementary Figure 16. Location of decentralized farmers’ plots (black dots) and centralized trials (red
triangles) across Ethiopia.
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