Cell Chemical Biology, Volume 28

Supplemental information

Resistance of Mycobacterium tuberculosis to indole

4-carboxamides occurs through alterations

in drug metabolism and tryptophan biosynthesis

M. Daben J. Libardo, Caroline J. Duncombe, Simon R. Green, Paul G. Wyatt, Stephen Thompson, Peter C. Ray, Thomas R. Ioerger, Sangmi Oh, Michael B. Goodwin, Helena I.M. Boshoff, and Clifton E. Barry III

Supplemental Text and Figures

Resistance of *Mycobacterium tuberculosis* to indole 4-carboxamides occurs through alterations in drug metabolism and alterations in tryptophan biosynthesis

M. Daben J. Libardo^{1,5,7}, Caroline J. Duncombe^{1,7}, Simon R. Green², Paul G. Wyatt², Stephen Thompson², Peter C. Ray^{2,6}, Thomas R. loerger³, Sangmi Oh¹, Michael B. Goodwin¹, Helena I.M. Boshoff¹, Clifton E. Barry III^{1,4,8}

¹*Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892* ²*Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, UK, DD1 5EH*

³Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843

⁴ Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7935, South Africa

⁵Present address: Infectious Disease & Vaccines, Merck Research Laboratories, Merck & Co. West Point, PA 19486

⁶Present address: Excentia Ltd., Oxfors OX1 3LD, UK ⁷these authors contributed equally

⁸Lead Contact

Figure S1. Cytotoxicity of indole-4-carboxamides and 4-aminoindole, related to Figure 1. Cytotoxicity of representative compounds in the study was measured using the CellTitre-Glo® luminescent cell viability assay. 10,000 J774 cells were seeded into wells of a 96-well plate and treated with the indicated compounds for 24 hrs. Data represent Mean \pm SEM (n = 4).

Figure S2. 4-Aminoindole is a substrate for TrpAB, related to Figure 6. 4-AI was incubated with 1 μ M TrpAB overnight before quenching the reaction with an equal volume of MeOH. A 2 μ L aliquot of the reaction mixture was injected into the LC-MS to detect formation of 4-amino-L-Trp. Chromatograms are representative of three individual trials.

Figure S3. Chemical synthesis of 4-amino-L-Tryptophan, related to Figure 6. Reagents and conditions: (a) 70% HNO₃ (3 eq), AcOH, H₂O, rt, 4 h; (b) Boc anhydride (3 eq), DMAP (3 eq), NEt₃ (4 eq), DCM, rt, overnight; (c) Pd/C, H₂, rt, 3 h; (d) TFA, MC, rt, 2 h.

Figure S4. Fragmentation patterns of synthetic 4-amino-L-trp match the enzyme reaction product observed from 4-AI, related to Figure 6 (A) Triple quadrupole tandem MS fragmentation of synthetic 4-amino-L-Trp (top) and the enzymatic product obtained by incubating TrpAB with 4-AI (bottom). (B) Possible mechanism of fragmentation of 4-amino-L-Trp to account for the observed m/z in panel A and in Figure 6B and 6C.

Figure S5. TrpAB mutant is less active than wild type in converting 4-Al to 4-a-Trp, Relatedto Figure 6. LC-MS chromatograms (270 nm) obtained when 4-Al was incubated with H37Rv WTor representative resistant mutants. The peak represent an m/z of 220.1 accounting forintracellularof 4-amino-L-Trp.

Figure S6. 4-Amino-Trp does not cause feedback inhibition of TrpE, Related to Figure 6. Inhibition of TrpE by 4-AI occurs with a high IC50 value of 60 μ M. In addition, the mutant H170R which alleviates allosteric regulation by tryptophan, supporting that 4-aTrp does not inhibit TrpE.

Figure S7. 4-Al incorporation into 4-a-Trp does not depress cellular levels of L-Trp, Related to Figure 6. Incorporation of 4-Al into whole cells of Mtb and the impact on intracellular L-tryptophan (top) and 4-aTrp (bottom) levels.

Compound	MIC vs M. tuberculosis H37Rv , µM			MIC vs M .	MIC vs M. smegmatis mc²155, µM	
	7H9/ADC	7H9/GCas	GAST- Fe	7H9/ADC	7H9/GCas	7H9/GCas
C1	12.5	1.56	6.25	100	6.25	>100
C2	25	3.12	25	>100	12.5	>100
C3	>100	6.25	>100	>100	50	>100
C4	25	3.12	50	>100	12.5	>100

Table S1. Minimum Inhibitory Concentration (MIC) of Indole-4-carboxamides in variousgrowth media against Mtb and other mycobacteria, related to Table 1.

Table S2. Minimum Inhibitory Concentration (MIC) of 4-aminoindole and the corresponding free carboxylic acid building blocks of the NMMV03 compounds against Mtb H37Rv, related to Figure 2.

Compound	Structure	MIC, μM (7H9/GCas)
4-aminoindole	NH2	4.68
C1-COOH	F ₃ C ^O N= OH	50
C2-COOH	OH OH	>100
С3-СООН	−o	>100
C4-COOH		>100

Table S3. MIC of similar compounds lacking the 4-aminoindoleamide, related to Figure 2. Minimum Inhibitory Concentration (MIC) of representative members of the compound cluster against Mtb H37Rv.

Compound	Structure	ΜΙϹ, μΜ (7H9/GCas)
C6	$F_{3}C \rightarrow O \qquad N = \qquad H \qquad$	50
C7		50
C8		9.4
C9	F ₃ C O N NH	50
C10	F ₃ C O N NH	50
C11	F ₃ C O I N N H	50
C12	F ₃ C O N N N	50

C13	F ₃ C O I N	25
C14	F ₃ C O NH	50
C15	F ₃ C O - H N H N H N H N H N H N H	50
C16	F ₃ C _O	2.3
C17		1.56
C18		3.13
C19		3.13
C20	$F_{3}C$ N I N	4.7

Table S4. C5-resistant mutants remain sensitive to indole-4-carboxamides, related to Figure 5. Mtb H37Rv C5^R mutant MIC against indole-4-carboxamides and the corresponding mutations found via whole genome sequencing.

C5 ^R Strain	МІС, _ІМ (7Н9/GCas)						
	C1	C2	C3	C4	4-Al	C5	INH
WT	3.12	6.25	12.5	6.25	6.25	0.39	0.16
A1 (<i>trpB</i> F188S)	1.56	3.12	12.5	3.12	6.25	>100	0.16
A2 (trpB Y200C)	6.25	6.25	12.5	6.25	6.25	>100	0.16
A4 (<i>trpA</i> P65L)	3.12	6.25	12.5	6.25	6.25	>100	0.16
B2 (<i>trpA</i> D136N)	3.12	6.25	12.5	6.25	6.25	>100	0.16

Table S5. Oligonucleotides used in this study, related to STAR methods.

Primers for Psmyc	for Psmyc GTGT <u>TCTAGA</u> GGATCGTCGGCACC			
promoter swap	er swap GCGC <u>CCATGG</u> AGATACCTCCTTAATTAAGCATGCGGATC			
Primers for AmiC	GCTA <u>CCATGG</u> GCATGTCGCGCGTACACG	AmiC_pMV306-F		
cloning	GCTAATCGATCTACTCGGCGATATTTGGGGGCGTGG	AmiC_pMV306-R		
Primers for TrpB	GAGACCGGTGCCGGCCAGCACGGGGTCGCCACG <u>GTC</u> AC	TrpB-A134V_Rec		
recombineering	bineering CGCATGCGCATTGCTCGGCCTGGACTGTGTC			
	GCGCTAAACGTGGCCCGGATGCGATTGCTGGGT <u>GTC</u> GAA	TrpB-A168V_Rec		
	GTCGTCGCGGTTCAGACGGGCTCGAAAACG			
Primer for TrpE	CTGTTGCTGGCCACCGATGTGGCGGCGGTCGAT <u>CGC</u> CA	TrpE-H170R_Rec		
recombineering	CGAGGGCACCATCACGTTGATCGCCAACGCC			
Primer for RpsL	GCGGGCAACCTTCCGAAGCGCCGAGTTCGGCTT <u>CCT</u> CG	RpsL-K43R_Rec		
recombineering	GAGTGGTGGTGTACACGCGGGTGCATACACC			
Primers for confirming	CGATCTGGTTACCGCGGG	TrpB_RecCheck-F		
IrpB	CCCGGTCGGCAAGTAACC	TrpB_RecCheck-R		
Primers for confirming	GCCCGACTCCTTGCGC	TrpE_RecCheck-F		
IrpE	CCGATGACCACCCAGGG	TrpE_RecCheck-R		
Primers for confirming	AGTTTGAGGCAAGCTATG	RpsL_RecCheck-F		
RpsL	CCCTTCAACAGAACCTTG	RpsL_RecCheck-R		
Primers for TrpE	GCTA <u>CATATG</u> CACGCCGACCTC	TrpE_pET28a-Exp-F		
overexpression	GCTA <u>AAGCTT</u> TTAGCAGCCACTGCG	TrpE_pET28a-Exp-		
Primers for TrpE H170R	GCGGTCGATCqCCACGAGGGC	TrpE-H170R-F		
mutagenesis	CGCCACATCGGTGGCCAG	TrpE-H170R-R		
Primers for TrpB	GCTAAAGCTTATGAGTGCTGCCATC	TrpB pRSFDuet-F		
overexpression	GCTAAAGCTTTCAGTCGTTGCCCAG	TrpB pRSFDuet-R		
Primers for TrpA	GCTACATATGGTGGCGGTGGAAC	TrpA pRSFDuet-F		
overexpression	GCTACTCGAGTCATGCGGACATCC	TrpA pRSFDuet-R		
Primers for AmpR for	CATGCCATGGGAATGGTGGCGGTGGAACAG	TrpA AmpR-F		
TrpA cloning	CCCAAGCTTTCATGCGGACATCCCTAG	TrpA AmpR-R		
Primers for TrpB	GTCGCCACGGtCACCGCATGC	TrpB-A168V SDM-F		
mutagenesis A168V	CCCGTGCTGGCCGGCACC	TrpB-A168V_SDM-		
		R		
Primers for TrpB	TTTCTCGATG g CCCAGGCGTA	TrpB-D261G_SDM-		
mutagenesis D261G				
	CGCAIGAAAAATACCAATGGC	IrpB- D261G_SDM-		
Primers for TrpCE	CCTACATATCATCATCCAAACCCTTTTACC	Ec TroCE Evo		
evpression		Ec_TrpCE_Exp-P		
evhicesion	GUTA <u>AGUTT</u> ITAATATGUGUGUAGUG	EU_TIPUF_EXP-R		