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Fig. S1. Relationship between the tropospheric vertical column density of nitrogen dioxide 
(NO2) and gross domestic product (GDP). (A) Plot of NO2 burden averaged for 2016–2019 and 
area of all pixels in a country against the national GDP (purchasing-power-parity) as an average 
for 2016–2019 across 142 countries with full data of NO2. NO2 are retrieved from the backscattered 
radiance and solar irradiance measured by the Ozone Monitoring Instrument (OMI) on board the 
US NASA Aura satellite (blue circles) or the Tropospheric Monitoring Instrument (TROPOMI) on 
board the European Copernicus Sentinel-5 Precursor satellite (orange circles). (B–I) As (a), but for 
0.5º×0.5º grids globally (B, F), and in China (C, G), the USA (D, H) and Europe (E, I) using the OMI 
(B–E) or TROPOMI (F–I) data. 



 

 

3 

 

 

Fig. S2. Variation in tropospheric vertical column density of nitrogen dioxide (NO2) 
explained by a fixed-effects model. We fit the fixed-effects model to predict daily NO2 by 
accounting for non-linear impacts of meteorology, linear impacts of seasonality and inter-annual 
trends, and weekly impact of COVID-19 using a dummy variable (see xt,w in Eq. 1 in Methods) on 
daily NO2. (A) Fraction of day-to-day variations in OMI NO2 explained by fixed-effects model using 
machine learning (OMI-ML) as a coefficient of determination (R2) in global 0.5º×0.5º grids. (B) R2 
in a multiple linear regression model (OMI-LR) using the same predictors. (C) Difference in R2 
between (B) and (A) as a percentage relative to (A). (D) R2 without considering the impact of 
COVID-19 by fixing xt,w=0 (OMI-ML without COVID-19). (E) Difference in R2 between (D) and (A) 
as a percentage relative to (A). 
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Fig. S3. Changes in tropospheric vertical column density of nitrogen dioxide (NO2) 
estimated by a multiple linear model or using the Tropospheric Monitoring Instrument 
(TROPOMI) data. (A–D) Distributions of GDP weighted by ΔNO2 in the first four weeks after the 
COVID-19 outbreak in each region (A, B) or the last four weeks for 11 October to 8 November 
2020 in this study (C, D). In (A, C), ΔNO2 is estimated using the Ozone Monitoring Instrument (OMI) 
NO2 by multiple linear regression (OMI-LR), rather than the machine-learning method (OMI-ML). In 
(B, D), ΔNO2 is estimated using the TROPOMI data of NO2 with machine learning (TROPOMI-ML), 
rather than the OMI NO2 (OMI-ML). (E–L) Absolute (E–H) and relative differences (I–L) in GDP 
weighted by ΔNO2 relative to that using the OMI NO2 data based on a machine-learning method 
(OMI-ML), as shown in Figs. 1A, B in the main text. 
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Fig. S4. Changes in tropospheric vertical column density of nitrogen dioxide (NO2) 
measured by the Ozone Monitoring Instrument (OMI) and the Tropospheric Monitoring 
Instrument (TROPOMI) instruments without representing the impact of meteorology. (A–D) 
Distributions of GDP weighted by ΔNO2 without considering the impact of meteorology using the (A, 
C) OMI (OMI-Original) or (B, D) TROPOMI (TROPOMI-Original) data for NO2. (A, B) for the first 
four weeks after the COVID-19 outbreak in each region, and (c, d) for the last four weeks for 11 
October to 8 November 2020 in this study. (E–L) Absolute (E–H) and relative (I–L) differences in 
GDP weighted by ΔNO2 using the OMI data (E, G, I, K) relative to results obtained by filtering the 
impact of meteorology with machine learning (OMI-ML) in Figs. 1a, b, or using the TROPOMI data 
(F, H, J, L) relative to results obtained by filtering the impact of meteorology with machine learning 
(TROPOMI-ML) in Figs. S3B, D. 
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Fig. S5. Comparison between the calculated acceleration of daily COVID-19 cases (A) and 
the reported effective reproduction number (Rt) in the literature (Abbott et al., 2020). (A) 
Scatter plot of A and Rt for 101 territories by week in the winter of 2020/21. The squared correlation 
coefficient (R2) between A and Rt was calculated after excluding 9 outliers (red circles) among 1499 
data points by the Grubbs’ test at a significance of 0.05. (B-J) Time series of A and Rt in Canada 
(B), China (C), Germany (D), Malaysia (E), Netherlands (F), Norway (G), Japan (H), United States 
(I), and Chile (J) by week. 

Reference: 

Abbott, S., Hellewell, J. & Funk, S. Estimating the time-varying reproduction number of SARS-CoV-
2 using national and subnational case counts. Wellcome Open Research, 5, 112 (2020). 
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Fig. S6. Relationship between weekly changes in OMI NO2 (ΔNO2) as an indicator of activity 
changes during COVID-19 and the weekly velocity (V) or acceleration (A) of daily COVID-19 
cases. (A) Weekly velocity of COVID-19 cases reported by the European Centre for Disease 
Prevention and Control (ECDPC) against weekly ΔNO2 from 1 Jan. to 8 Nov. 2020 in 211 territories. 
(B) COVID-19 cases as a function of GDP weighted by ΔNO2 based on the upper bounds (mean + 
standard error) of ΔNO2 (ΔNO2

+) and velocity (V+). We divide 5642 pairs of data for cases and GDP 
weighted by ΔNO2 into four regimes: (I) ΔNO2

+ <0 and V+<0, (II) ΔNO2
+ <0 and V+≥0, (III) ΔNO2

+ ≥0 and 
V+≥0 and (IV) ΔNO2

+ ≥0 and V+<0. In each regime, we add the number of COVID-19 cases and GDP 
weighted by ΔNO2 one by one, in order of the ratio of cases to the GDP weighted by ΔNO2. The total 
number of COVID-19 cases is plotted against the total GDP weighted by ΔNO2 one in each regime. 
(C) Fraction of GDP weighted by ΔNO2 in four regimes. A negative ΔNO2

+ is considered as ΔNO2
+<0 

lasting for 1, 2 and 3 consecutive weeks before this week from the outer to the inner pies. Total 
GDP weighted by ΔNO2 is US$9.8 trillion (T) or 8% as an average of ΔNO2 weighted GDP. (D–F) as 
(A–C), except for weekly acceleration of COVID-19 cases (A) and the upper bound (A+). 
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Fig. S7. Coefficient of variation in the case acceleration and ΔNO2. (a-b) Coefficient of variation 
of case acceleration estimated by the regression model (A) and ΔNO2 estimated by the fixed-effects 
model (B) for each territory. Gray color indicates no data. 
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Fig. S8. Relationships between weekly changes in tropospheric vertical column density of 
nitrogen dioxide (NO2) (ΔNO2) and the weekly velocity and acceleration of COVID-19 cases 
using different data. (A,D) as Figs. S5B, E, but for using NO2 measured by the Ozone Monitoring 
Instrument (OMI) or Tropospheric Monitoring Instrument (TROPOMI) instruments and using daily 
COVID-19 cases reported by the European Centre for Disease Prevention and Control (ECDPC) 
or the World Health Organization (WHO). (B, E) as the Figs. S5C, F, but for using NO2 measured 
by the TROPOMI (rather than OMI). (C, F) as the Figs. S5C, F, but for using daily COVID-19 cases 
reported by the WHO (rather than ECDPC). In (B, E), total GDP weighted by ΔNO2 is –$8.7 trillion 
(T). In (C, F), total GDP weighted by ΔNO2 is –$9.8 trillion (T). 
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Fig. S9. Relationship between the weekly acceleration of daily COVID-19 cases (A) and 
socioeconomic and environmental indicators. The observed A is plotted against the delay in 
confinement as the number of weeks between the COVID-19 outbreak and the first week with 
ΔNO2

+<0 (A), purchasing-power-parity GDP per capita (B), average population density (C), ambient 
surface temperature (D), relative humidity (E), horizontal wind speed (F), and precipitable water 
content in the air (G). Each indicator is averaged over weeks in a territory where the upper bound 
(mean + standard error) of ΔNO2 (ΔNO2

+) is positive (blue, κ=1) or negative (red, κ=6) for 3 
consecutive weeks before these weeks. 



 

 

11 

 

 

Fig. S10. Effects of socioeconomic and meteorological indicators on acceleration of daily 
COVID-19 cases (A) using different data. (A) Plots of the observed weekly acceleration of 
COVID-19 cases against 10 socioeconomic and environmental indicators, using NO2 measured by 
the Tropospheric Monitoring Instrument (TROPOMI) and daily COVID-19 cases reported by the 
European Centre for Disease Prevention and Control (ECDPC). The indicator is derived as an 
average in each region for weeks when the upper bound (mean + standard error) of ΔNO2 (ΔNO2

+) 
is positive (blue, κ=1) or negative (red, κ=6) for 3 weeks. The correlation coefficient (R) is listed in 
the panel with P<0.001. PBL, planetary boundary layer. (B) as (A), except for using NO2 measured 
by the Ozone Monitoring Instrument (OMI) and daily COVID-19 cases reported by the World Health 
Organization (WHO). 



 

 

12 

 

 

Fig. S11. Coefficient of determination (R2) in the model predicting the weekly acceleration 
of daily COVID-19 cases (A) by ΔNO2. The R2 to predict A by ΔNO2 alone (gray column) is compared 
to that by taking the difference in distinguishing local vs imported cases (triangle), social distancing 
(circle) or facial masking (diamond) as a covariate. 
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Fig. S12. Coefficient of determination (R2) in the model to predict the weekly acceleration of 
daily COVID-19 cases (A) by ΔNO2 for provinces or states. (A) 51 states in the USA. (B) 8 
provinces in China (cases information is missing in 23 other provinces). (C) 27 states in the Brazil. 
(D) 24 states in the Argentina. The R2 to predict A by ΔNO2 for each state / province (column) is 
compared to that taking the states / provinces as a whole for each country (dashed line). The green 
column indicates that R2 is higher for each state / province than that taking the states / provinces 
as a whole for each country. 
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Fig. S13. Comparison of the predicted weekly acceleration of COVID-19 cases to 
observations with or without cross validation using different methods. Without cross 
validation, the weekly acceleration of COVID-19 cases (A) is predicted (A) from NO2 change (ΔNO2) 
as a single predictor by simple linear regression, (B) ΔNO2 and other 10 socioeconomic and 
environmental indicators as predictors by multiple linear regression, and (C) ΔNO2 and other 10 
socioeconomic and environmental indicators as predictors by machine learning. In leave-one-out 
cross-validation, A is predicted (D) from NO2 change (ΔNO2) as a single predictor using simple linear 
regression and (E) ΔNO2 and other 10 socioeconomic and environmental indicators as predictors 
using multiple linear regression. To better evaluate the prediction of deceleration, the mean 
squared error (MSE) is weighted by a function of (0.99)h, where h is the rank of the observed A, 
while the coefficient of determination (R2) is defined as one minus the ratio of MSE to variance in 
the observed A. The moving averages are shown at an interval of 50 (thick lines). 
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Fig. S14. Residual analysis for the five machine-learning models using different predictors 
in leave-one-out cross-validation. Squared errors of the predicted weekly acceleration of daily 
COVID-19 cases using the OxCGRT NPIs (A), the PHSM NPIs (B), the Google/Baidu human 
mobility (C) or OMI NO2 change (ΔNO2) (D) as the predictor. In these machine-learning models, 
socioeconomic and environmental indicators used as other predictors are identical. In (A–D), the 
moving averages of the squared errors are shown at an interval of 50 (solid line) or 100 (dashed 
line). (E) as (A–D), but for using the OxCGRT NPIs, the PHSM NPIs, human mobility and ΔNO2 
together with 10 socioeconomic and environmental indicators as the predictors. 
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Fig. S15. Comparison of the predicted weekly acceleration of daily COVID-19 cases (A) to 
observations in leave-one-out cross-validation by filtering data with different thresholds. A 
is predicted using NO2 change (ΔNO2) (A–F) or alternatively using the OxCGRT NPIs (G–L), the 
PHSM NPIs (M–R) and the Google/Baidu human mobility (S–X) as a predictor, while 10 
socioeconomic and environmental indicators as other predictors are identical. We filter data with 
precitable water content in the air and relative humidity above the median, or GDP, population and 
NO2 column concentration below the median. Because R2 of A increases remarkably by filtering 
data with precitable water content in the air and NO2 column concentration, we show the 
performance by filtering data with these two indicators together in (F, L, R, X). The moving averages 
are shown at an interval of 50 (thick lines). 
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Fig. S16. Hindcast and forecast simulations of daily COVID-19 cases. Hindcast (A) and 
forecast (B) simulations of new COVID-19 cases over 8 weeks since the end of the 3rd week after 
the COVID-19 outbreak or since 25 Nov. 2020. In hindcast simulation scenario, we considered 8 
scenarios using the real ΔNO2, constant ΔNO2 of 0 (T0), –10% (T1), –30% (T3) and –50% (T5) in all 
territories, T5 with the discrete variable κ held at 1, and ΔNO2 of –50% in the 10% (T5-eff10) and 
20% (T5-eff20) of territories with the highest sensitivity of A to ΔNO2. In forecast simulation scenario, 
we considered 8 scenarios as those in hindcast simulation scenario, but for ΔNO2 of 0 (T0), –10% 
(T1), –20% (T2) and –30% (T3). 
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Fig. S17. Dependences of daily COVID-19 cases for 21 January 2021 on the global total GDP 
weighted by ΔNO2 using different data inputs. (A) as Fig. 6A, except for using tropospheric 
vertical column density of nitrogen dioxide (NO2) measured by the Tropospheric Monitoring 
Instrument (TROPOMI) and daily COVID-19 cases reported by the European Centre for Disease 
Prevention and Control (ECDPC). (B) as Fig. 6A, except for using NO2 measured by the Ozone 
Monitoring Instrument (OMI) and daily COVID-19 cases reported by the World Health Organization 
(WHO). 
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Fig. S18. Comparison of tropospheric vertical column density of nitrogen dioxide (NO2) 
measured by the Ozone Monitoring Instrument (OMI) and the Tropospheric Monitoring 
Instrument (TROPOMI). The OMI and TROPOMI data are used to estimate NO2 change (ΔNO2) in 
Wuhan, China (A–C) and Los Angeles, the USA (D–F). (A, D) Comparison of ΔNO2 using the OMI 
(2016–2020) and TROPOMI (2019–2020) data at a resolution of 0.01º×0.01º, 0.25º×0.25º, 1º×1º 
and 2º×2º, respectively. To show the influence of a longer period measuring data by the OMI (2016–
2020) than the TROPOMI (2019–2020) instrument, the estimated ΔNO2 using the OMI data for 
2016–2020 (grey line) is compared to that using the OMI data only for 2019–2020 (blue line). (B, 
E) Distribution of ΔNO2 using TROPOMI data for 2019–2020. (C, F) Distribution of ΔNO2 using OMI 
data for 2016–2020. The fraction of missing data (Fmissing) is given in (B, C, E, F). 
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Fig. S19. Optimization of the model predicting the weekly acceleration of daily COVID-19 
cases (A) from NO2 change (ΔNO2) along with 10 socioeconomic and environmental 
indicators by machine learning. To evaluate the model performance under different parameters 
adopted for machine learning, we plot the dependence of the mean square error (MSE) in the four-
fold cross-validation on the maximum depth of each tree, learning rate and the number of trees in 
the gradient-boosting-decision-tree regression. 
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Table S1. Time of lockdowns in typical regions or countries. 

Region 
1st lockdown 2nd lockdown 

Data sources 
Start End Start End 

France 3.17  5.11  10.30  12.01  Flaxman, S. et al. Estimating the effects 
of non-pharmaceutical interventions on 
COVID-19 in Europe. Nature 584, 257-
261 (2020). 

Italy 3.09  5.18  11.06  12.03  

Spain 3.14  5.09  - - 

UK  3.23  7.04  11.05  12.02  

Germany 3.23  5.10  11.02  11.30  

Singapore 4.07  6.01  - - 

https://en.wikipedia.org/wiki/COVID-
19_pandemic_lockdowns 

Korea - - - - 

Japan - - - - 

Beijing 2.10  4.30  - - http://www.gov.cn/xinwen 

Wuhan 1.23  4.08  - - http://www.gov.cn/xinwen 

Shanghai 2.10  3.24  - - 
http://wap.sh.gov.cn/nw2/nw2314/nw23
19/nw44142/u26aw64656.html 

India  3.25  6.07  - - 

https://en.wikipedia.org/wiki/COVID-
19_pandemic_lockdowns 

Iran 3.14  4.20  - - 

Iraq 3.22  4.11  - - 

South Africa 3.26  4.30  - - 

Turkey 4.23  4.27  - - 

Peru 3.16  6.30  - - 

Argentina 3.29  5.04  - - 

California 3.19  5.18  - - 

New York 3.22  6.13  - - 

Washington 3.25  4.10  - - 

North Korea 7.25  8.14  - - 

Vietnam 4.01  4.22  - - 

Thailand 3.25  5.31  - - 

São Paulo 3.24  5.10  - - 
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Table S2. Coefficient of determination (R2) in the prediction of weekly acceleration of COVID-
19 cases (A) in leave-one-out cross-validation by filtering data with different thresholds. A 
is predicted using OMI NO2 changes (ΔNO2) (a–f), or alternatively the OxCGRT NPIs, the PHSM 
NPIs and human mobility as the predictor, while other predictors are identical. To consider the 
impact of noises in satellite data, we filter data with precitable water content in the air and relative 
humidity (related to clouds) above a threshold, or the GDP, population and average NO2 column 
concentration below a threshold. Because R2 of A predicted from ΔNO2 increases remarkably by 
filtering data with precitable water content and average NO2 column concentration, we show the 
performance by filtering data with these two indicators together. We select the median or the 75% 
(p75) and 90% (p90) percentiles as the threshold to filter data. 

Filtering variable(s) Threshold 

R2 

OMI NO2 
OxCGRT 

NPIs 
PHSM 
NPIs 

Human 
mobility 

GDP p90 0.55 0.43 0.44 0.42 

Population p90 0.57 0.46 0.43 0.46 

Precitable water 
content 

p90 0.56 0.44 0.46 0.45 

Relative humidity p90 0.48 0.36 0.34 0.36 

NO2 concentration p90 0.55 0.45 0.44 0.44 

Precitable water 
content and NO2 

concentration 
p90 0.57 0.46 0.47 0.48 

GDP p75 0.59 0.45 0.46 0.47 

Population p75 0.55 0.47 0.47 0.45 

Precitable water 
content 

p75 0.58 0.46 0.47 0.48 

Relative humidity p75 0.47 0.30 0.30 0.31 

NO2 concentration p75 0.56 0.43 0.43 0.44 

Precitable water 
content and NO2 

concentration 
p75 0.60 0.50 0.51 0.49 

GDP median 0.49 0.35 0.36 0.35 

Population median 0.56 0.53 0.53 0.56 

Precitable water 
content 

median 0.63 0.57 0.58 0.57 

Relative humidity median 0.50 0.35 0.34 0.36 

NO2 concentration median 0.60 0.54 0.54 0.56 

Precitable water 
content and NO2 

concentration 
median 0.62 0.56 0.58 0.57 

 


