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Supporting Information Text

Time evolution equation for protein abundances

Let Pi be the abundance of protein molecules of type i, R be the abundance of ribosomes, F be the abundance of substrate
molecules, and mi be the abundance of mRNA transcripts of the corresponding protein. Then the time evolution of the protein
abundance can be written down in the following general form, in the simple approximation of an ordinary differential equation
(ODE)

dPi
dt

=
min

(
αPiR,αPiF,

τPi
τaasR

mi, ...
)

τPi

[1]

Here τPi is the minimum time duration required to translate the protein. αPi is the relative allocation of ribosomes/substrate
to the synthesis of the protein—the fraction of time ribosomes spend translating that protein, or equivalently, the fraction
of ribosomes/substrates that are translating that protein at any given time. τaa is the minimum time duration required to
elongate a polypeptide chain by one amino acid, i.e., τ−1

aa is the translation elongation rate. sR is the minimum footprint of the
ribosome, i.e., the length of mRNA transcript, in units of 3 codons, equal to the size of ribosome binding domain including
the minimum space that must exist between ribosomes. The term τPi

τaasR
, therefore, corresponds to the maximum number of

ribosomes that can simultaneously bind to the corresponding mRNA and translate it. In this way, this term forms one part of
the relative allocation of ribosomes towards synthesizing the corresponding protein. The other part comes from the mRNA
copy number, mi; i.e., the allocation parameter towards a protein is determined by its mRNA transcript’s copy number and the
length of the transcript. The allocation parameter αPi and the quantity τPi

τaasR
can also be modulated in the cell by translation

initiation factors.
If we want to account for protein degradation, we can write the above equation as

dPi
dt

=
min

(
αPiR,αPiF,

τPi
τaasR

mi, ...
)

τPi

− Pi
τlife(Pi)

[2]

where τlife(Pi) is the lifetime of the protein. Depending on which of the terms inside the bracket
(
αPiR,αPiF,

τPi
τaasR

mi, ...
)
is

limiting, different limitation regimes are defined, as explained in the Methods section of main paper. However, independent of
which of the component on the right hand side is limiting, the above equation for protein synthesis can be written in terms of
any of the components; if we want to write the time evolution equation for protein synthesis in terms of ribosomes then it can
be written as

dPi
dt

= αPiR

τPi

ηR −
Pi

τlife(Pi)
[3]

with ηR being the fraction of time that ribosomes may be waiting for any other limiting component, if the ribosomes themselves
are not the limiting one,

ηR = min

(
1, F/R,

τPi
τaasR

mi

αPiR
, ...

)
[4]

We may choose to identify τPi ≡ τPi/ηR as the effective time duration for translation, taking resource limitation into account.
In normal to fast growth conditions, cells tend to employ control mechanisms, through micro-molecules such as ppGpp, DksA,
etc., to avoid resource mismatch and the resulting translation slow down. Therefore, in normal-to-fast growth conditions,
ηR = 1 is maintained.

In balanced exponential growth we can write (existence of exponential growth is discussed in the Methods section),(
µ+ 1

τlife(Pi)

)
= αPi

τPi

(
R

Pi

)
[5]

where µ is the growth rate of the exponentially growing cell. This is one of the two type of growth laws discussed in the main
text, which we called the relative abundance growth law.

Time evolution equation for mRNA abundances

Protein synthesis also requires transcription of mRNAs. Therefore, we need to write the time evolution equation for the
transcription machinery of the cell. If mi is the number of copies of mRNA transcripts of protein i, then

dmi

dt
=

min(αmiRpol, αmiN,
τmi

τntsRpol
Gi, ...)

τmi

− mi

τlife(mi)
[6]

where αmi , analogous to eq. 1, is the relative allocation of resources like RNA polymerase (whose abundance is represented by
Rpol) and nucleotides (whose abundance is represented by N), to the transcription of the mRNA of protein i. Gi is the gene
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copy number. τmi is the minimum time duration to transcribe the mRNA, τnt is the minimum time duration to elongate a
mRNA transcript by one nucleotide, and sRpol is the minimum footprint of the RNAP, i,e., the length of the gene equal to the
size of RNAP binding domain, including the minimum space that must exist between RNAPs. Therefore, the term τmi

τntsRpol

corresponds to the maximum number of RNA polymerases that can bind simultaneously to the corresponding gene. As before,
these allocation parameters also include modulation of binding affinities to the genes through Transcription Factors.

The black box of protein synthesis

Protein synthesis, in general, is a multi-step process. We can therefore ask how good is the back box, 1 step process,
approximation that is generally employed. We can open the black box of protein synthesis to incorporate various intermediate
states like spending time in resting pools, assembly, etc. Let us consider a protein complex, like say RNA polymerase or
ribosome, which is made up of multiple protein subunits. If τaj is the effective time duration to translate j-th subunit, τpool(aj)
is the time it spends diffusing in the cytoplasm before being incorporated into the assembly, τrest(P ) is the time duration that
the protein complex spends before becoming actively functioning, and τbusy(P ) is the time duration the active protein takes
to perform one round of its function before resting, then the time evolution of the abundances in the different states can be
written in terms of the following set of coupled ODEs

daj(pool)

dt
=
αajRbusy

τaj

−
aj(pool)

τpool(aj )
[7]

daj(act)

dt
=

aj(pool)

τpool(aj )
−
aj(act)

τSA(P )
[8]

dPrest
dt

=
aj(act)

τSA(P )
− Prest
τrest(P )

+ Pbusy
τbusy(P )

− Prest
τlife(P )

[9]

dPbusy
dt

= Prest
τrest(P )

− Pbusy
τbusy(P )

− Pbusy
τlife(P )

[10]

where τlife(P ) is the lifetime of the protein and τSA(P ) is the assembly duration of the protein complex from its subunit. Note
that even though the actual assembly process is quite complex, here we are considering a simplistic Tetris like model where the
protein complex is ready whenever the limiting protein is incorporated. Other quantities are as defined before. The terms
Pbusy

τbusy(P )
and Prest

τrest(P )
are interconversion terms between active and resting states.

Putting in exponential solution, we get the following growth laws involving relative abundances

(µ+ 1
τpool(aj )

) =
αajRbusy

τajaj(pool)
[11]

(µ+ 1
τSA(P )

) =
aj(pool)

τpool(aj )aj(act)
[12]

µ(Prest + Pbusy) + (Prest + Pbusy)
τlife(P )

=
aj(act)

τSA(P )
[13]

Multiplying the four equations leads to the following growth law

(µ+ 1
τlife(P )

)(µτSA(P ) + 1)(µτpool(aj ) + 1) =
αajRbusy

τajPtot
[14]

Under normal conditions τpool(aj ), τSA(P ) ≈ secs. and µ ≈ 1/(30 ∗ 60) ≈ 1/2000 sec−1. This means the terms (µτ + 1)� 1.
Also, lifetimes of proteins are in hours, and therefore protein degradation can be neglected under normal conditions. Therefore,
under normal growth conditions, the above equation can be approximated as a one step process

µ =
αajRbusy

τajPtot
[15]

The coupled transcription-translation autocatalytic cycles and the resulting growth laws

The cellular transcription-translation machinery, which is responsible for all the protein synthesis, also needs to reproduce
itself to sustain exponential growth. In this section, we focus on the coupled autocatalytic cycles of the ribosomes and
RNA polymerases, and show how they reduce to various known and new growth laws. The coupled ODEs of the core
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transcription-translation autocatalytic cycles can be written as

d rRNAj
dt

=
αrRNAjRpolb

τrRNAj

−
min(RPj(act), rRNAj)

τSA(R)
[16]

d mRPj

dt
=
αrpjRpolb

τrpj

−
mRPj

τlife(m(RPj ))
[17]

d mRpoj

dt
=
αrpojRpolb

τrpoj
−

mRpoj

τlife(m(Rpoj ))
[18]

dRpoj(pool)

dt
=

min(αRpojRb, Rm(Rpoj )mRpoj )
τRpoj

−
Rpoj(pool)

τpool(Rpoj )
[19]

dRpoj(act)

dt
=
Rpoj(pool)

τpool(Rpoj )
−
Rpoj(act)

τSA(Rpol)
[20]

dRpolrest
dt

=
Rpoj(act)

τSA(Rpol)
− Rpolrest

τrest(R)
+
∑
i

αmi

τmi

Rpolb −
Rpolrest
τlife(Rpol)

[21]

dRpolb
dt

= Rpolrest
τrest(R)

−
∑
i

αmi

τmi

Rpolb −
Rpolb

τlife(Rpol)
[22]

dRPj(pool)

dt
=

min(αRPjRb, Rm(RPj )mRPj )
τRPj

−
RPj(pool)

τpool(RPj )
[23]

dRPj(act)

dt
=

RPj(pool)

τpool(RPj)
−

min(RPj(act), rRNAj)
τSA(R)

[24]

dRrest
dt

=
min(RPj(act), rRNAj)

τSA(R)
− Rrest
τrest(R)

+
∑
i

αPi

τPi

Rb −
Rrest
τlife(R)

[25]

dRb
dt

= Rrest
τrest(R)

−
∑
i

αPi

τPi

Rb −
Rb

τlife(R)
[26]

where rRNAj is the abundance of ribosomal RNA (rRNA) subunit of type j, mRPj is the abundance of the mRNA of j-th
ribosomal protein subunit, andmRpoj is the abundance of the mRNA of RNA polymerase’s j-th protein subunit. Rpoj(pool) is the
abundance of RNA polymerase’s j-th protein subunit in its newly synthesized, freely floating state, Rpoj(act) is the abundance
of RNA polymerase’s j-th protein subunit that are entering active assembly step, Rpolrest is the abundance of the newly formed,
resting RNA polymerases, and Rpolb is the abundance of actively transcribing RNA polymerases; RPj(pool), RPj(act), Rrest,
and Rb are similar quantities, but for ribosomes and its subunits. τrRNAj is the time duration needed to transcribe rRNA,
τrpj is the transcription duration of the mRNA of j-th ribosomal protein subunit, τrpoj is the transcription duration of the
mRNA of RNA polymerase’s j-th protein subunit, τRpoj is the translation duration of RNA polymerase’s j-th protein subunit,
and τRPj is the translation duration of j-th ribosomal protein subunit. τSA(Rpol), τSA(R) are the assembly durations of RNA
polymerases and ribosomes from their respective protein subunits. τpool, τrest, and τlife are the resting durations and lifetimes
of the corresponding quantities. αrRNAj is the allocation parameter of RNA polymerases towards transcribing rRNA, αrpj

is the allocation parameter towards transcribing the mRNA of j-th ribosomal protein subunit, and αrpoj is the allocation
parameter towards transcribing the mRNA of RNA polymerase’s j-th protein subunit. αRpoj and αRPj are the allocation
parameters of ribosomes towards translating RNA polymerase’s and ribosomal protein’s subunits respectively. Rm(Rpoj ) and
Rm(RPj ) are the number of ribosomes bound to the corresponding mRNA transcripts. The term

∑
i

αmi
τmi

Rpolb refers to all
the transcription activity RNA polymerases perform in the cell, after which they rest, before going back to their active state.
Similarly,

∑
i

αPi
τPi

Rb refers to all the translation activities of active ribosomes.

The ribosomal protein cycle: To study the ribosomal protein autocatalytic cycle we write the above coupled set of
ODEs, for the abundances of ribosomes which synthesizes ribosomal proteins, and for the abundances of ribosomal proteins
which constitute the ribosomes, in their various activity states, as

dRPj(pool)

dt
=
αRPjRb

τRPj

−
RPj(pool)

τpool(RPj )
[27]

dRPj(act)

dt
=
RPj(pool)

τpool(RPj )
−
RPj(act)

τSA(R)
[28]

dRrest
dt

=
RPj(act)

τSA(R)
− Rrest
τrest(R)

+
∑
i

αPi

τPi
Rb −

Rrest
τlife(R)

[29]

dRb
dt

= Rrest
τrest(R)

−
∑
i

αPi

τPi

Rb −
Rb

τlife(R)
[30]
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Putting in the exponential solution, we get

(µ+ 1
τpool(RPj )

) =
αRPjRb

τRPjRPj(pool)
[31]

(µ+ 1
τSA(R)

) =
RPj(pool)

τpool(RPj )RPj(act)
[32]

µ(Rrest +Rb) + (Rrest +Rb)
τlife(R)

=
RPj(act)

τSA(R)
[33]

Each of the above three equations is already a growth law, involving relative abundances of various quantities. Eq.33 is akin to
Little’s law of self assembly in Factory physics. Now, if we multiply the three equations, we get

(µτSA(R) + 1)(µτpool(RPj ) + 1)
(
µRtot + Rtot

τlife(R)

)
=
αRPj

τRPj

Rb [34]

Note that this is akin to diagonalizing the matrix of the above linear set of coupled ODEs, and obtaining the characteristic
function.
Relation to existing results: In equation 34, if we assume µ� 1/τSA(R) and µ� 1/τpool(RPj ), we get

µRtot + Rtot
τlife(R)

=
αRPj

τRPj

Rb [35]

or,

µτRPj +
τRPj

τlife(R)
= αRPj

Rb
Rtot

[36]

The term on the right hand side of the above equation reads — the fraction of active ribosomes that are allocated to translate
more ribosomes. The second term on the left hand side, therefore, stands for this allocation of ribosomes towards new ribosomes
at zero growth (µ = 0). This is equivalent to the well known growth law of Terry et. al. (1).

µ

γ
+ φ0 = φR [37]

with γ being the translation rate of the ribosome, φR being the ribosome mass fraction and φ0 the ribosome mass fraction at
zero growth. Below we show when this correspondence between mass fraction and allocation parameter is accurate.

Summing equation 34 over all the subunits gives∑
j∈Ribosomes

(
(µτSA(R) + 1)(µτpool(RPj ) + 1)

(
µ+ 1

τlife(R)

)
Rtot

)
=

∑
j∈Ribosomes

(
αRPj

τRPj

Rb

)
[38]

Equation 34, when written for any general protein i, appears as

(µτSA(Pi) + 1)(µτpool(pj ) + 1)
(
µ+ 1

τlife(Pi)

)
Pi(tot) = αPi

τPi

Rb [39]

with τSA(Pi) = 0, τpool(pj ) = 0 if it is a single component protein. Summing over all the proteins in the proteome, we get∑
i∈Proteome

(
(µτSA(Pi) + 1)(µτpool(pj ) + 1)

(
µ+ 1

τlife(Pi)

)
Pi(tot)

)
=

∑
i∈Proteome

(
αPi

τPi

Rb

)
[40]

Dividing equations 38 and 40 we get∑
j∈Ribosomes

(
(µτSA(R) + 1)(µτpool(RPj ) + 1)

(
µ+ 1

τlife(R)

)
Rtot

)
∑

i∈Proteome

(
(µτSA(Pi) + 1)(µτpool(pj ) + 1)

(
µ+ 1

τlife(Pi)

)
Pi(tot)

) =

∑
j∈Ribosomes

(
αRPj

τRPj
Rb

)
∑

i∈Proteome

(
αPi
τPi

Rb

) [41]

Under the approximation µ� 1/τSA, µ� 1/τpool, and long lifetime for the proteins, can we write the above equation as∑
j∈Ribosomes µRtot∑
i∈Proteome µPi(tot)

=

∑
j∈Ribosomes

(
αRPj

τRPj
Rb

)
∑

i∈Proteome

(
αPi
τPi

Rb

) [42]

or, ∑
j∈Ribosomes τRPjRtot∑
i∈Proteome τPiPi(tot)

=
∑

j∈Ribosomes

(
αRPjRb

)∑
i∈Proteome (αPiRb)

[43]
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or,

τRRtot∑
i∈Proteome τPiPi(tot)

= αRRb
1. Rb

[44]

or,

τaaLaa(R)Rtot∑
i∈Proteome τaaLaa(Pi)Pi(tot)

= αR [45]

as τR = Laa(R)τaa, Laa(R) being the length of the protein in the units of number of amino acids, and τaa being the elongation
time per amino acid. The above equation then becomes

τaaMR(tot)∑
i∈Proteome τaaMPi(tot)

= αR [46]

where MR(tot)(= Laa(R)Rtotmaa) is the mass of the ribosome; maais the average mass of an amino acid. Therefore,

MR(tot)

MProteome(tot)
≡ φR = αR [47]

We see that the relative allocation of ribosomes towards making more ribosomes is equal to the steady state ribosome mass
fraction under the approximations that µ� 1/τSA, µ� 1/τpool, and that the proteins are long lived. These conditions are
satisfied under most normal bacterial growth conditions and, therefore, so is equation 37.

Equation 36, under the assumption of long lifetime of ribosomes, gives

µτRPj = αRPj

Rb
Rtot

[48]

This is equivalent to the closed cycle ribosomal protein growth law presented in (2).

Note that we can also obtain the ratio Rb/Rtot from eq.30, with long lifetime limit, as

(µ+
∑
i

αPi

τPi

)τrest(R) = Rrest
Rb

[49]

=⇒ 1
1 + (µ+

∑
i

αPi
τPi

)τrest(R)
= Rb
Rtot

[50]

which can be called the resting growth laws.

The ribosomal RNA cycle: To study the ribosomal RNA (rRNA) autocatalytic cycle, we need to write the coupled
set of ODEs for the abundances of rRNAs, RNA polymerases that transcribe them, RNA polymerase’s protein subunits that
constitute the RNA polymerases, and ribosomes that translate those protein subunits, in their various activity states:

d rRNAj
dt

=
αrRNAjRpolb

τrRNAj

− rRNAj
τSA(R)

[51]

dRpoj(pool)

dt
=
αRpojRb

τRpoj

−
Rpoj(pool)

τpool(Rpoj )
[52]

dRpoj(act)

dt
=
Rpoj(pool)

τpool(Rpoj )
−
Rpoj(act)

τSA(Rpol)
[53]

dRpolrest
dt

=
Rpoj(act)

τSA(Rpol)
− Rpolrest

τrest(R)
+
∑
i

αmi

τmi

Rpolb −
Rpolrest
τlife(Rpol)

[54]

dRpolb
dt

= Rpolrest
τrest(R)

−
∑
i

αmi

τmi

Rpolb −
Rpolb

τlife(Rpol)
[55]

dRrest
dt

= rRNAj
τSA(R)

− Rrest
τrest(R)

+
∑
i

αPi

τPi

Rb −
Rrest
τlife(R)

[56]

dRb
dt

= Rrest
τrest(R)

−
∑
i

αPi

τPi

Rb −
Rb

τ life(R) [57]
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Putting in the exponential solution, we get

(µ+ 1
τSA(R)

) =
αrRNAjRpolb

τrRNAj rRNAj
[58]

(µ+ 1
τpool(Rpoj )

) =
αRpojRb

τRpojRpoj(pool)
[59]

(µ+ 1
τSA(Rpol)

) =
Rpoj(pool)

τpool(Rpoj )Rpoj(act)
[60]

µ(Rpolrest +Rpolb) + (Rpolrest +Rpolb)
τlife(Rpol)

=
Rpoj(act)

τSA(Rpol)
[61]

µ(Rrest +Rb) + (Rrest +Rb)
τlife(R)

= rRNAj
τSA(R)

[62]

Again, each of these equations are a growth law, relating relative abundances to cellular parameters and the growth rate. We
can also use the above equations to get relative abundance growth law between RNA polymerase and ribosomes.

(µτSA(Rpol) + 1)(µτpool(Rpoj) + 1)
(
µRpoltot + Rpoltot

τ life(Rpol)

)
= αRpoj
τRpoj

Rb [63]

which under the assumption µ� 1/τSA(Rpol), µ� 1/τpool(Rpoj), and long life-time for RNA polymerase simplifies to

µτRpoj

αRpoj

= Rb
Rpoltot

[64]

Multiplying equations 58 - 62, we get

(µτSA(Rpol) + 1)(µτSA(R) + 1)(µτpool(Rpoj ) + 1)
(
µRtot + Rtot

τlife(R)

)(
µRpoltot + Rpoltot

τlife(Rpol)

)
=
αrRNAjαRpoj

τrRNAj τRpoj

RbRpolb [65]

Now, if we assume µ� 1/τSA(R), µ� 1/τSA(Rpol) and µ� 1/τpool(Rpoj ), we get(
µRtot + Rtot

τlife(R)

)(
µRpoltot + Rpoltot

τlife(Rpol)

)
=
αrRNAjαRpoj

τrRNAj τRpoj

RbRpolb [66]

Under further assumption of long lifetime of ribosomes and RNA polymerases, we get

µ2 =
αrRNAjαRpoj

τrRNAj τRpoj

Rb
Rtot

Rpolb
Rpoltot

[67]

This is equivalent to the closed cycle ribosomal RNA growth law presented in (2).

The RNA polymerase cycle: RNA polymerase (Rpol) autocatalytic cycle can also be seen as the mRNA autocat-
alytic cycle. To study the RNA polymerase autocatalytic cycle, we need to write the coupled set of ODEs for the abundances
of mRNAs of RNA polymerase’s protein subunits, RNA polymerases that transcribe them, and RNA polymerase’s protein
subunits that constitute the RNA polymerases, in their various activity states. We do not need ODEs for the abundances of
ribosomes as we will write the translation of the proteins in terms of their mRNAs,

d mRpoj

dt
=
αrpojRpolb

τrpoj

−
mRpoj

τlife(m(Rpoj ))
[68]

dRpoj(pool)

dt
=
Rm(Rpoj )mRpoj

τRpoj

−
Rpoj(pool)

τpool(Rpoj )
[69]

dRpoj(act)

dt
=
Rpoj(pool)

τpool(Rpoj )
−
Rpoj(act)

τSA(Rpol)
[70]

dRpolrest
dt

=
Rpoj(act)

τSA(Rpol)
− Rpolrest

τrest(R)
+
∑
i

αmi
τmi

Rpolb −
Rpolrest
τlife(Rpol)

[71]

dRpolb
dt

= Rpolrest
τrest(R)

−
∑
i

αmi
τmi

Rpolb −
Rpolb

τlife(Rpol)
[72]

The form of the above equation is analogous to that of ribosome’s assembly from its constituent protein subunits, with similar
definition of the terms, except that we are working with transcription level description. Putting in the exponential solution, we
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get the following growth laws

(µ+ 1
τlife(m(Rpoj ))

) =
αrpojRpolb

τrpojmRpoj

[73]

(µ+ 1
τpool(Rpoj )

) =
Rm(Rpoj )mRpoj

Rpoj(pool)τRpoj

[74]

(µ+ 1
τSA(Rpol)

) =
Rpoj(pool)

τpool(Rpoj )Rpoj(act)
[75]

µ(Rpolrest +Rpolb) + (Rpolrest +Rpolb)
τlife(Rpol)

= Rpoj
τSA(Rpol)

[76]

Multiplying the four equations, we get

(µτSA(Rpol) + 1)(µτlife(m(Rpoj )) + 1)(µτpool(Rpoj ) + 1)
(
µ+ 1

τlife(Rpol)

)
=
αrpojRm(Rpoj )τlife(m(Rpoj ))

τRpoj τrpoj

Rpolb
Rpoltot

[77]

Now, assuming µ� 1/τpool(Rpoj ) and that the lifetime of RNA polymerases are long, we get

µ(µτSA(Rpol) + 1)(µτlife(m(Rpoj )) + 1) =
αrpojRm(Rpoj )τlife(m(Rpoj ))Rpolb

τRpoj τrpojRpoltot
[78]

which is the equation that we use to analyse RNA polymerase growth cycle experiments.

The constancy of ribosome allocation (RNA/Protein ratio) under perturbation of RNAP’s transcription
activity: Under mRNA limitation, the ribosomal protein autocatalytic cycle is written as

dRPj(pool)

dt
=
Rm(RPj )mRPj

τRPj

−
RPj(pool)

τpool(RPj )
[79]

dRPj(act)

dt
=
RPj(pool)

τpool(RPj )
−
RPj(act)

τSA(R)
[80]

dRrest
dt

=
RPj(act)

τSA(R)
− Rrest
τrest(R)

+
∑
i

αPi

τPi

Rb −
Rrest
τlife(R)

[81]

dRb
dt

= Rrest
τrest(R)

−
∑
i

αPi

τPi

Rb −
Rb

τlife(R)
[82]

Putting in the exponential solution, we get the following growth laws

(µ+ 1
τpool(RPj )

) =
Rm(RPj )mRPj

τRPjRPj(pool)
[83]

(µ+ 1
τSA(R)

) =
RPj(pool)

τpool(RPj )RPj(act)
[84]

µ(Rrest +Rb) + (Rrest +Rb)
τlife(R)

=
RPj(act)

τSA(R)
[85]

Now, if we multiply the three equations, we get

(µτSA(R) + 1)(µτpool(RPj ) + 1)
(
µRtot + Rtot

τlife(R)

)
=
Rm(RPj )

τRPj
mRPj [86]

Assuming µ� 1/τpool(RPj ), µ� 1/τSA(R), and that the lifetime of ribosomes are long, we get

µRtot =
Rm(RPj )

τRPj

mRPj [87]

or,

µRtotLaa(RPj )τaa = Rm(RPj )mRPj [88]

as τRPj = Laa(RPj )τaa, Laa(RPj ) being the length of the protein in the units of number of amino acids, and τaa being the
elongation time per amino acid. Summing over all protein subunits of ribosome

µRtotτaa
∑

j∈ribosomes

Laa(RPj ) =
∑

j∈ribosomes

Rm(RPj )mRPj [89]
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Therefore,

µ
MR

Maa
τaa =

∑
j∈ribosomes

Rm(RPj )mRPj [90]

where Maa is the average mass of one amino acid. Similarly, for any protein i we can write

µPi(tot) =
Rm(Pi)

τPi

mPi [91]

or,

µ
MPi

Maa
τaa = Rm(Pi)mPi [92]

Summing over the entire proteome

µ
MProteome

Maa
τaa =

∑
i

Rm(Pi)mPi [93]

Taking the ratio of the two,

MR

MProteome
=
∑

j∈ribosomesRm(RPj )mRPj∑
i∈Proteome Rm(Pi)mPi

[94]

Since MR ∝MrRNA ∝MRNA, we see how global reduction in mRNA availability will keep RNA/Protein ratio fixed.
Note that when protein production was ribosome limited then we had (47)

MR

MProteome
= αR. [95]

Also note that in the mRNA limited regime, the mass fraction of all proteins, not just ribosomes, will remain unchanged. For
example, in similar way to above, we can show that in the mRNA limited regime, mass fraction of RNAP will be

MRpol

MProteome
=
∑

j∈RNAP Rm(Rpoj )mRpoj∑
i∈Proteome Rm(Pi)mPi

[96]

General growth law for a metabolic protein

We can obtain growth laws corresponding to a metabolic protein by studying the substrate synthesis cycle involving that
protein (red cycle in Fig. 1 of main text). Let P be the abundance of the metabolic protein that synthesize the substrate, and
F be the abundance of the substrate, say amino acid or ATP. Then in the simple limit of involvement of only one metabolic
protein, and assuming long lifetime of the metabolic protein, we get

dP

dt
= αP

R

τP
[97]

dF

dt
= P

τmetab.(F )
− R

τF
[98]

where τP is the time duration needed to translate P, τmetab.(F ) is the timescale for synthesis of the substrate, and τF is the
average time duration in which one unit of the substrate is utilized. αP is the allocation parameter towards synthesizing P.
Putting in the exponential solution, and writing R ≡ FηF , with ηF = R/F , we get

µP = αP
FηF
τP

[99]

(µ+ ηF
τF

)F = P

τmetab.(F )
[100]

Multiplying the two equations, we get the closed cycle growth law

µ(µτF
ηF

+ 1) = αP τF
τP τmetab.(F )

[101]

or,

µ ≈ αP τF
τP τmetab.(F )

[102]

as µτF � 1 and ηF ∼ 1.
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Growth law for tRNA synthetase

The transport of amino acid substrates to the ribosome’s translation site is facilitated by dedicated tRNAs and corresponding
tRNA charging enzyme aminoacyl-tRNA synthetase. Let R be the abundance of ribosomes, Fi be the abundance of amino acid
substrate of type i, Pi be the abundance of the metabolic protein synthesizing the amino acid of type i, Ti be the abundance of
the tRNA synthetase responsible for charging amino acid of type i to its corresponding tRNA, and F ′i be the abundance of
amino acid of type i made available at the translation site via tRNAs. Assuming long lifetimes for the constituents, and that
all are active, the ODEs for the time evolution of this system can be written

dPi
dt

= αPi

R

τPi

[103]

dTi
dt

= αTi

R

τTi

[104]

dFi
dt

= Pi
τmetab.(i)

− Ti
τcharging(i)

[105]

dF ′i
dt

= Ti
τcharging(i)

−
fusage(i)R

τaa
[106]

where τcharging(i) is the time duration tRNA synthetase of type i takes to charge a tRNA with its corresponding amino acid,
and τaa is the average time duration in which one unit of the amino acid is utilized in the cell. fusage(i) is the fraction of
time the amino acid of type i appears in the amino acid sequence of the cell’s expressed proteome; therefore, fusage(i) is the
fraction of ribosomes that will demand the amino acid of type i at every elongation step. Other terms have similar definitions
as in previous cases. To obtain the growth law for tRNA synthetase, we focus on the cycle involving Ti and F ′i . Putting in
the exponential solution and writing R ≡ F ′iηF ′

i
, with ηF ′

i
= R/F ′i , we get the following closed loop growth law for tRNA

synthetase

µTi = αTi

τTi

F ′iηF ′
i

[107]

(µ+
fusage(i)ηF ′

i

τaa
)F ′i = Ti

τcharging(i)
[108]

Each of these equations are a growth law, relating relative abundances to cellular parameters and the growth rate. Multiplying
the above two equations, we get the following closed cycle growth law

µ(µ τaa
fusage(i)ηF ′

i

+ 1) = αTiτaa
τTiτcharging(i)fusage(i)

[109]

or,

µ ≈ αTiτaa
τTiτcharging(i)fusage(i)

[110]

as µ τaa
fusage(i)ηF ′

i

� 1.

Growth law for tRNA

The growth law for tRNA is similar to that of the tRNA synthetase, but now involving RNA polymerase’s transcription of
the tRNA. Let tRNAi be the abundance of tRNA responsible for carrying the amino acid of type i, αtRNAi be its allocation
parameter, τtRNAi be the time duration needed to transcribe the tRNA, and τtransfer(i) be the time to transfer the amino acid
to the translation site. Assuming long lifetimes for the constituents, the coupled set of ODEs for the tRNA autocatalytic cycle
can be then written as

d tRNAi
dt

= αtRNAiRpolb
τtRNAi

[111]

dF ′i
dt

= tRNAi
τtransfer(i)

−
fusage(i)R

τaa
[112]

dRpoj
dt

=
αRpojR

τRpoj

− Rpoj
τSA(Rpol)

[113]

dRpolrest
dt

= Rpoj
τSA(Rpol)

− Rpolrest
τrest(Rpol)

+
∑
i

αmi
τmi

Rpolb [114]

dRpolb
dt

= Rpolrest
τrest(Rpol)

−
∑
i

αmi
τmi

Rpolb [115]

[116]
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where all other terms are as defined earlier. Putting in the exponential solution, and writing R ≡ ηF ′iF
′
i , we get

µ tRNAi = αtRNAi

τtRNAi

Rpolb [117]

(µ+
fusage(i)ηF ′

i

τaa
)F ′i = tRNAi

τtransfer(i)
[118]

(µ+ 1
τSA(Rpol)

)Rpoj =
αRpojηF ′

i
F ′i

τRpoj

[119]

µ(Rpolrest +Rpolb) = Rpoj
τSA(Rpol)

[120]

[121]

Again, each of these equations are a growth law, relating relative abundances to cellular parameters and the growth rate.
Multiplying the above equations, we get

µ(µτSA(Rpol) + 1)
(
µ

τaa
fusage(i)ηF ′

i

+ 1
)
µRpoltot =

αtRNAiαRpoj τaa

fusage(i)τtRNAiτRpoj τtransfer(i)
Rpolb [122]

or,

µ2 ≈
αtRNAiαRpoj τaa

fusage(i)τtRNAiτRpoj τtransfer(i)

Rpolb
Rpoltot

[123]

as µ τaa
fusage(i)ηF ′

i

� 1 and µτSA(Rpol) � 1.

Growth law involving membrane synthesis

Consider the autocatalytic cycle of the ribosomes, a membrane synthesis associated stitcher protein, like say MreB, the cluster
of stitcher proteins which make the incision, and the membrane which provides the environment for ribosomes to work efficiently.
The time evolution of their abundances will be given as

dP

dt
= αP

R

τP
− P

TP τSA(C)
[124]

dC

dt
= P

TP τSA(C)
[125]

dS

dt
= CW

τm
[126]

where R, P, and C are the abundances of ribosomes, stitcher proteins and the cluster of stitcher proteins respectively; S is
the surface area of the membrane. τP is the time required to translate the stitcher protein, τSA(C) is the time to assemble
the cluster and τm is the linear speed of insertion of membrane material by the cluster (in units of length/time). TP is the
threshold number of stitcher proteins needed to form the cluster which can make incision in the membrane, and W is the
width of the inserted membrane material (Peptidoglycan). Since in the steady state all the components in the cycle grow
exponentially at the same rate, we not only can see why the length will grow exponentially (width of the cell typically stays
constant in E.Coli growing in a given medium), but also obtain growth laws corresponding to its components:

(µ+ 1
TP τSA(C)

) = αPR

τPP
[127]

µ(µτSA(C)TP + 1) = αPR

τPC
[128]

µ = CW

τmS
[129]

Each of the above equation is a relative abundance growth law. In the main text, we use Eq. 129 to analyze the growth rate
reduction due to the application of Triclosan.
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