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Figure S1. Loss of STAG2 does not dramatically alter cell proliferation but changes the
composition of the cohesin complex and renders cells sensitive to STAG1 deletion, related
to Figure 1.

(A) Western blot showing the expression levels of STAG2 in clonally selected A673 (left) and
TC71 (right). GAPDH is used as a loading control.

(B) TC71 cells were plated in methylcellulose media for 14 days. Shown are mean + standard
deviation barplots for the number of colonies (top) and for the volume per colony relative to
parental (bottom). One-way ANOVA Tukey’s multiple comparisons test, ns = not significant, * P
< 0.05.

(C) Cell fractionation followed by western blot was performed on the lysates from the indicated
cellular compartments in clonally selected control and STAG2 KO TC71 cells.

(D) Immunoprecipitation was performed on whole cell lysates using bead conjugated antibodies
against either SMC1A, SMC3 or IgG in control and STAG2 KO TC71 cells. Total proteins pulled
down with the antibodies were recovered and immunoblotted for the indicated proteins.

(E) Polyclonal STAG1 KO cells were generated via CRISPR/Cas9 mediated editing in two STAG2
WT (A673 & SKPNDW) and STAG2 mutant (TC32 & EW8) Ewing cell lines. Western blot shows
the levels of STAG1 in each cell line. GAPDH is used as a loading control.

(F) Short-term cell viability assays were performed using CellTiter-Glo in control and STAG1 KO
cells described in Figure S1E. Bar graphs represent mean and standard deviation, Student t-test,
*P <0.05, *** P < 0.0001.

(G) Polyclonal STAG1 KO cells were generated via CRISPR/Cas9 mediated editing in clonally
selected control (NT) and two independent STAG2 KO A673 cells. Western blot shows the levels
of STAGL1 in each cell line. GAPDH is used as a loading control.

(H) Short-term cell proliferation assays were performed using CellTiter-Glo in control and STAG1
KO cells described in Figure S1G. Bar graphs represent mean and standard deviation, Student t-

test, ** P < 0.01, *** P < 0.0001.
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Figure S2. STAG2 is enriched at PRC2 and enhancer marked regions and its deletion is
incompletely compensated by STAGL, related to Figure 2.

(A) Hockey plots depicting motifs enriched in SA2/H3K27ac promoters, SA2/others and Common
regions defined in Figure 2C.

(B)-(C) Metaplots showing average peak centered signal for (B) SA2 and (C) SMCI1A in the
cohesin regions defined in Figure 2C. Differential read density in STAG2 KO vs. WT A673 cells
based on unpaired t-test with Welch’s correction, **** P < 0.0001, *** P < 0.001, * P < 0.05, ns =
not significant.

(D) Western blot showing the expression levels of EWS/FLI1 in clonally selected control and
STAG2 KO A673 (left) and TC71 (right). GAPDH is used as a loading control.

(E) Genome-wide heatmap depicting EWS/FLI1 peak centered signal in control and STAG2 KO
A673 cells.

(F) Metaplot showing genome-wide average peak centered read density of EWS/FLI1 signal in
control and STAG2 KO A673 cells. Differential read density in KO vs. WT conditions based on

unpaired t-test with Welch'’s correction, * P < 0.05.
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Figure S3. Loss of STAG2 alters the frequency of cis-chromatin contacts, related to Figure
3.

(A) Heatmaps depicting the EWS/FLI1 binding on the high confidence EWS/FLI1 consensus
peaks generated from the intersection of 3 independent studies, all in A673 cells: this current
study (GEO: GSM5049890), (Riggi et al., 2014; Tomazou et al., 2015) and presented in Table
S1. Heatmaps are clustered in four regions defined by EWS/FLI1 peaks in (i) H3K27ac enhancers
with long (24) GGAA repeats; (ii) other H3K27ac enhancers (with no long GGAA repeats); (iii)
TSS+/-3kb promoter regions; (iv) other regions.

(B) EWS/FLI1, SMC1A, and H3K27ac in WT and STAG2 KO signal in A673 cells on the clusters
of high confidence EWS/FLI1 consensus peaks shown in Figure S3A.

(C) Read density metaplots showing average RPKM normalized signal for EWS/FLI1, SMC1A,
H3K27ac and SA1 in WT (black) and STAG2 KO (red) A673 cells. Differential read density in KO
vs. WT conditions, unpaired t-test with Welch’s correction, **** P < 0.0001, ns = not significant.
(D) Clustered heatmaps showing cohesin binding in non-Ewing sarcoma cells in the EWS/FLI1
regions defined in Figure S3A: SMC1A in MCF10 and HMEC cells (Kojic et al., 2018) and SMC3
in GM12878 cells (ENCODE, Snyder Lab).

(E) Median with 95% confidence interval plots for lengths of EWS/FLI1 differential loops with
decreased vs. increased contact coverage in STAG2 KO vs. WT A673 cells. Unpaired t-test with

Welch correction, **** P < 0.0001.



Table S2. Top 30 motifs enriched in enhancers involved in the differential Enhancer-
Promoter interactions, related to Figure 3.

# Motif name Consensus sequence -log10(P-value)
1 Bach2(bZIP)/OCILy7-Bach2-ChIP-Seq(GSE44420) TGCTGAGTCA 1.20E+01
2 Jun-AP1(bZIP)/K562-cJun-ChiP-Seq(GSE31477) GATGASTCATCN 1.16E+01
3 Nrf2(bzIP)/Lymphoblast-Nrf2-ChIP-Seq(GSE37589) HTGCTGAGTCAT 1.07E+01
4 Bachl(bzIP)/K562-Bachl-ChIP-Seq(GSE31477) AWWNTGCTGAGTCAT 1.06E+01
5  Fosl2(bZIP)/3T3L1-Fosl2-ChIP-Seq(GSE56872) NATGASTCABNN 9.54E+00
6 CTCF-SatelliteElement(Zf?)/CD4+-CTCF-ChIP-Seq(Barski_et_al.) TGCAGTTCCMVNWRTGGCCA 8.84E+00
7  EWS:FLI1-fusion(ETS)/SK_N_MC-EWS:FLI1-ChIP-Seq(SRA014231) VACAGGAAAT 8.10E+00
8 Etsl-distal(ETS)/CD4+-Polll-ChIP-Seq(Barski_et_al.) MACAGGAAGT 7.73E+00
9  NF-E2(bZIP)/K562-NFE2-ChIP-Seq(GSE31477) GATGACTCAGCA 6.90E+00
10 ERG(ETS)/VCaP-ERG-ChIP-Seq(GSE14097) ACAGGAAGTG 6.89E+00
11 JunB(bZIP)/DendriticCells-Junb-ChIP-Seq(GSE36099) RATGASTCAT 6.72E+00
12 Rfx6(HTH)/Min6b1-Rfx6.HA-ChIP-Seq(GSE62844) TGTTKCCTAGCAACM 6.22E+00
13 GABPA(ETS)/Jurkat-GABPa-ChIP-Seq(GSE17954) RACCGGAAGT 6.11E+00
14 PAX5(Paired,Homeobox)/GM12878-PAX5-ChIP-Seq(GSE32465) GCAGCCAAGCRTGACH 6.11E+00
15 Atf3(bZIP)/GBM-ATF3-ChIP-Seq(GSE33912) DATGASTCATHN 6.00E+00
16 BATF(bZIP)/Th17-BATF-ChIP-Seq(GSE39756) DATGASTCAT 5.93E+00
17 CEBP:AP1(bZIP)/ThioMac-CEBPb-ChIP-Seq(GSE21512) DRTGTTGCAA 5.91E+00
18 Fra2(bZIP)/Striatum-Fra2-ChlP-Seq(GSE43429) GGATGACTCATC 5.86E+00
19 Fral(bZIP)/BT549-Fral-ChIP-Seq(GSE46166) NNATGASTCATH 5.84E+00
20 EWS:ERG-fusion(ETS)/CADO_ES1-EWS:ERG-ChIP-Seq(SRA014231) ATTTCCTGTN 5.79E+00
21 TEADA4(TEA)/Tropoblast-Tead4-ChIP-Seq(GSE37350) CCWGGAATGY 5.41E+00
22 ELF5(ETS)/T47D-ELF5-ChIP-Seq(GSE30407) ACVAGGAAGT 4.87E+00
23  ETV1(ETS)/GIST48-ETV1-ChIP-Seq(GSE22441) AACCGGAAGT 4.85E+00
24 AP-1(bZIP)/ThioMac-PU.1-ChIP-Seq(GSE21512) VTGACTCATC 4.70E+00
25 GATA(Zf),IR4/iTreg-Gata3-ChlP-Seq(GSE20898) NAGATWNBNATCTNN 4.68E+00
26 MafK(bZIP)/C2C12-MafK-ChIP-Seq(GSE36030) GCTGASTCAGCA 4.62E+00
27 EHF(ETS)/LoVo-EHF-ChIP-Seq(GSE49402) AVCAGGAAGT 4.55E+00
28 ZNF322(Zf)/HEK293-ZNF322.GFP-ChIP-Seq(GSE58341) GAGCCTGGTACTGWGCCTGR 4.38E+00
29 Chop(bZIP)/MEF-Chop-ChIP-Seq(GSE35681) ATTGCATCAT 4.32E+00
30 CArG(MADS)/PUER-Srf-ChlIP-Seq(Sullivan_et_al.) CCATATATGGNM 4.23E+00

* Significance P-value < 0.0001 estimated by Homer v4.11. ETS and EWS/FLI1 motifs are highlighted yellow.
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Figure S4. Loss of STAG2 alters the EWS/FLI1 driven oncogenic transcriptional program,
related to Figure 4.

(A) Venn diagram showing the overlap between down-regulated and up-regulated differentially
expressed genes (Jlog2(fold change)| > 1.5, adjusted P < 0.10) in STAG2 KO vs. STAG2 WT
A673 and TC71 cells. Two-tailed Fisher exact test, **** P < 0.0001.

(B)-(E) GSEA plots demonstrating the enrichment of the STAG2 KO vs. WT gene signature in
TCT71 cells (|log2(fold change)| = 1.5, adjusted P < 0.10) in (B) genome-wide mRNA expression
signature of STAG2 KO vs. STAG2 WT in A673 cells (C) STAG2 mutant vs. STAG2 WT primary
Ewing sarcoma tumors (Crompton et al., 2014) and STAG2 low expression vs. STAG2 high
expression tumors in primary Ewing sarcoma tumors (D) (Postel-Vinay et al., 2012) and (E)
(Savola et al., 2011).

(F) Diagrams showing the EWS/FLI1 differential loop structures (long interaction arcs connecting
anchored regions) at the SOX9 locus on chromosome 17 and at the SIRPA locus on chromosome
20 in WT (black) and STAG2 KO (red) A673 cells. Numbers on the right show the contact read
coverage at loop anchors. Diagrams were created on the WashU Epigenome Browser platform.
(G) Scatter plot depicting the overlap between the 5,192 genes with significant changes induced
by STAG2 KO in A673 cells for EWS/FLI1 ChlP-Seq genome-wide binding (abs(Delta area under
curve signal) 2 1.5): decreased (3,714 genes) or increased (1,478 genes) vs. the 984 genes with
significant expression changes (|log2(fold change)| = 1.5, adjusted P < 0.10): down-regulated
(592 genes), up-regulated (392 genes). Two-tailed Fisher exact test, **** P < 0.0001, * P < 0.05,
ns = not significant.

(H) Scatter plot depicting the overlap between the 2,640 genes with EWS/FLI1 ChIP-Seq
promoter binding changes induced by STAG2 KO in A673 cells (abs(Delta for area under curve
signal) = 1.5): decreased (2,008 genes) or increased (632 genes) vs. the 984 genes with

significant expression changes (|log2(fold change)| =2 1.5, adjusted P < 0.1): down-regulated (592



genes), up-regulated (392 genes). Two-tailed Fisher exact test, **** P < 0.0001, * P < 0.05, ns =
not significant.

() Volcano plots depicting gene set enrichment analyses for the proteomic expression changes
induced by STAG2 KO vs. WT on A673 cells (left) and STAG2 low vs STAG2 high expression in
two Ewing tumor expression data sets vs. the union of a collection of 12 EWS/FLI1 gene
signatures on A673 cells from published data and MSigDB v7.1 c2 collection (5,529 gene sets).
Activated EWS/FLI1 gene signatures are highlighted in red (12 EWS/FLI1 gene sets, compendia
collection) and in black (MSigDB c2). Repressed EWS/FLI1 signatures are highlighted in blue (12
EWS/FLI gene sets, compendia collection) and in purple (MSigDB c2).

(J) GSEA plots showing enrichment of the recently generated A673 Ewing sarcoma gene
signature IC-EwS (Aynaud et al., 2020) for STAG2 KO vs. WT in A673 (RNA-Seq and Proteome)
and TC71 (RNA-Seq) data, STAG2 mutant vs STAG2 WT tumor samples from (Crompton et al.,
2014) and STAG2 low vs. STAGZ2 high expression tumor samples from Postel-Vinay et al. (2012)
and Savola et al. (2019). Normalized enrichment, P-value and FDR scores are indicated in each

plot.
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Figure S5. Loss of STAG2 perturbs PRC2 mediated regulation of gene expression, related
to Figure 5.

(A) Genome-wide heatmap depicting H3K27me3 signal intensities at the cohesin SA2/H3K27me3
regions defined in Figure 2C in control and STAG2 KO A673 cells.

(B) Metaplot showing average read density of H3K27me3 signal in STAG2 WT and KO conditions
on A673 cells around peak centered regions defined in Figure S5A. Unpaired t-test with Welch's
correction, * P < 0.05.

(C) Genome-wide heatmaps of H3K27ac ChlP-Seq signal in A673 cells expressing STAG2 WT
(left) or STAG2 KO (right) centered on peaks identified in either or both conditions.

(D) Metaplots showing average genome-wide H3K27ac signal in STAG2 KO and WT A673 cells.
Differential read density, unpaired t-test with Welch'’s correction, **** P < 0.0001.

(E) Clustered heatmaps depicting TSS +/- 5kb promoter regions with decreased, not significantly
changed, or increased H3K27ac ChIP-Seq signal in STAG2 KO vs. WT A673 cells (abs(Delta
area under curve signal) = 1.5).

(F) Metaplots showing average H3K27ac signal in the promoter regions defined in Figure 5D.
(G) Scatter plot for the synergistic changes of H3K27me3 vs. H3K27ac ChlIP-Seq binding signal
at the promoter regions in the universe of differentially expressed genes in STAG2 KO vs. WT

A673 cells. Two-tailed Fisher exact test, **** P < 0.0001, ns = not significant.



Table S6. Top 30 enriched motifs for the promoters of genes with significantly
altered H3K27me3 binding levels induced by STAG2 KO vs. WT in A673 cells,
related to Figure 5.

# Motif Name Consensus -log10(P-value)
1 Pdx1(Homeobox)/Islet-Pdx1-ChIP-Seq(SRA008281) YCATYAATCA 9.91E+00
2 PBX2(Homeobox)/K562-PBX2-ChlIP-Seq(Encode) RTGATTKATRGN 6.84E+00
3 Pitl+1bp(Homeobox)/GCrat-Pit1-ChIP-Seq(GSE58009) ATGCATAATTCA 6.17E+00
4 EBF2(EBF)/BrownAdipose-EBF2-ChIP-Seq(GSE97114) NABTCCCWDGGGAVH 6.10E+00
5 AR-halfsite(NR)/LNCaP-AR-ChIP-Seq(GSE27824) CCAGGAACAG 6.02E+00
6 EBF(EBF)/proBcell-EBF-ChIP-Seq(GSE21978) DGTCCCYRGGGA 5.20E+00
7 HOXB13(Homeobox)/ProstateTumor-HOXB13-ChIP-Seq(GSE56288) TTTTATKRGG 5.16E+00
8 EWS:ERG-fusion(ETS)/CADO_ES1-EWS:ERG-ChIP-Seq(SRA014231) ATTTCCTGTN 4.91E+00
9 Oct2(POU,Homeobox)/Bcell-Oct2-ChlP-Seq(GSE21512) ATATGCAAAT 4.89E+00
10 HOXA1(Homeobox)/mES-Hoxal-ChlP-Seq(SRP084292) TGATKGATGR 4.89E+00
11 HOXA2(Homeobox)/mES-Hoxa2-ChlP-Seq(Donaldson_et_al.) GYCATCMATCAT 4.85E+00
12 FOXM1(Forkhead)/MCF7-FOXM1-ChIP-Seq(GSE72977) TRTTTACTTW 4.50E+00
13 NFAT(RHD)/Jurkat-NFATC1-ChlIP-Seq(Jolma_et_al.) ATTTTCCATT 4.45E+00
14 Pbx3(Homeobox)/GM12878-PBX3-ChlIP-Seq(GSE32465) SCTGTCAMTCAN 4.38E+00
15 CUX1(Homeobox)/K562-CUX1-ChIP-Seq(GSE92882) TATCGATNAN 4.16E+00
16 Oct6(POU,Homeobox)/NPC-Pou3fl-ChIP-Seq(GSE35496) WATGCAAATGAG 3.97E+00
17 Hoxal3(Homeobox)/ChickenMSG-Hoxal3.Flag-ChlP-Seq(GSE86088) CYHATAAAAN 3.95E+00
18 Atf4(bZIP)/MEF-Atf4-ChIP-Seq(GSE35681) MTGATGCAAT 3.93E+00
19 SCL(bHLH)/HPC7-Scl-ChIP-Seq(GSE13511) AVCAGCTG 3.87E+00
20 ZNF652/HepG2-ZNF652.Flag-ChlP-Seq(Encode) TTAACCCTTTVNKKN 3.86E+00
21 Pax7(Paired,Homeobox),long/Myoblast-Pax7-ChIP-Seq(GSE25064) TAATCHGATTAC 3.62E+00
22 PBX1(Homeobox)/MCF7-PBX1-ChIP-Seq(GSE28007) GSCTGTCACTCA 3.61E+00
23 FOXALl:AR(Forkhead,NR)/LNCAP-AR-ChIP-Seq(GSE27824) AGTAAACAAAAAAGAACAND 3.56E+00
24 DMRT6(DM)/Testis-DMRT6-ChIP-Seq(GSE60440) YDGHTACAWTGTADC 3.51E+00
25 NeuroD1(bHLH)/Islet-NeuroD1-ChIP-Seq(GSE30298) GCCATCTGTT 3.48E+00
26 Tgifl(Homeobox)/mES-Tgif1-ChlP-Seq(GSE55404) YTGWCADY 3.41E+00
27 ZNF519(Zf)/HEK293-ZNF519.GFP-ChIP-Seq(GSE58341) GAGSCCGAGC 3.38E+00
28 FoxL2(Forkhead)/Ovary-FoxL2-ChIP-Seq(GSE60858) WWTRTAAACAVG 3.36E+00
29 Chop(bZIP)/MEF-Chop-ChIP-Seq(GSE35681) ATTGCATCAT 3.36E+00
30 Six1(Homeobox)/Myoblast-Six1-ChlP-Chip(GSE20150) GKVTCADRTTWC 3.35E+00

* Significance P-value < 0.0001 estimated by Homer v4.11. The motifs shown in Figure 5H are highlighted yellow.
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Figure S6. Depletion of STAG2 enhances the migration and metastatic potential of Ewing
sarcoma cells, related to Figure 6.

(A) Diagram describing the anatomical locations used for injection (hindbrain region) and the
assessment of migration (dorsal surface, tail and yolk sac).

(B) Larvae were injected with fluorescent microspheres (~10 microns in size, yellow dots) into the
hind brain ventricles 2 days post fertilization (dpf). Larvae were monitored for passive microsphere
migration into the dorsal surface, yolk sac and tail. Images show representative zebrafish at days
1 (top) and 5 (bottom) post injection

(C) Western blot showing the levels of STAG2 in polyclonal control and STAG2 KO TC71 cells.
GAPDH was used as a loading control.

(D) Polyclonal control and STAG2 KO TC71 cells were injected via tail vein of recipient NSG mice.
Quantification of bioluminescence signal collected for whole body is shown. Each line of the
spaghetti plot represents a single mouse. N =8 for NT and N = 4 for sgSTAG2#1 and sgSTAG2#4.
(E) Bioluminescence images of mice described in Figure S6D are shown.

(F) Polyclonal control and STAG2 KO TC71 cells were injected via tail vein of recipient NSG mice.
Quantification of bioluminescence signal collected for lower extremities after blocking upper
abdominal cavity is shown. Each line of the spaghetti plot represents a single mouse. N = 8 for
NT and N = 4 for sgSTAG2#1 and sgSTAG2#4.

(G) Bioluminescence images of mice described in Figure S6F are shown. White arrows indicate
marrow infiltration of Ewing sarcoma cells.

(H) A representative H&E stained bone marrow of a mouse injected with STAG2 KO cells is
shown.

(I) Clonally selected control (NT) and STAG2 KO A673 cells were injected into the lower leg
intramuscular space of recipient NSG mice. Quantification of bioluminescence signal collected for
whole body is shown. Line graph represents mean + SEM, N = 8 per group. Two-way ANOVA,

*%k P < (0.0001, ** P < 0.01, ns = not significant.



(J) Bioluminescence images of lungs described in Figure S61 are shown.

(K) Clonally selected control and STAG2 KO A673 cells were injected into the lower leg
intramuscular space of recipient NSG mice. Lungs were extracted from mice at the conclusion of
the study and imaged ex vivo. Quantification of bioluminescence signal for lungs normalized to
NT signal is shown. Bar graphs represents mean + standard deviation, N = 8 per group. Mann-
Whitney non-parametric t-test, ** P < 0.001, * P < 0.05, ns = not significant.

(L) Bioluminescence images of lung explants described in Figure S6K are shown.

(M) Polyclonal control and TP53 KO TC32 cells were injected via tail vein of recipient NSG mice.
Quantification of bioluminescence signal collected for whole body is shown. Line graph represents
mean + SEM, N =5 per group. Two-way ANOVA, *** P < 0.0001, ns = not significant.

(N) Bioluminescence images of mice described in Figure S6M are shown.

(O) Lungs were extracted from mice described in Figures S6M and S6N at the conclusion of the
study and imaged ex vivo. Quantification of bioluminescence signal for lungs normalized to NT
signal is shown (left). Bar graphs represents mean + SD, N = 8 per group. Mann-Whitney non-
parametric t-test, * P < 0.05, ns = not significant. Bioluminescence images of lungs described are
shown (right).

(P) Bioluminescence images of lung explants described in Figure S60 are shown.
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Figure S7. The neurodevelopmental transcription factor POU3F2 modulates the metastatic
potential of STAG2 KO Ewing sarcoma cells, related to Figure 7.

(A)-(B) mRNA log2(FPKM+1) expression level of (A) POU3F2 and (B) NR2F1 in 3 STAG2 mutant
and 22 STAG2 WT tumors from Crompton et al. (2014). Mann-Whitney non-parametric t-test, * P
< 0.05.

(C)-(D) Linear regression model fit for the log2(FPKM+1) expression of (C) POU3F2 and (D)
NR2F1 vs. the log2(FPKM+1) STAG2 expression in Ewing tumors from Crompton et al. (2014) is
shown. Goodness-of-fit and the Kolmogorov-Smirnov normality test for residuals, ** P < 0.01, * P
< 0.05.

(E) Polyclonal STAG2 KO A673 cells were generated using CRISPR/Cas9 mediated genome
editing. The expression levels of STAG2, POU3F2 and NR2F1 in control (NT) and STAG2 KO
cells were assessed by western blotting. GAPDH was used as a loading control.

(F) Polyclonal STAG2 KO TC71 cells were generated using CRISPR/Cas9 mediated genome
editing. The expression levels of STAG2, POU3F2 and NR2F1 in control (NT) and STAG2 KO
cells were assessed by western blotting. GAPDH was used as a loading control.

(G) Clonally selected STAG2 KO A673 cells were used to generate polyclonal POU3F2 KO cells
using CRISPR/Cas9 mediated genome editing. The expression levels of POU3F2 in control (LAC-
Z and NT) and POU3F2 KO cells were assessed by western blotting. GAPDH was used as a
loading control. sgLAC-Z and sgPOU3F2-A were used for xenograft studies described in Figures
7G-J.

(H) Clonally selected STAG2 KO A673 cells were used to generate polyclonal NR2F1 KO cells
using CRISPR/Cas9 mediated genome editing. The expression levels of NR2F1 and STAG2 in
control (sgLAC-Z) and KO cells were assessed by western blotting. GAPDH was used as a
loading control. sgLAC-Z and sgNR2F1-A were used for xenograft studies described in Figures

7G-J.
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