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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

In the manuscript titled “Creating synthetic spaces for higher-order topological sound transport”, 

the authors realize higher-order topological boundary modes transportation by employing synthetic 

dimensions. More specifically, the synthetic dimension attributes to the existence of the topological 

boundary mode and varying the synthetic coordinate along z direction induces boundary modes 

transport, alike to the well-known Thouless pumping. The physics behind is solid, experimental 

results are also present to support the simulation results. 

This work is interesting in sound wave manipulation, while before I get the conclusion to support 

its publication in Nature Communication, I would like the authors to address the following remarks 

and comments. 

1) The author claims the system obeys Eq. (5) in the main text and said ”hence the amplitudes of 

the modes along the z direction are all equal”, which means there would be no reflection when 

wave propagates along z direction. While, as I can imagine, in extreme case when phi is fixed, 

since the system is periodic instead of be a straight waveguide along z direction, reflection induced 

by multiple scattering is expected. More simulation results to show the reflectivity from the system 

is appreciated. How would the reflection affect the outcome of the results? 

2) This is a question related to the first one. I note that the total propagating distance along z 

direction is not long compared to the previous study (Ref [32]), while “adiabatic pumping” requires 

a slow variation of the parameters. It is important to show that the adiabatic condition is indeed 

satisfied in this setup. Can the authors provide a quantitative study to support the “adiabatic” 

claim? 

3) Could you please figure out the pressure distribution along z direction in boundaries that wave 

localize? 

3) The author shows the system is a tight-binding system and presents the fitting results in 

Supplemental Fig. S1. My puzzle is, since the system is a 3x3 model, why only two bands are 

presented? Why specific phi is selected? 

4) Sound waves of 7 KHz in 3D printing structures may suffer considerable loss, which will broaden 

the spectrum, making the boundary mode and bulk mode overlap. Discussion about the loss is 

absent in the whole article. 

5) Two bands with nonzero second Chern number are presented in Fig. S3b, what about other 

bands and what is the relation between second Chern number and the corner mode? 

6) Color bars for the eigenstate field distributions in all figures are absent. 

Reviewer #2 (Remarks to the Author):

In this work, 1D and 2D topological boundary pumping is demonstrated using arrays of coupled 

acoustic cavities. Effectively, linear sound propagation is controlled by a careful design of the array 

structure and coupling to topological boundary modes is done using a speaker [akin to previous 

works in the field: Nature Physics volume 15, pages357–361(2019)]. The chosen metamaterial 

structures and experimental ideas/observables reproduce the results from Refs. [23] and [20] for 

acoustic devices. The robustness of the 2D pumping to disorder in the bulk is further explored. The 

extension of topological boundary pumping is important to for potential applications. Connection to 

high-order topological insulators is commented on. 

The exploration of topological effects in driven-dissipative metamaterials has started in the optics 

domain and since sparked immense activity in other linear media. The present results similarly 

provide a comprehensive transition of topological boundary pumping results from optics to 

acoustics. As such, they provide a novel platform for harnessing such effects for applications. I 

would, therefore, recommend publication in Nat. Commun. after the following points are 

discussed: 



1. The topology of pumps relies on the adiabatic theorem. At the same time, in the experiment 

adiabaticity is broken. Nevertheless, boundary pumping is observed. I would like the authors to 

discuss this point, see, e.g., Nature Communications volume 11, 3758 (2020). 

2. As the present study is mostly focused on transferring ideas from other fields for the purpose of 

novel applications, I would like the authors to provide more details on the proposed metrology 

applications.



Response to the Reviewers’ Comments 

 

The authors would like to take this opportunity to thank the reviewers for their insight and 

suggestions. The paper is improved based on the reviewers’ comments. The relevant changes are 

highlighted in red in the revised manuscript and Supplementary Information. Below are detailed 

point-to-point replies to the reviewers’ comments.  

 

 

 



Reviewer #1 (Remarks to the Author): 

In the manuscript titled “Creating synthetic spaces for higher-order topological sound transport”, 

the authors realize higher-order topological boundary modes transportation by employing 

synthetic dimensions. More specifically, the synthetic dimension attributes to the existence of 

the topological boundary mode and varying the synthetic coordinate along z direction induces 

boundary modes transport, alike to the well-known Thouless pumping. The physics behind is solid, 

experimental results are also present to support the simulation results. 

This work is interesting in sound wave manipulation, while before I get the conclusion to support 

its publication in Nature Communication, I would like the authors to address the following 

remarks and comments. 

Response: We thank the reviewer for his/her account of our paper. Below we do our best to 

answer his/her concerns and suggestions.  

 
1) The author claims the system obeys Eq. (5) in the main text and said “hence the amplitudes of 

the modes along the z direction are all equal”, which means there would be no reflection when 

wave propagates along z direction. While, as I can imagine, in extreme case when phi is fixed, 

since the system is periodic instead of be a straight waveguide along z direction, reflection 

induced by multiple scattering is expected. More simulation results to show the reflectivity from 

the system is appreciated. How would the reflection affect the outcome of the results? 

Response: The reviewer raises an important question. We point out that all our simulations are 

performed with hard boundary conditions at the top and bottom (along the z-axis) of the acoustic 

domain. As such, the reflection effects in questions are already incorporated in both our 

simulations and experiments. On the other hand, the derivation of Eq. (5) assumes an infinitely 

long system in the z-direction, or a situation where the source and the measurements are 

performed far away from the top/bottom boundaries. The analysis, however, can be 

straightforwardly adapted to the case of a finite sample, where the resonant modes satisfying 

the appropriate boundary conditions can be found as linear superpositions of the +kz and -kz 

solutions of Eq. (5) at certain quantized values of the wave numbers. Therefore, in response to 

this comment, we modified the text to, first, alert the reader that the analysis starting before Eq. 

(1) assumes an infinite system and, second, to inform the reader how to adapt the analysis to 

finite samples. Specifically, in the revised manuscript, we have added the following sentence to 

the end of Section II-A:  

“Last, it is worth mentioning that if the acoustic crystal is finite in the z-direction, the collective 

resonant modes are given by linear superpositions of the ±𝑘𝑧 solutions of Eq. (5) and they occur 

at quantized values of the wave numbers for which the top and bottom boundary conditions are 

simultaneously satisfied. Since the effective Hamiltonian from Eq. (4) is independent of the sign 

of the wave number, the main conclusion regarding the horizontal spatial profiles of the modes 

holds without modifications.” 



 

2) This is a question related to the first one. I note that the total propagating distance along z 

direction is not long compared to the previous study (Ref [32]), while “adiabatic pumping” 

requires a slow variation of the parameters. It is important to show that the adiabatic condition 

is indeed satisfied in this setup. Can the authors provide a quantitative study to support the 

“adiabatic” claim?  

Response: We thank the reviewer for the suggestion and agree that “adiabatic pumping” 

requires a slow variation of the phase parameters. We point out that the total phason variation 

from one end to other is just 0.4 and not the whole 2. For this reason, we are well within the 

adiabatic regime and a supporting quantitative study to assess the adiabatic limit is included in 

new Section S2 (“DISCUSSION ON ADIABATICITY”) of the revised Supplementary Information and 

summarized here briefly:  

“In order to assess the adiabatic regime, we calculate the ratio of the pressure amplitude between 

input A and output B with different numbers of horizontal layers; see Fig. R1a. It is observed that 

for topological pumping the energy is reliably transported from the left edge to the right edge 

when 𝐿𝑧 > 10𝑎𝑧; see Fig. R1b. In contrast, when 𝐿𝑧 < 10𝑎𝑧, the amplitudes of the waveguide 

drop. Then the adiabatic condition may fail and the reflection between different layers will affect 

the topological waveguide. Further, we present simulation results of the edge-to-edge and corner-

to-corner pumping in Figs. R2 and R3, respectively. It is also observed that our 3D system with 

𝐿𝑧 = 15𝑎𝑧 has a reliable sound transport.”  

 

Fig. R1: Assessing adiabaticity of the 1D topological pumping. (a) Schematic of the 2D channel-

modulated acoustic crystal with input A and output B. (b) Ratio of the pressure amplitude 

between A and B with different numbers of horizontal layers. The pressure is imposed at A and 

collected at B.  

 



 

Fig. R2: Assessing adiabaticity of the edge-to-edge topological pumping. (a) Schematic of the 

3D channel-modulated acoustic crystal with input A and output B. (b) Ratio of the pressure 

amplitude with different numbers of horizontal layers. The pressure is imposed at A and collected 

at B.  

 

 

Fig. R3: Assessing adiabaticity of the corner-to-corner topological pumping. (a) Schematic of the 

3D channel-modulated acoustic crystal with input A and output B. (b) Ratio of the pressure 

amplitude with different numbers of horizontal layers. The pressure is imposed at A and collected 

at B.  

 



 

3) Could you please figure out the pressure distribution along z direction in boundaries that wave 

localize? 

Response: In the manuscript, Figs. 3b and 3d only show the pressure distribution of edge-bulk-

edge and corner-bulk-corner pumping, layer by layer along the z direction, respectively.  

Following the suggestion of the reviewer, we show below the corresponding pressure 

distribution along z direction in boundaries; see Fig. R4. We have added this figure in the revised 

Supplementary Information.  

 

Fig. R4: Topological pumping in the 3D channel-modulated acoustic crystal. (a,b) Pressure 

distribution of edge-bulk-edge pumping along z direction in boundaries. (c,d) Pressure 

distribution of corner-bulk-corner pumping along z direction in boundaries.   

 

4) The author shows the system is a tight-binding system and presents the fitting results in 

Supplemental Fig. S1. My puzzle is, since the system is a 3x3 model, why only two bands are 

presented? Why specific phi is selected?  



Response: We thank the reviewer for pointing out this discrepancy. In Supplementary Fig. S1, we 

only show two highest bands of the TB model for 1D pumping (Fig. S1a) and 2D pumping (Fig. 

S1b). Indeed, the 3 × 1 model (Fig. S1a) has three bulk bands separated by two band gaps; the 

3 × 3 model (Fig. S1b) has five bulk band regions separated by four band gaps. For clarity, we 

have modified Fig. S2b and Fig. S3b to make appear fitting results of all bands at once with 𝜙 ∈

[−𝜋, 𝜋]; see Fig. R5. 

 

Fig. R5: The fitting results of the TB model for 1D pumping (a) and 2D pumping (b) when the 

pumping parameter is 𝜙 = −0.2𝜋. The grey surfaces are the full-wave simulation results. The 

corresponding fitting results are in red circles. The fitting parameters for 1D pumping are 𝜀 =

3.61 , 𝜅0 = −1.44  and 𝛿 = 0.55 . The fitting parameters for 2D pumping are 𝜀 = 4.43 , 𝜅0 =

−0.91 and 𝛿 = 0.55. The first and second Chern numbers are assigned to each band gap in (a) 

and (b), respectively. 

 

5) Sound waves of 7 KHz in 3D printing structures may suffer considerable loss, which will 

broaden the spectrum, making the boundary mode and bulk mode overlap. Discussion about the 

loss is absent in the whole article.  

Response: Dissipation is indeed a factor that needs to be carefully assessed for acoustic crystals. 

From the beginning, our experimental design focused on minimizing these effects, by relying on 

the state of the art in the 3D printing and by having the crystal as a solid one single piece rather 

than assembled from individual resonators. Based on the negligible signal attenuation in 

measurements, we concluded that, for the system sizes probed in our experiments, dissipation 

can be ignored. Still, the reviewer raises a valid point, namely, are the topological gaps large 

enough relative to the broadening due to the dissipation? The answer is yes because the 

modulation of the channels was adjusted until the topological gaps opened substantially (≈ 1kHz, 

see Fig. S1).   

 



To further demonstrate this point, we evaluate the loss effects on topological boundary modes 

by introducing loss in the hopping 𝜅𝑗(𝜙) = 𝜅0[1 + 𝛿 cos(𝑏𝑗 + 𝜙)] + 𝑖𝜂 , where 𝜂  is the loss 

coefficient. Figure R6 shows the edge-state dispersion of the 2D system (Fig. 1a) with different 

loss coefficients. In Fig. R6a, it is clearly evident that the smaller loss coefficient with 𝜂 = 0.1𝜅0 

cannot affect the dispersion property by comparing with the lossless case in Fig. S2d. However, 

as seen in Fig. R6b, the larger loss seriously affected the dispersion property, which makes the 

boundary mode and bulk mode overlap. This phenomenon is further confirmed in the 3D system; 

see Fig. R7. In the revised Supplementary Information, we have augmented a new Section S1-D 

(“Modulated channels with loss”) to include detailed discussions regarding loss effects.  

 

Fig. R6: The edge-state dispersion of the 2D channel-modulated acoustic crystal with different 

losses in the hopping. (a) 𝜂 = 𝜅0. (b) 𝜂 = 6𝜅0. 

 

 

Fig. R7: The edge- and corner-state dispersion of the 3D channel-modulated acoustic crystal 

with different losses in the hopping. (a) 𝜂 = 𝜅0. (b) 𝜂 = 3𝜅0.  



 

In addition, as a response to this point raised by the reviewer, we have added the following 

sentence to Methods (“Experimental specification”) of the revised manuscript:  

“The dissipation effects are minimized by employing the state of the art in 3D printing, which 

delivers acoustic crystals made of a single solid piece of high-quality polymer. Furthermore, the 

modulation of the connecting channels is adjusted until the topological gaps opened appreciably 

such that the dynamics of the topological pumped modes is virtually unaffected by dissipation 

effects, at least for the system sizes considered in our studies.”    

 

6) Two bands with nonzero second Chern number are presented in Fig. S3b, what about other 

bands and what is the relation between second Chern number and the corner mode?  

Response: We thank the reviewer for the above comments.  

(1) The second Chern numbers for the four band gaps in Fig. S3b are 1, -3, 3 and -1, 

respectively; see Fig. R5b. Two missing second gap Chern numbers have now been 

assigned to the corresponding band gaps in Supplementary Fig. S3b.  

(2) Indeed, the effective Hamiltonian of our 3D system is a sum of two copies of the 

Hamiltonian from our 2D system, 𝐻(𝜙) = 𝐻(𝜙𝑥) ⊗ 𝐼 + 𝐼 ⊗ 𝐻(𝜙𝑦), which implies that  

the corner mode are composed of the product of two edge modes in the 2D system 

(Zilberberg et al., Nature 553, 59-62, 2018). As a result, the topological corner modes in 

the 3D system are directly related to the nonzero combinations of two first gap Chern 

numbers, 𝐶 ≡ (𝐶1
𝑥, 𝐶1

𝑦
), which are further connected to the second gap Chern number. 

It reads (Chen et al., Phys. Rev. X 11, 011016, 2021) 

∑ 𝐶2,𝑓𝑖

𝑟

𝑖=1

= ∑ 𝐶1,𝑓𝑥

𝑥 𝐶1,𝑓𝑦

𝑦

𝑓𝑟−1<𝑓𝑥+𝑓𝑦<𝑓𝑟

, 

where 𝐶2,𝑓𝑖
 is the second Chern number for the band gap with the frequency no larger 

than 𝑓𝑖, and 𝐶1,𝑓𝑥

𝑥  is the first Chern number for the band gap with the frequency no larger 

than 𝑓𝑥. In our system, the topological invariants protecting the corner modes from the 

lowest to the highest band gaps are (𝐶1,𝑓1

𝑥 , 𝐶1,𝑓1

𝑦
) = (−1, −1) , (𝐶1,𝑓1

𝑥 , 𝐶1,𝑓2

𝑦
) = (−1,1) , 

(𝐶1,𝑓2

𝑥 , 𝐶1,𝑓1

𝑦
) = (1, −1), and (𝐶1,𝑓2

𝑥 , 𝐶1,𝑓2

𝑦
) = (1,1). The above discussion and the related 

references have been added to the end of Section S1-C of the revised Supplementary 

Information.  

 

7) Color bars for the eigenstate field distributions in all figures are absent.  

Response: We thank the reviewer for revealing this shortcoming: color bars have been added to 

Figs. 1d, 2d, and S9-S12 to clarify the scale of intensity.   



Reviewer #2 (Remarks to the Author): 

In this work, 1D and 2D topological boundary pumping is demonstrated using arrays of coupled 

acoustic cavities. Effectively, linear sound propagation is controlled by a careful design of the 

array structure and coupling to topological boundary modes is done using a speaker [akin to 

previous works in the field: Nature Physics volume 15, pages357–361(2019)]. The chosen 

metamaterial structures and experimental ideas/observables reproduce the results from Refs. 

[23] and [20] for acoustic devices. The robustness of the 2D pumping to disorder in the bulk is 

further explored. The extension of topological boundary pumping is important to for potential 

applications. Connection to high-order topological insulators is commented on. 

The exploration of topological effects in driven-dissipative metamaterials has started in the optics 

domain and since sparked immense activity in other linear media. The present results similarly 

provide a comprehensive transition of topological boundary pumping results from optics to 

acoustics. As such, they provide a novel platform for harnessing such effects for applications. I 

would, therefore, recommend publication in Nat. Commun. after the following points are 

discussed: 

Response: We thank the reviewer for his/her account of our paper. Below we do our best to 

answer his/her concerns and suggestions. 

 

1. The topology of pumps relies on the adiabatic theorem. At the same time, in the experiment 

adiabaticity is broken. Nevertheless, boundary pumping is observed. I would like the authors to 

discuss this point, see, e.g., Nature Communications volume 11, 3758 (2020). 

Response: We thank the reviewer for pointing us the interesting research from Nature 

Communications volume 11, 3758, 2020. The non-Hermitian strategy employed there could be 

used to reduce the size of our topological acoustic pumps, therefore, we have added the 

following sentences to the end of Section III of the revised manuscript:  

“At last, we emphasize that, in order to achieve a reasonable adiabatic regime, the number of 

stacks in our experimental set-ups is appreciable and, while this is perfectly fine for demonstration 

purposes, it will be an obstacle for practical applications. Recently, Fedorova et al (Nature 

Communications volume 11, 3758, 2020) showed that the non-adiabatic effects can be 

compensated using modulated dissipative channels and that such strategy can be used to achieve 

quantized topological pumping with fast driven cycles. It will be interesting to explore if this 

strategy can be deployed for our acoustic crystals in order to reduce the number of stacks needed 

for the topological pumping of sound.” 

We would like to include a few further comments for the reviewer. First, note that our system is 

not driven in an adiabatic cycle. Instead, an open (as opposed to closed) path was selected in the 

phason space, such that at the beginning/end of the path we have resonant edge modes located 

at the left/right sides of the structures. This path is slowly “walked” by changing the phason along 



the vertical stacking. The second remark is that the z-coordinate is discrete in our case. As such, 

the connection with the adiabatic theorem cannot be made. The theory we developed looks 

directly at the spatial profile of the resonant modes excited at a fixed frequency (in a controlled 

𝜖-expansion in Eq. (5)). The edge-to-edge pumping, which is predicted and then observed, is 

simply an interplay between the wave-dispersions along the stackings and on the horizontal 

planes. As long as 𝜖 remains within reasonable bounds, the predicted spatial profiles should be 

close to reality. In the revised Supplementary Information, we have augmented a new section to 

include a quantitative assessment of the “non-adiabatic” effects, with the conclusion that our 𝜖 

is well inside the asymptotic regime where the observations become independent of this 

parameter. See also our response to Comment (5) from Reviewer #1.  

 

2. As the present study is mostly focused on transferring ideas from other fields for the purpose 

of novel applications, I would like the authors to provide more details on the proposed metrology 

applications. 

Response: We thank the reviewer for the suggestion and agree that the details on the proposed 

metrology applications merits further discussion. In our opinion, the modulated acoustic crystal 

with synthetic spaces offers a new platform and route for efficient acoustic topological mode 

transport through the phason engineering. This may exhibit the possibility to implement the 

topological split-flow device, such as the topological beam splitter. In Fig. R8a, we create an 

acoustic beam splitter to engineer two-way beam splitting. In the current design, we consider a 

2D system with different phason orbits in four quadrants: in the first quadrant, the phason value 

is linearly distributed from −0.2𝜋 to 0.2𝜋 along the 𝑧-direction; in the second quadrant, the 

phason value is linearly distributed from 0.2𝜋  to −0.2𝜋  along the 𝑧 -direction; in the third 

quadrant, the phason value is held constant with 𝜙 = 0.2𝜋 along the 𝑧-direction; in the fourth 

quadrant, the phason value is held constant with 𝜙 = −0.2𝜋 along the 𝑧-direction. The input 

point is located at the bottom edge between the third and fourth quadrants. As shown in Fig. 

R8b, the sound stays confined to the interface until it arrives at the junction of four quadrants. 

Then, it splits into the first and second quadrants, and eventually reaches the two-end sites. 

Thanks to the topological protection, the propagation is immune against back reflection from 

discontinuity. As such, our design, based on the phason engineering and the topological pumping, 

provides a new avenue on the application of acoustic beam splitters. In Section III of the revised 

manuscript, we have included the related discussion on the application of acoustic beam splitters.   



 

Fig. R8: Topologically protected acoustic beam splitter. (a) Schematic of the phason engineering 

in the 2D acoustic system. (b) The pressure field distribution of the beam splitter. The sound is 

injected at the center of the bottom edge with the frequency at 𝑓 = 4960 Hz. 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have clarified the issues raised in the last round. In light of the revised manuscript, I 

think the authors need to add Phys. Rev. X 11, 011016, 2021 to the reference in the main text. 

Another recent work on acoustic topological pumping (PRL 126, 054301,2021) is highly relevant to 

this work. It also needs to be cited and discussed. 

Reviewer #2 (Remarks to the Author):

The authors diligently answered the critique raised by the referees and improved the quality of 

their manuscript. I support publication of the work in Nature Comm.



Response to the Reviewers’ Comments 

We thank all reviewers for their efforts and support to publish the manuscript in Nature 

Communications.  

Reviewer #1 (Remarks to the Author): 

The authors have clarified the issues raised in the last round. In light of the revised manuscript, I 

think the authors need to add Phys. Rev. X 11, 011016, 2021 to the reference in the main text. 

Another recent work on acoustic topological pumping (PRL 126, 054301,2021) is highly relevant 

to this work. It also needs to be cited and discussed.

Response: We thank the reviewer for the suggestion. The relevant references have been added 

to the revised manuscript.   

Reviewer #2 (Remarks to the Author): 

The authors diligently answered the critique raised by the referees and improved the quality of 

their manuscript. I support publication of the work in Nature Comm. 
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