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Supplementary Note1. TIGHT-BINDING MODEL AND CHERN NUMBER

In this section, we supply the details of the reduction procedure, review Chern numbers related to the quantum
Hall effect and derive the phase diagrams of the 1D and 2D topological pumping lattices within the nearest-neighbour
tight-binding (TB) model. For a 1D topological system with one pumping parameter in a synthetic dimension, one
can mathematically map the 1D pumping to the 2D quantum Hall effect with a first Chern number. Similar to the
1D case, a 2D topological pumping can be subject to two pumping parameters, corresponding to a 4D quantum Hall
effect, which is characterized by a second Chern number.

A. Reduction to 1D tight-binding models

The basic acoustic cavity used in our designs, the closed cube, displays a small number of acoustic resonant modes
Qα with frequency να in the frequency range from 0 to 10 kHz. A tight-binding representation of the acoustic wave
propagation across our meta-crystal can be achieved via the mode coupling technique. In this approach, the pressure
distribution of a collective resonant mode at frequency ω is expanded as

Ψ(x, z;ω) =
∑
n,m,α

ψαnmQ
nm
α (x, z), (S1)

where Qnmα is the resonant mode α supported by the acoustic cavity located at address (n,m) in our 2D structure
(analysis of the 3D structure proceeds similarly). The complex coefficient ψαnm encodes the amplitude and the phase
of that resonant mode. Same expansion can written in a more abstract notation as

|Ψ〉 =
∑
n,m,α

ψαnm|n,m,α〉. (S2)

Then the dynamical matrix of the collective resonant modes takes the generic form D = Dx +Dz, with

Dx =
∑

n,m,α,β

κxαβ(hnm)
(
|n,m,α〉〈n+ 1,m, β|+ |n+ 1,m, α〉〈n,m, β|

)
(S3)

and

Dz =
∑
n,m,α

ν2α|n,m,α〉〈n,m,α|+
∑

n,m,α,β

κzα,β
(
|n,m,α〉〈n,m+ 1, β|+ |n,m+ 1, α〉〈n,m, β|

)
. (S4)

Note that the coupling coefficients are symmetric in the α and β indices. We recall that the horizontal coupling
coefficients depend on the thickness hnm of the connecting channel between (n,m) and (n + 1,m) cavities, which is
modulated in both x and z directions. On the other hand, the coupling coefficients in the z-direction are uniform.

Because of the z-variation of the horizontal coupling coefficients, the dynamical matrix does not commute with
the z-translations, hence Bloch decomposition is not immediately available. We recall that the horizontal connecting
channels are modulated with the algorithm

hnm = h0[1 + δ sin(bnmod 3 + φm)], (S5)

hence the z-variation comes from the dependence on the pumping parameter φ. We can always seek the eigen-modes
of the dynamical matrix in the form |Ψ〉 =

∫
dkz |Ψ(kz)〉, with

|Ψ(kz)〉 =
∑
n,m,α

eıkzmϕαnm|n,m,α〉, (S6)

and observe that

Dz|Ψ(kz)〉 =
∑

n,m,α,β

[
δαβν

2
αe
ıkzmϕβnm + κzαβ

(
eıkz(m+1)ϕβn(m+1) + eıkz(m−1)ϕβn(m−1)

)]
|n,m, β〉. (S7)

If φ is sampled very finely along the z-direction as described in the main text, then

ϕβn(m±1) ≈ ϕ
β
nm ± εazφ′ ∂φϕβnm (S8)
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and we have

Dz|Ψ(kz)〉 =
∑

n,m,α,β

[ν2αδαβ + 2 cos(kz)κ
z
αβ + 2εiazφ

′ sin(kz)κ
z
αβ∂φ]eıkzmϕβnm|n,m, β〉. (S9)

The full COMSOL simulations reported in Fig. 1c indicate that the spectrum in our window of interest can be
explained by one mode per acoustic cavity and this is quantitatively demonstrated in Supplementary Figure 1.
As such, we can drop the α and β indices. Then, to the zero-th order in ε, Dz|Ψ(kz)〉 = ν(kz)

2|Ψ(kz)〉, with
ν(kz)

2 = ν20 + 2 cos(kz)κ
z
0 and the action of the full dynamical matrix becomes

D
∑
n,m

eıkzmϕnm|n,m〉 =
∑
n,m

eıkzmν(kz)
2ϕnm|n,m〉+

∑
n,m

eıkzmκx(hnm)[ϕ(n+1)m|n,m〉+ ϕnm|n+ 1,m〉]. (S10)

The resonant condition D|Ψ〉 = f2|Ψ〉 is satisfied if the ϕ-coefficients are solutions of the equation

(f2 − ν(kz)
2)ϕnm = kx(hnm)ϕ(n+1)m + kx(h(n−1)m)ϕ(n−1)m. (S11)

Hence, for a fixed m, ϕnm is an eigen-mode of reduced Hamiltonian H(φm) written in Eq. 4 of the main text. If
eigenvalue of this eigen-mode is εm, then the value of kz at the layer m is determined by the relation f2−ν(kz)

2 = εm.
Let us acknowledge that, for weak modulations of hnm, we have:

κx(hnm) ≈ κx(h0) +
dκx

dh
h0δ cos(bnmod 3 + φm) = κ0[1 + δ′ cos(bnmod 3 + φm)]. (S12)

Inserting back the term in Eq. S9 that is neglected in the zero-th order analysis, we find that, in the first order in
ε, the dispersion equation reads

−iε(2azφ′ sin(kz(φ))κz0)∂φ|ϕ〉 =
(
H(φ)− ε(φ)

)
|ϕ〉, (S13)

where all the dependencies on m are passed to the pumping parameter φ.

Supplementary Figure 1: Two highest bands of 1D pumping (a) and 2D pumping (b) when the pumping parameter
is φ = −0.2π. The blue solid lines are the full-wave simulation results. The corresponding fitting results are in red dashed
lines. The fitting parameters for 1D pumping are ε = 3.61, κ0 = −1.44 and δ = 0.55. The fitting parameters for 2D pumping
are ε = 4.43, κ0 = −0.91 and δ = 0.55.

B. 1D topological pumping and first Chern number

The bulk Hamiltonian of the 1D 3-periodic lattice (Supplementary Figure 2a) with a space-dependent modulation
on the hopping is

H(φ) =

 ε κ1 κ3e
−ik

κ1 ε κ2
κ3e

ik κ2 ε

 , (S14)
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where k is the wave number, ε represents the on-site potential, and κj(φ) = κ0[1 + δ cos(bj + φ)](j = 1, 2, 3) are
modulated hopping amplitudes with bare hopping κ0, modulation amplitude δ, and modulation frequency bj . The
pumping parameter φ corresponds to an additional synthetic dimension. We then develop this TB model to achieve
the associated acoustic dispersion relation. It is found that altering the thickness of channel is equivalent to changing
the coupling coefficients between neighbouring sites, while the on-site energy does not change due to the fixed size of
the cavity. The on-site potential ε (ε = 3.61) and the coupling hopping κ0 (κ0 = −1.44) are extracted from full-wave
finite element simulations. As expected, the dispersion curves calculated from the TB model are quantitatively agree
with the numerical simulations (Supplementary Figure 1a). Therefore, our coupled acoustic cavities can be faithfully
described by the TB model.

Supplementary Figure 2: Tight-binding model and phase diagram of 1D space-modulated lattices. a Schematic of
the 1D topological pumping lattice with a 3-periodic unit cell, which can be modulated using the pumping parameter φ; and
b its corresponding bulk band structure as a function of the nondimensional wavenumber and the pumping parameter φ with
first gap Chern numbers assigned to each band gap. The grey surfaces are the full-wave simulation results. The corresponding
fitting results of TB model are in red circles. The fitting parameters are ε = 3.61, κ0 = −1.44 and δ = 0.55. c Phase diagram
of the 1D topological pumping lattice illustrating first gap Chern numbers for the lower and upper band gaps as a function
of modulation frequencies {b1, b2, b3} interpreted as barycentric coordinates in the plane (b1 + b2 + b3 = 2π). The yellow star
denotes the phase with the specific parameters ({b1, b2, b3} = {0, 2π/3, 4π/3}) used in b and d. d The edge-state dispersion of
a finite lattice. The green and yellow dots indicate left and right edge modes, respectively.

Supplementary Figure 2b shows the evolution of dispersion surfaces as a function of the nondimensional wavenumber
and the pumping parameter. The coupling between the modulated dimension and the synthetic dimension opens two
bulk gaps and can induce topological phase transitions in the model. The quantized bulk response of this system is
characterized by the first gap Chern number: the sum of first Chern numbers of the bands below that gap in frequency
[1]

C1 =
∑

fβ<fgap

1

2πi

∫
BZ

Bβlm(k)d2k, (S15)



5

which is an integral on the 2D Brillouin zone (BZ) of the Berry curvature

Bβlm(k) = ∂klA
β
m(k)− ∂kmA

β
l (k), (S16)

where Aβl =
〈
ψβ(k)

∣∣∂l∣∣ψβ(k)
〉

is the Berry connection. Here
∣∣ψβ(k)

〉
enotes the eigenstate of the band β and of

Bloch momentum k = (φ, k). The first gap Chern number is an integer and invariant as long as the band gap
does not close. The first gap Chern number manifests through the quantization of the bulk response, which has the
corresponding edge pumping. Therefore, gapless and unidirectional edge states appear in a finite sample (as many as
the sum of the Chern numbers of bands below a given gap). To demonstrate the robustness of the first gap Chern
number, Supplementary Figure 2c shows the phase diagram of the first gap Chern number in function of pumping
parameters {b1, b2, b3} interpreted as barycentric coordinates in the plane (b1 + b2 + b3 = 2π). It is noticed that
only two arrays of the first gap Chern numbers, namely ±(1,−1) are obtained with different relative values of the
modulation parameters bj , j = 1, 2, and 3. This figure also reveals that the first gap Chern number is insensitive to
uncertainty in the modulation parameters except for near critical lines where phase transitions occur. The edge-state
dispersion of a finite lattice with C1 = {−1, 1} is plotted in Supplementary Figure 2d and a pair of edge states are
populated within two bulk band gaps.

C. 2D topological pumping and second Chern number

Here, we derive the second Chern number in a 2D topological pumping lattice (Supplementary Figure 3a):

H(φ) =
∑
x,y

ε |x, y〉 〈x, y|+
∑
x,y

[κx(φx) |x, y〉 〈x+ 1, y|+ κy(φy) |x, y〉 〈x, y + 1|+ h.c.]. (S17)

This Hamiltonian H of this system can be decomposed into two orthogonal 1D AAH model along the two modulated
directions x and y

H = H(φx)⊗ I + I ⊗H(φy) =



ε κx1 κx3e
−ikx κy1 0 0 κy1e

−iky 0 0
κx1 ε κx2 0 κy1 0 0 κy2e

−iky 0
κx3e

ikx κx2 ε 0 0 κy1 0 0 κy3e
−iky

κy1 0 0 ε κx1 κx3e
−ikx κy2 0 0

0 κy1 0 κx1 ε κx2 0 κy2 0
0 0 κy1 κx3e

ikx κx2 ε 0 0 κy2
κy1e

iky 0 0 κy2 0 0 ε κx1 κx3e
−ikx

0 κy3e
iky 0 0 κy2 0 κx1 ε κx2

0 0 κy3e
iky 0 0 κy2 κx3e

ikx κx2 ε


, (S18)

where κxj = κ0[1 + δ cos
(
bxj + φx

)
] and κyj = κ0[1 + δ cos

(
byj + φy

)
](j = 1, 2, 3) are modulated hopping terms. In this

TB model, each H(φα) is a 1D Hamiltonian with one pumping parameter, that is, 1D topological pumping. Because
each 1D pumping has bulk and edge states, the eigenstates in 2D pumping can be grouped into three modes [2]: (i) 2D
bulk modes are the product of 1D bulk modes in x and y directions; (ii) 1D topological edge modes are the product
of 1D bulk modes with a zero corner modes; (iii) 0D topological corner modes are the product of two corner modes
in 1D pumping.

We then implement this 2D TB model to achieve the associated acoustic dispersion relation. The on-site potential is
fitted as ε = 4.43, and the hopping parameter as κ0 = −0.91. As we can see in Supplementary Figure 1b, the TB model
can capture the dispersion relations of real acoustic material very well in the whole Brillouin zone. Supplementary
Figure 3b shows the band dispersion of the model along high symmetry lines (X-Γ-M-X) and synthetic dimensions
(φ = φx = φy). The coupling between modulated dimensions and synthetic dimensions opens four bulk gaps and can
be characterized with non-trivial second gap Chern numbers [2, 3]:

C2 =
∑

fβ<fgap

1

32π2

∫
BZ

εlmnoB
β
lmB

β
no(k)d4k, (S19)

where εlmno is the 4D Levi-Civita symbol, ensuring that this topological invariant vanishes in lower dimensions. Here

the integral on the 4D Brillouin zone (BZ) of the Berry curvature Bβlm(k) = ∂klA
β
m(k) − ∂kmA

β
l (k) is written in

terms of the Berry connection Aβl =
〈
ψβ(k)

∣∣∂l∣∣ψβ(k)
〉
. The Bloch momentum is k = (φx, φy, kx, ky). Supplementary

Figure 3c shows the phase diagram of the second gap Chern number in function of the modulation frequency bαj



6

Supplementary Figure 3: Tight-binding model and phase diagram of 2D space-modulated lattices. a Schematic of
the 2D topological pumping lattice with a 3× 3 unit cell, which can be modulated using the pumping parameters φx and φy;
and b its corresponding bulk band structure along high symmetry lines and the synthetic dimension φ with second gap Chern
numbers assigned to four band gaps. The grey surfaces are the full-wave simulation results. The corresponding fitting results
are in red circles. The fitting parameters are ε = 4.43, κ0 = −0.91, δ = 0.55. c Phase diagram of the 2D topological pumping
lattice illustrating second gap Chern numbers for four band gaps as a function of modulation frequencies {b1, b2, b3} interpreted
as barycentric coordinates in the planes ((bα1 + bα2 + bα3 = 2π) with α ∈ {x, y}; bxj = byj , j = 1, 2, and 3). The yellow star
denotes the phase with the specific parameters ({bα1 , bα2 , bα3 } = {0, 2π/3, 4π/3}) used in b and d. d The edge- and corner-state
dispersions of a finite lattice. The green and yellow dots indicate left-bottom and right-top corner modes, respectively. The
colors of modes indicate their characteristics, which are represented in the inset.

interpreted as barycentric coordinates. It is found that only two arrays of the second gap Chern numbers for four
band gaps, namely ±(1,−3, 3,−1) are obtained with different relative values of the modulation parameters. Thus,
one can tune the system across a topological transition point by changing the value of the modulation parameter.
The edge- and corner-state dispersion of a finite lattice is shown in Supplementary Figure 3d. Indeed, the effective
Hamiltonian of Eq. S18 implies that the corner mode are composed of the product of two edge modes in the 2D system
[2]. As a result, the topological corner modes in the 3D system are directly related to the nonzero combinations of
two first gap Chern numbers, C ≡ (Cx1 , C

y
1 ), which are further connected to the second gap Chern number. It reads

[4]

r∑
i=1

C2,fi =
∑

fr−1<fx+fy<fr

Cx1,fxC
y
1,fy

, (S20)

where C2,fi is the second Chern number for the band gap with the frequency no larger than fi, and Cx1,fx is the
first Chern number for the band gap with the frequency no larger than fx. In our system, the topological invariants
protecting the corner modes from the lowest to the highest band gaps are (Cx1,f1 , C

y
1,f1

) = (−1,−1), (Cx1,f1 , C
y
1,f2

) =

(−1, 1), (Cx1,f2 , C
y
1,f1

) = (1,−1), and (Cx1,f2 , C
y
1,f2

) = (1, 1).
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D. Modulated channels with loss

We evaluate the loss effects on topological boundary modes by introducing loss in the hopping κj(φ) = κ0[1 +
δ cos(bj + φ)] + iη, where η is the loss coefficient. Supplementary Figure 4 shows the edge-state dispersion of the
2D system with different loss coefficients. In Supplementary Figure 4a, it is clearly evident that the smaller loss
coefficient with η = 0.1κ0 cannot affect the dispersion property by comparing with the lossless case in Supplementary
Figure 2d. However, as seen in Supplementary Figure 4b, the larger loss seriously affected the dispersion property,
which makes the boundary mode and bulk mode overlap. This phenomenon is further confirmed in the 3D system;
see Supplementary Figure 5.

Supplementary Figure 4: The edge-state dispersion of the 2D channel-modulated acoustic crystal with different
losses in the hopping. a η = κ0. b η = 6κ0.

Supplementary Figure 5: The edge- and corner-state dispersion of the 3D channel-modulated acoustic crystal
with different losses in the hopping. a η = κ0. b η = 3κ0.
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Supplementary Note2. DISCUSSION ON ADIABATICITY

In order to assess the adiabatic regime, we calculate the ratio of the pressure amplitude between input A and
output B with different numbers of horizontal layers; see Supplementary Figure 6a. It is observed that for topological
pumping the energy is reliably transported from the left edge to the right edge when Lz > 10az; see Supplementary
Figure 6b. In contrast, when Lz < 10az, the amplitudes of the waveguide drop. Then the adiabatic condition may
fail and the reflection between different layers will affect the topological waveguide. Further, we present simulation
results of the edge-to-edge and corner-to-corner pumping in Figs. 7 and 8, respectively. It is also observed that our
3D system with Lz = 15az has a reliable sound transport.

Supplementary Figure 6: Assessing adiabaticity of the 1D topological pumping. a Schematic of the 2D channel-
modulated acoustic crystal with input A and output B. b Ratio of the pressure amplitude between A and B with different
numbers of horizontal layers. The pressure is imposed at A and collected at B.

Supplementary Figure 7: Assessing adiabaticity of the edge-to-edge topological pumping. a Schematic of the 3D
channel-modulated acoustic crystal with input A and output B. b Ratio of the pressure amplitude between A and B with
different numbers of horizontal layers. The pressure is imposed at A and collected at B.
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Supplementary Figure 8: Assessing adiabaticity of the corner-to-corner topological pumping. a Schematic of the
3D channel-modulated acoustic crystal with input A and output B. b Ratio of the pressure amplitude between A and B with
different numbers of horizontal layers. The pressure is imposed at A and collected at B.
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Supplementary Note3. DIRECTIONAL AND PATH-DEPENDENT TOPOLOGICAL PUMPING

The phason plays the role of synthetic momenta and this implies that the pumping process along a given orbit
manifests only in a particular space direction. To demonstrate that the pumping processes are indeed highly direc-
tional, we numerically investigate the acoustic characteristics of the 3D structure for different phason orbits and with
the source placed at different space locations. If the pumping parameters are held constant with φx = φy = −0.2π
from the bottom array to the top array along the vertical direction (Supplementary Figure 9a), we excite the acoustic
waves at two different edges with the frequency at f = 7498 Hz: one at the centre of the left-bottom edge (Supple-
mentary Figure 9b) and the other at the centre of the right-bottom edge (Supplementary Figure 9c). The resulting
acoustic pressure distributions show the sound stays confined to the same side and it cannot spread to the bulk.
When we excite the acoustic waves at the bottom corner with the frequency at f = 6175 Hz, the sound stays confined
to the corner and is transferred to the top corner along the edge (Supplementary Figure 9d). We then present an
additional 3D acoustic structure, engineered to pump along the horizontal orbit from (−0.2π,−0.2π) to (0.2π,−0.2π)
(Supplementary Figure 9e). We note that when the sound is excited at the left-bottom edge, it can be pumped to
the bulk, and then to the opposite top-right edge (Supplementary Figure 9f). However, when the sound is excited at
the right-bottom edge, it still stays confined to the same side because φy is not pumped (Supplementary Figure 9g).
In addition, we observe that when the sound is excited at the bottom corner, it is propagated along the same surface
instead to the opposite corner at the top layer (Supplementary Figure 9h). Similar observations hold if the orbit is
changed from (−0.2π,−0.2π) to (−0.2π, 0.2π).

To further demonstrate the directional character of the pumping, we vary the pumping parameters along the
diagonal orbit (see the inset of Fig. 2d in the main text). As shown in Supplementary Figure 10a (or Fig. 3b),
the edge-to-edge topological pumping is observed with the source placed on the left-bottom edge at f = 7498 Hz,
while it is not allowed to pump when the source is moved to the right-bottom edge. Similar results can be observed
from Supplementary Figure 10c (or Fig. 3d) for the 2D topological pumping on the propagation of corner states
from the left-bottom corner to the right-top corner with the frequency at f = 6175 Hz. However, acoustic wave is
heavily suppressed if the the source is placed the right-bottom corner (Supplementary Figure 10d). In this respect, the

structure acts like a perfect “transistor” because the pumping can be completely turned on and off by 180
◦

rotations.
Similar observations hold if the orbit is aligned with the second diagonal φx = −φy.
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Supplementary Figure 9: Numerical observation of edge-to-edge topological and corner-to-corner topological
pumpings for different phason orbits and with the source placed at different space locations. a A phason orbit
with φx = φy = −0.2π and its corresponding 3D acoustic structure (b-d). Sound that is excited at the left-bottom edge b
or the right-bottom edge c with the frequency at f = 7498 Hz excites the topological edge modes and spreads out along the
facet. d Sound that is excited at the bottom corner with the frequency at f = 6175 Hz excites the topological corner modes
and spreads out along the edge. e A horizontal phason orbit (from (−0.2π,−0.2π) to (0.2π,−0.2π)) and its corresponding 3D
acoustic structure (f-h). f Sound is excited at the left-bottom edge to be pumped to the right-top edge with the frequency at
f = 7498 Hz, while g no such pumping is observed when sound is excited at the right-bottom edge. h Sound is excited at the
bottom corner to be pumped to the opposite top corner along the x direction with the frequency at f = 6175 Hz.

Supplementary Note4. ROBUSTNESS TO DISORDER IN PUMPING PARAMETERS

In this section, we discuss the robustness of topologically protected pumping against random disorders of pumping
parameters. We allow pumping parameters of the m-th layer to be randomly varied δφm with respect to its original val-
ues (φm, φm); that is, φxm = φym = φm+δφm. The disorder degree is defined as 100% max(δφm/φm). In the simulation
of disordered acoustic pumping, the disorder parameters are generated by the random function in MATLAB script and
converted to small deviations of pumping parameters with 10% disorder. Here, the perturbed pumping parameters are
δφm = {−0.008,−0.0012,−0.0108, 0.0138,−0.0122,−0.0110,−0.0132,−0.0109,−0.0026,−0.0076, 0.0169,−0.0028,
− 0.0126, 0.0162, 0.0192}π and φm varies linearly from −0.2π to 0.2π along the z direction. It is seen that the 10%
disorder degree has no noticeable influence on the edge-to-edge (Supplementary Figure 11a) and corner-to-corner
(Supplementary Figure 11b) pumpings. Thus, topological properties for acoustic pumping can be readily obtained in
practice without requiring uniform pumping parameters across the space-modulated materials.
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Supplementary Figure 10: Acoustic path-dependent topological pumping along the diagonal orbit (the inset of
Fig. 2d). a Numerical observation of edge-to-edge topological pumping with the source placed on the left-bottom edge at
f = 7498 Hz, while the pumping is completely absent if the source is moved to the right-bottom edge b. c Numerical observation
of corner-to-corner topological pumping with the source placed on the left-bottom corner at f = 6175 Hz, while the pumping
is completely absent if the source is moved to the right-bottom corner d.
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Supplementary Figure 11: Robust sound transport to disorder in pumping parameters. a Numerical observation of
topological pumping of edge modes with random pumping parameters. Acoustic waves are injected at the left-bottom edge to
be pumped to the right-top edge at frequency f = 7498 Hz. b Numerical observation of topological pumping of corner modes
with random pumping parameters. Acoustic waves are injected at the bottom corner to be pumped to the diagonally opposite
corner at the top layer with the frequency at f = 6175 Hz.
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Supplementary Figure 12: Topological pumping in the 3D channel-modulated acoustic crystal. a,b Pressure distri-
bution of edge-bulk-edge pumping along z-direction in boundaries. c,d Pressure distribution of corner-bulk-corner pumping
along z direction in boundaries.
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