Supplementary Information Guide

Supplementary File 1: Preliminary scaffolding optimization and additional validation evidences

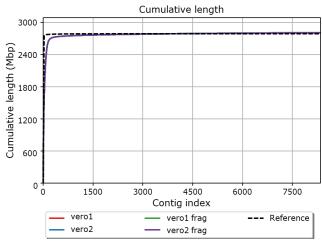
Supplementary Data 1: List of functionally annotated genes predicted as having lost their function

Supplementary Data 2: SNVSniffer loss of function variants full annotation and loss of function prediction

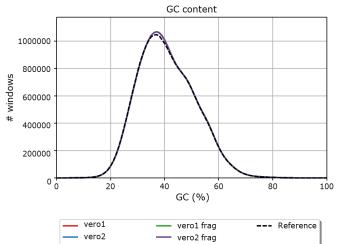
Supplementary Data 3: Manta loss of function variants full annotation and loss of function prediction

Supplementary Data 4: Large-scale variants annotations including interchromosomal changes

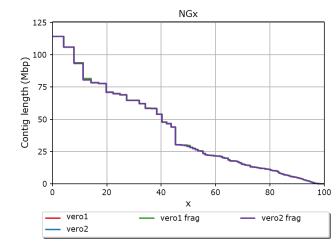
Supplementary File 1

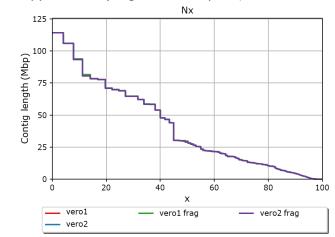

Content

Preliminary optimization of scaffolding metricsp)1
Comparison between breaks in the Vero genome assembly and the African Green Monkey assembly	p8
Viral insertions validation: Analysis of reads spanning the junctions on both ends of the insertions	p9
Validation of ACE2 partial loss of function from evidences other than the assembly	p11
Additional validations using RNA-seq data	p13


Preliminary optimization of scaffolding metrics

Step 1: First draft assembly


The 1.49 billion reads generated through Illumina sequencing were first filtered to discard reads without barcodes, then processed for first draft assembly using Supernova assembler at a 75X coverage. Two output haplotypes were generated (named Vero1 and Vero2) and processed for quality assessment using QUAST (Supplementary Figures 1-4) before proceeding to scaffolding. N50 (Supplementary Table 1), which is defined as a median length of a set of contigs, is the most common metrics used for de novo assembly quality assessment.


Supplementary Figure 1: Cumulative length plot (growth of contig lengths)

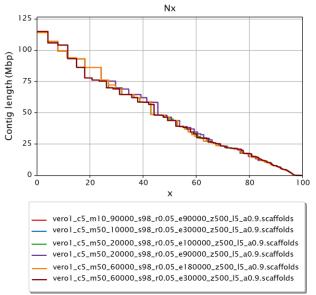
Supplementary Figure 2: GC content plot shows the distribution of GC content in the contigs

Supplementary Figure 3: NGx plot (NGx values as x varies from 0 to 100 %)

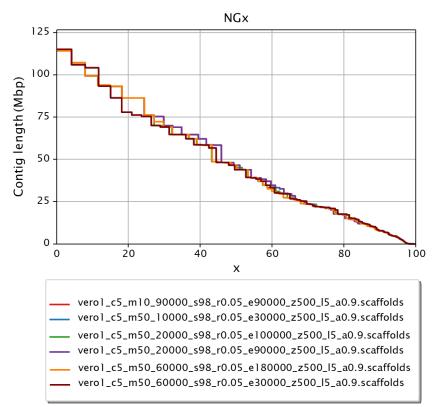
Supplementary Figure 4: Nx plot (Nx values as x varies from 0 to 100 %)

Worst	Median	Best	how heatmap	
Statist	tics withou	ut reference	≡ test_data_vero1	≡ test_data_vero2
# conti	igs		8351	8350
# conti	igs (>= 0 b	p)	56 471	56 471
# conti	igs (>= 10	00 bp)	19713	19713
# conti	igs (>= 50	00 bp)	5195	5191
# conti	igs (>= 10	000 bp)	2507	2499
# conti	igs (>= 25	000 bp)	955	950
# conti	igs (>= 50	000 bp)	494	494
Larges	t contig		114 161 801	114 260 507
Total le	ength		2810851524	2808019323
Total le	ength (>= () bp)	2847827728	2844998449
Total le	ength (>= 1	1000 bp)	2829937088	2827107809
Total le	ength (>= 5	5000 bp)	2 798 796 555	2 795 956 127
Total le	ength (>= 1	10000 bp)	2 779 992 876	2777118082
Total le	ength (>= 2	25000 bp)	2 756 656 200	2 753 828 193
Total le	ength (>= 5	50000 bp)	2740958612	2738279984
N50			29 636 809	28 939 313
N75			12 633 392	12 631 281
L50			23	23
L75			60	60
GC (%)		40.85	40.85
Misma	tches			
# N's			38 271 870	38 234 790
# N's p	per 100 kbp		1361.58	1361.63

Supplementary Table 1: Summary report

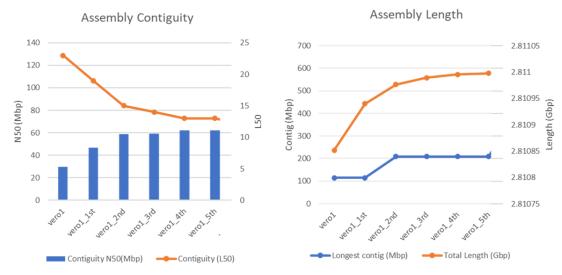

Step 2: Final draft assembly

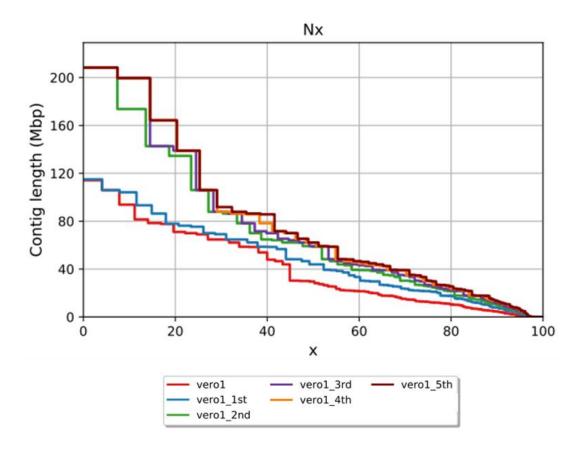
Following quality assessment of the first draft contigs assembly, scaffolding is performed to improve the assembly metrics and completeness. By using the barcode information generated during 10X Linked Read sequencing protocol, a linked read kmersbased mapping approach was employed for draft assembly sequences ordering and orientation and gap sizes estimations.


ARCS, pipelined with LINKS and tigmint via the Makefile arcs-make, is used to pair the Supernova draft assembly sequences by processing input alignments for sets of read pairs from the same barcode that aligned to different sequences and formed a link between sequence contigs. Barcode sequencing errors are accounted for by selecting only barcodes within a specified multiplicity range (parameter m) and a specified maximum window length at the end sequences, where Chromium reads align (parameter e). Once the optimal candidates value for m and e for scaffolding were chosen, the actual pairing of those contigs was done using LINKS.

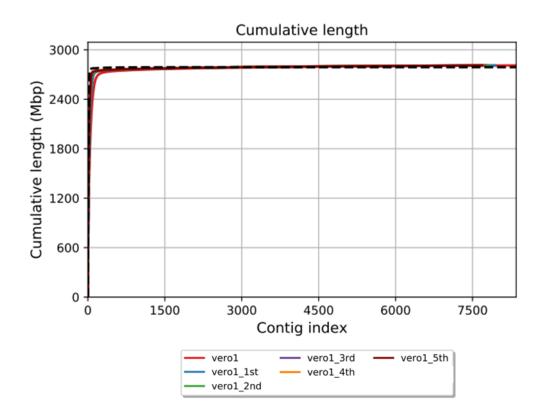
After running several scaffolding experiments to determine the optimal parameters (m and e) (Supplementary Figures 5-6, Supplementary Table 2), the optimal parameters combination was set at m=50-20000 and e=90000.

In order to further improve the scaffolding an iteration strategy was designed using the output of the previous scaffolding experiment and applying to it the selected optimal parameters as illustrated in Supplementary Figure. 7-9 while evaluating the output at each step by running QUAST and BUSCO search for sanity check. The BUSCO completeness was constant during the iterations at 87.5% for pseudohaplotype 1 and 88.4% for pseudohaplotype 2.


Supplementary Figure 5: Nx comparison plot for optimal parameter selection (Nx values as x varies from 0 to 100 %)


Supplementary Figure 6: NGx comparison plot for optimal parameter selection (NGx values as x varies from 0 to 100 %)

	vero1_c5_m10_900 00_s98_r0.05_e900 00_2500_15_a0.9.sc affolds	vero1_c5_m50_1000 0_s98_r0.05_e30000 _z500_15_a0.9.scaffo ds	vero1_c5_m50_2000 0_s88_r0.05_e10000 0_z500_15_a0.9.scaff olds	vero1_c5_m50_20000_ \$98_r0.05_\$90000_z50 0_15_a0.9.scaffolds	vero1_c5_m50_60000_ \$98_r0.05_e180000_25 00_15_a0.9.scaffolds	vero1_c5_m50_6000 0_s98_r0.05_e30000 _z500_15_a0.9.scaffo ds
# contigs (>= 0 bp)	56047	56039	56046	56047	56076	66035
# contigs (>= 1000 bp)	19293	19285	19292	19293	19322	19285
# contigs (>= 5000 bp)	4808	4803	4806	4508	4836	4803
# contigs (>= 10000 bp)	2135	2132	2134	2135	2162	2132
# contigs (>= 25000 bp)	999	674	999	999	677	674
# contigs (>= 50000 bp)	316	317	315	316	325	21E
Total length (>= 0 bp)	2847870128	2847870928	2847870228	2847870128	2847867228	2847870928
Total length (>= 1000 bp)	2829982338	2829983138	2829982438	2829982338	2829979438	2829983138
Total length (>= 5000 bp)	2798926625	2798936494	2798922149	2798926625	2798918337	2798936494
Total length (>= 10000 bp)	2780250737	2780270514	2780256652	2780250737	2780236990	2780270514
Total length (>= 25000 bp)	2758385626	2758576828	2758387489	2758385626	2758083893	2758576828
Total length (>= 50000 bp)	2746637640	2746568621	2746667943	2746637640	2746277735	2746568621
# contigs	7952	7946	7951	7952	7982	7946
Largest contig	114181557	114998122	114181557	114181557	114182697	114998122
Total length	2810939651	2810944662	2810939751	2810939651	2810938591	2810944662
GC (%)	40.85	40.85	40.85	40.85	40.85	40.85
NSO	46620840	43937327	45233560	46620840	43932119	43937327
N75	21130642	21625564	21130642	21130642	21130642	21625564
L50	19	20	20	19	20	20
L75	42	44	44	42	44	44
# N's per 100 kbp	1363.05	1363.08	1363.06	1363.05	1362.95	1363.08


Supplementary Table 2: Comparison between sets of scaffolding parameters efficiency

Supplementary Figure 7: Sanity check of assembly quality (contiguity/length)

Supplementary Figure 8: Nx comparison between iterations and first draft assembly plot (Nx values as x varies from 0 to 100 %)

Supplementary Figure 9: Cumulative length plot

<u>Comparison between breaks in the Vero genome assembly and the African</u> <u>Green Monkey assembly</u>

Alignment of large contigs of our Vero assembly to the African Green Monkey genome showed that none of the large contigs of both assemblies have full-length alignments to each other and share breaks as shown in the Supplementary Table below:

African Green Monkey(AGM) Scaffold Length (bp)	Vero scaffold length (bp)	Alignment starting position on AGM scaffold	End alignment snapshot
130588469	81790585	36270872	
82825804	64349049	14176827	
54310	211624478	35554	
75399963	99694171	31382396	
127223203	180281258	3066654	
127223203	82484710	22387562	
48547382	90413263	43538320	
84932903	71207655	83565347	
72318688	88423403	12028	
130038232	68151223	130031187	

Supplementary Table 3: Comparison between breaks in the Vero genome assembly and the African Green Monkey assembly

Viral insertions validation: Analysis of reads spanning the junctions on both ends of the insertions

For every viral insertion highlighted in our paper, our data included individual reads that span the junctions from viral to monkey sequence as shown in the following Supplementary Table:

Viral genome insertions	Number of Vero scaffolds with buried viral genome	Number of reads spanning (log base 2)
Bovine herpesvirus 4 long unique region, complete sequence	1	988
RD114 retrovirus, complete genome	- 85	199
Human endogenous retrovirus K113 complete genome	78	232
Simian retrovirus 8 strain SRV8/SUZ/2012, complete genome	59	84
Simian retrovirus 4 strain SRV4/TEX/2009/V1, complete genome	4	16
Baboon endogenous virus strain M7 proviral DNA, complete genome	92	2145
Mason-Pfizer monkey virus, complete genome	71	1274
Adeno-associated virus - 4, complete genome	1	4334
Adeno-associated virus - 3, complete genome	1	4334
Adeno-associated virus - 7, complete genome	1	4334
Adeno-associated virus - 8, complete genome	1	4334
Abelson murine leukemia virus, complete genome	1	2
Saimiriine herpesvirus 2 complete genome	1	25
Avian sarcoma virus CT10 genomic sequence	1	155
FBR murine osteosarcoma, complete proviral sequence	1	988
Murine osteosarcoma virus, complete genome	1	988
Woolly monkey sarcoma virus	1	57
Proteus phage VB_PmiS-Isfahan, complete genome	27	32
Pestivirus giraffe-1 H138 complete genome	1	3016
Y73 sarcoma virus, complete genome	1	128
Bovine viral diarrhea virus 1, complete genome	1	3016
Avian myeloblastosis virus RNA-dependent DNA polymerase gene,	1	32
partial cds; transforming protein gene, complete cds; and long		
terminal repeat, complete sequence.		
Snyder-Theilen feline sarcoma virus genomic sequence	1	155
Hardy-Zuckermann 4 feline sarcoma virus (H24-FeSV) kit oncogene	1	64
Harvey murine sarcoma virus p21 v-has protein gene	1	256
Gibbon ape leukemia virus gag, pol, and env genes, complete cds	1	105

Supplementary Table 4: Analysis of reads spanning the junctions on both ends of the insertions

In addition, these integrations are confirmed by the African Green monkey alignment. Moreover, NCBI independently identified the corresponding viral proteins using transcriptomic data from both our Vero RNAseq data and the vervet RNAseq data as shown in the following Supplementary Table:

Source	Number of sequences retrieved from Entrez	Number (%) of sequences aligned by ProSplign	Number (%) of sequences passed to Gnomon	Average % identity	Average % coverage
Same-species GenBank	182	147 (80.77%)	147 (80.77%)	79.85%	94.03%
Same-species known RefSeq (NP_)	31	28 (90.32%)	28 (90.32%)	82.58%	91.97%
Primates GenBank	21,649	14,932 (68.97%)	14,932 (68.97%)	80.50%	89.77%
Primates known RefSeq (NP_)	14,566	11,795 (80.98%)	11,795 (80.98%)	87.01%	92.64%
Homo sapiens GenBank	144,861	83,628 (57.73%)	83,628 (57.73%)	80.36%	84.48%
Homo sapiens	60,894	45,057 (73.99%)	45,057 (73.99%)	87.45%	91.32%
viral Other	506	42 (8.30%)	42 (8.30%)	68.30%	62.07%

Supplementary Table 5: NCBI alignments metrics

Validation of ACE2 partial loss of function from evidences other than the assembly

The ACE2 partial loss of function mutation (C to CTT) is subsequently validated in multiple ways:

- 1. Using <u>raw reads from DNA sequencing</u>: these reads were the data used to call the variants based on the mapping of the <u>Vero genome DNA sequencing raw reads</u> to the African Green Monkey genome assembly, thus our Vero genome assembly is not involved in this step.
- 2. Using <u>protein sequence</u> from NCBI annotation of our genome assembly: the 3D structure resulting from the protein sequence and the resulting mutations are not an inference from the assembly but generated by NCBI following their analysis of RNAseq evidence including the raw reads RNAseq data we submitted which is separated from our assembly thus providing an independent transcriptomics-based evidence.
- 3. Using ACE2 <u>transcripts</u> of both the Vero genome and the African Green Monkey genome: Indeed, concerning ACE2, NCBI has identified, through RNAseq data analysis and evidences from proteomics that the ACE2 transcript and protein sequences present changes between the African Green Monkey ACE2 and the Vero ACE2 which is an additional independent validation of our variant call for ACE2, which led to the assignment of a new specific transcript accession and protein accession numbers for Vero ACE2 to distinguish them from vervet ACE2 given their differences as shown below:

previous gene range	previous gene strand	transcript category	current transcript accession	current protein accession
14032230-14094162	-	Change in UTR only	XM_007991113.2	XP_007989304.2
14032230-14094162	-	Variant	XM_037986357.1	XP_037842285.1

Supplementary Table 6: Variation in transcripts

current transcript range	previous transcript accession	previous protein accession	previous transcript range
15866607-15915984	XM_007991113.1	XP_007989304.1	14032230-14094162
15866607-15912311	XM_007991113.1	XP_007989304.1	14032230-14094162

Supplementary Table 7: Variation in transcripts

4. Using <u>enzymatic activity assay</u>: we also previously validated the loss of function of the enzymatic activity and added the disclaimer that at this stage the loss of function of the receptor binding activity is not established and further analysis is needed which is out of the scope of this paper.

In addition, given the nature of the upstream variant and the downstream effect including loss of function predictions cannot be fully confirmed by PCR, as PCR might show the C to CTT variant but it is not enough to validate the loss of function, that work should be done at the proteomics level for a more solid proof as shown by our analysis and NCBI's transcriptomics and proteomics analysis. Nonetheless, the variant leading to ACE2 at least partial loss of function being a small scale insertion, it can be also validated by PCR but given the challenges of accurate primer design and false positives, in these cases it is recommended to analyse the PCR products via Sanger sequencing backed up with next-generation sequencing to compensate for the relatively

low efficiency of Sanger sequencing of PCR products and more precisely for SNPs and small indels call validation. In addition, the insertion is located in an intron which makes the use of mRNA challenging. Altogether, the validation of this variant via PCR might work but it will require significant optimization experiments before validations which is beyond the scope of this work and reasonable timelines.

5. Using <u>raw reads analysis</u>: As an alternative to PCR we further supported the variant call as suggested by the reviewer by using raw reads analysis: following mapping of RNAseq raw reads, we isolated the region containing the variant C to CTT and extracted all the reads that mapped to that region; all reads that mapped to that region contain the C to CTT variant.

Additional validations using RNA-seq data

- 1. Ablated transcripts were identified for 1425 genes following RNAseq reads alignments and features count.
- 2. Following the use of RNAseq data for annotation and transcript characterization, only 1% of the genes in the Vero annotation are identical (i.e. Genes with perfect match in exon boundaries) to those of the African green monkey annotation, 46% of the genes had minor changes (i.e. Highly similar genes, with support scores of 0.66 or more (on a scale of 0 to 1) on both sides of the comparison. The support score is derived from a combination of matching exon boundaries and sequence overlap), 23% of the genes have major changes (i.e. Genes with support scores lower than 0.66 (on a scale of 0 to 1) on one or both sides of the comparison, and genes with changed locus, biotype or changed completeness, and split or moved genes), 30% of the genes are new (i.e. Novel genes or genes without a match in the African Green Monkey annotation). The link to the complete Supplementary Table comparing the Vero annotation with the African Green Monkey annotation was added in the data availability section. Notably, concerning ACE2, NCBI has identified, through RNAseq data analysis and evidence from proteomics that the ACE2 transcript and protein sequences present changes between the African Green Monkey ACE2 and the Vero ACE2 which is an additional independent validation of our variant call for ACE2 as shown below:

previous gene range	previous gene strand	transcript category	current transcript accession	current protein accession
14032230-14094162	-	Change in UTR only	XM_007991113.2	XP_007989304.2
14032230-14094162	-	Variant	XM_037986357.1	XP_037842285.1

Supplementary Table 6: Variation in transcripts

current transcript range	previous transcript accession	previous protein accession	previous transcript range
15866607-15915984	XM_007991113.1	XP_007989304.1	14032230-14094162
15866607-15912311	XM 007991113.1	XP 007989304.1	14032230-14094162

Supplementary Table 7: Variation in transcripts

- 3. Raw reads analysis also validated the C to CTT variant call resulting in ACE2 at least partial loss of
- 4. function in Vero cells with all reads mapped containing the variant.
- 5. In addition, the RNAseq data confirmed viral genome insertions by identifying viral transcripts and proteins: a total of 68 viral proteins (36 viral genes) were annotated.