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Fig. S1. Relationship between the tropospheric vertical column density of nitrogen dioxide
(NO2) and gross domestic product (GDP). (A) Plot of NO2 burden averaged for 2016—2019 and
area of all pixels in a country against the national GDP (purchasing-power-parity) as an average
for 2016—2019 across 142 countries with full data of NO2. NO: are retrieved from the backscattered
radiance and solar irradiance measured by the Ozone Monitoring Instrument (OMI) on board the
US NASA Aura satellite (blue circles) or the Tropospheric Monitoring Instrument (TROPOMI) on
board the European Copernicus Sentinel-5 Precursor satellite (orange circles). (B-I) As (a), but for
0.5°x0.5° grids globally (B, F), and in China (C, G), the USA (D, H) and Europe (E, 1) using the OMI
(B—E) or TROPOMI (F-I) data.



OMI-ML without COVID-19

Fig. S2. Variation in tropospheric vertical column density of nitrogen dioxide (NOy)
explained by a fixed-effects model. We fit the fixed-effects model to predict daily NO2 by
accounting for non-linear impacts of meteorology, linear impacts of seasonality and inter-annual
trends, and weekly impact of COVID-19 using a dummy variable (see x.w in Eq. 1 in Methods) on
daily NOz2. (A) Fraction of day-to-day variations in OMI NO: explained by fixed-effects model using
machine learning (OMI-ML) as a coefficient of determination (R?) in global 0.5°x0.5° grids. (B) R?
in a multiple linear regression model (OMI-LR) using the same predictors. (C) Difference in R?
between (B) and (A) as a percentage relative to (A). (D) R? without considering the impact of
COVID-19 by fixing x,w=0 (OMI-ML without COVID-19). (E) Difference in R? between (D) and (A)

as a percentage relative to (A).
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The first four weeks after the COVID-19 outbreak The last four weeks in this study (11 Oct - 8 Nov 2020)
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Fig. S3. Changes in tropospheric vertical column density of nitrogen dioxide (NOy)
estimated by a multiple linear model or using the Tropospheric Monitoring Instrument
(TROPOMI) data. (A-D) Distributions of GDP weighted by Ano2 in the first four weeks after the
COVID-19 outbreak in each region (A, B) or the last four weeks for 11 October to 8 November
2020 in this study (C, D). In (A, C), Ano2 is estimated using the Ozone Monitoring Instrument (OMI)
NO: by multiple linear regression (OMI-LR), rather than the machine-learning method (OMI-ML). In
(B, D), Ano2 is estimated using the TROPOMI data of NO2 with machine learning (TROPOMI-ML),
rather than the OMI NO2 (OMI-ML). (E-L) Absolute (E-H) and relative differences (I-L) in GDP
weighted by Anoz relative to that using the OMI NO:2 data based on a machine-learning method
(OMI-ML), as shown in Figs. 1A, B in the main text.
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Fig. S4. Changes in tropospheric vertical column density of nitrogen dioxide (NO>)
measured by the Ozone Monitoring Instrument (OMI) and the Tropospheric Monitoring
Instrument (TROPOMI) instruments without representing the impact of meteorology. (A-D)
Distributions of GDP weighted by Anoz without considering the impact of meteorology using the (A,
C) OMI (OMI-Original) or (B, D) TROPOMI (TROPOMI-Original) data for NO2. (A, B) for the first
four weeks after the COVID-19 outbreak in each region, and (c, d) for the last four weeks for 11
October to 8 November 2020 in this study. (E-L) Absolute (E-H) and relative (I-L) differences in
GDP weighted by Ano2 using the OMI data (E, G, I, K) relative to results obtained by filtering the
impact of meteorology with machine learning (OMI-ML) in Figs. 1a, b, or using the TROPOMI data
(F, H, J, L) relative to results obtained by filtering the impact of meteorology with machine learning
(TROPOMI-ML) in Figs. S3B, D.
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Fig. S5. Comparison between the calculated acceleration of daily COVID-19 cases (A) and
the reported effective reproduction number (R:) in the literature (Abbott et al., 2020). (A)
Scatter plot of A and R; for 101 territories by week in the winter of 2020/21. The squared correlation
coefficient (R2) between A and R; was calculated after excluding 9 outliers (red circles) among 1499
data points by the Grubbs’ test at a significance of 0.05. (B-J) Time series of A and Rt in Canada
(B), China (C), Germany (D), Malaysia (E), Netherlands (F), Norway (G), Japan (H), United States
(), and Chile (J) by week.

Reference:

Abbott, S., Hellewell, J. & Funk, S. Estimating the time-varying reproduction number of SARS-CoV-
2 using national and subnational case counts. Wellcome Open Research, 5, 112 (2020).
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Fig. S6. Relationship between weekly changes in OMI NO; (Ano2) as an indicator of activity
changes during COVID-19 and the weekly velocity (V) or acceleration (A) of daily COVID-19
cases. (A) Weekly velocity of COVID-19 cases reported by the European Centre for Disease
Prevention and Control (ECDPC) against weekly Anoz from 1 Jan. to 8 Nov. 2020 in 211 territories.
(B) COVID-19 cases as a function of GDP weighted by Anoz based on the upper bounds (mean +
standard error) of Anoz (Anoz*) and velocity (V*). We divide 5642 pairs of data for cases and GDP
weighted by Anoz into four regimes: (1) Ano2* <0 and V*<0, (1) Anoz2* <0 and V*20, (lll) Ano2* 20 and
V+=20 and (IV) Anoz* 20 and V*<0. In each regime, we add the number of COVID-19 cases and GDP
weighted by Ano2 one by one, in order of the ratio of cases to the GDP weighted by Anoz. The total
number of COVID-19 cases is plotted against the total GDP weighted by Ano2 one in each regime.
(C) Fraction of GDP weighted by Ano2 in four regimes. A negative Anoz* is considered as Ano2*<0
lasting for 1, 2 and 3 consecutive weeks before this week from the outer to the inner pies. Total
GDP weighted by Ano2 is US$9.8 trillion (T) or 8% as an average of Ano2 weighted GDP. (D-F) as
(A-C), except for weekly acceleration of COVID-19 cases (A) and the upper bound (A*).
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Fig. S7. Coefficient of variation in the case acceleration and Anoz. (a-b) Coefficient of variation
of case acceleration estimated by the regression model (A) and Anoz estimated by the fixed-effects
model (B) for each territory. Gray color indicates no data.
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Fig. S8. Relationships between weekly changes in tropospheric vertical column density of
nitrogen dioxide (NOy) (Anoz) and the weekly velocity and acceleration of COVID-19 cases
using different data. (A,D) as Figs. S5B, E, but for using NO2 measured by the Ozone Monitoring
Instrument (OMI) or Tropospheric Monitoring Instrument (TROPOMI) instruments and using daily
COVID-19 cases reported by the European Centre for Disease Prevention and Control (ECDPC)
or the World Health Organization (WHO). (B, E) as the Figs. S5C, F, but for using NO2 measured
by the TROPOMI (rather than OMI). (C, F) as the Figs. S5C, F, but for using daily COVID-19 cases
reported by the WHO (rather than ECDPC). In (B, E), total GDP weighted by Ano2 is —=$8.7 trillion
(T). In (C, F), total GDP weighted by Ano2 is —$9.8 trillion (T).
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Fig. S9. Relationship between the weekly acceleration of daily COVID-19 cases (A) and
socioeconomic and environmental indicators. The observed A is plotted against the delay in
confinement as the number of weeks between the COVID-19 outbreak and the first week with
Ano27<0 (A), purchasing-power-parity GDP per capita (B), average population density (C), ambient
surface temperature (D), relative humidity (E), horizontal wind speed (F), and precipitable water
content in the air (G). Each indicator is averaged over weeks in a territory where the upper bound
(mean + standard error) of Ano2 (Anoz2') is positive (blue, k=1) or negative (red, k=6) for 3
consecutive weeks before these weeks.
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Fig. S10. Effects of socioeconomic and meteorological indicators on acceleration of daily
COVID-19 cases (A) using different data. (A) Plots of the observed weekly acceleration of
COVID-19 cases against 10 socioeconomic and environmental indicators, using NO2 measured by
the Tropospheric Monitoring Instrument (TROPOMI) and daily COVID-19 cases reported by the
European Centre for Disease Prevention and Control (ECDPC). The indicator is derived as an
average in each region for weeks when the upper bound (mean + standard error) of Ano2 (Anoz®)
is positive (blue, k=1) or negative (red, k=6) for 3 weeks. The correlation coefficient (R) is listed in
the panel with P<0.001. PBL, planetary boundary layer. (B) as (A), except for using NO2 measured
by the Ozone Monitoring Instrument (OMI) and daily COVID-19 cases reported by the World Health
Organization (WHO).
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Fig. S11. Coefficient of determination (R?) in the model predicting the weekly acceleration
of daily COVID-19 cases (A) by Ano2. The R? to predict A by Anoz alone (gray column) is compared
to that by taking the difference in distinguishing local vs imported cases (triangle), social distancing
(circle) or facial masking (diamond) as a covariate.
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Fig. S12. Coefficient of determination (R?) in the model to predict the weekly acceleration of
daily COVID-19 cases (A) by Anoz for provinces or states. (A) 51 states in the USA. (B) 8

provinces in China (cases information is missing in 23 other provinces). (C) 27 states in the Brazil.
(D) 24 states in the Argentina. The R? to predict A by Ano2 for each state / province (column) is

compared to that taking the states / provinces as a whole for each country (dashed line). The green
column indicates that R? is higher for each state / province than that taking the states / provinces

as a whole for each country.
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Fig. S13. Comparison of the predicted weekly acceleration of COVID-19 cases to
observations with or without cross validation using different methods. Without cross
validation, the weekly acceleration of COVID-19 cases (A) is predicted (A) from NO2 change (Anoz)
as a single predictor by simple linear regression, (B) Ano2 and other 10 socioeconomic and
environmental indicators as predictors by multiple linear regression, and (C) Anoz and other 10
socioeconomic and environmental indicators as predictors by machine learning. In leave-one-out
cross-validation, A is predicted (D) from NO2 change (Anoz) as a single predictor using simple linear
regression and (E) Ano2 and other 10 socioeconomic and environmental indicators as predictors
using multiple linear regression. To better evaluate the prediction of deceleration, the mean
squared error (MSE) is weighted by a function of (0.99)", where h is the rank of the observed A,
while the coefficient of determination (R?) is defined as one minus the ratio of MSE to variance in
the observed A. The moving averages are shown at an interval of 50 (thick lines).
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Fig. S14. Residual analysis for the five machine-learning models using different predictors
in leave-one-out cross-validation. Squared errors of the predicted weekly acceleration of daily
COVID-19 cases using the OXCGRT NPIs (A), the PHSM NPIs (B), the Google/Baidu human
mobility (C) or OMI NO2 change (Ano2) (D) as the predictor. In these machine-learning models,
socioeconomic and environmental indicators used as other predictors are identical. In (A-D), the
moving averages of the squared errors are shown at an interval of 50 (solid line) or 100 (dashed
line). (E) as (A-D), but for using the OXCGRT NPIs, the PHSM NPIs, human mobility and Ano2
together with 10 socioeconomic and environmental indicators as the predictors.

15



1A B [ D E

Predictor: OMI NO2; Predictor: OMI NO2; Predictor: OMI NOz; Predictor: OMI N [Predictor: OMI N¢
Filter: GDP | Filter: Population Filter: Precitablejwater Filter: Relative'l IFilter: NO2 cop
content 3
of... . tert....|  |oeet IS
- s +
2
n=3145 n=2645 o n=2727
P<0.001 P<0.001 ¥ P<0.001 | P<0.001
2 R2=0.49 7 R=0.56 . R=0.63 | Re=050
i MSE=0.94 MSE=1.09 MSE=0.89 | MSE=1.03

1 G H 1 J

Predictor: OXCGRTNPIs Predictor: OXCGRTNPIs Predictor: OXCGRTNPIs Predictor: OXCGRTNPIs Predictor: OXCGRTNPIs

Filter: GDP 3 Filter: Population Filter: Precitablewater Filter: Relative humidity IFilter: NO2 cohcentration

i £ content Dbt . iy o = ;

0 — () B

n=3145 n=2645

“n=2727 | w=2727
P<0.001 P<0.001 . { P<0.001 | P<0.001
2 R=0.35 R=0.53 f R2=0.57 | R=0.35
/ MSE=1.21 # MSE=1.17 » MSE=1.05 | MSE=1.36
i i i
1 M N o R
Predictor: PHSM NFis Predictor: PHSM NPIs Predictor: PHSM NPIs Predictor: PHSM NFls Predictor: PHSM
Filter: GDP F Filter: Population / Filter: Precitablewater Filter: Relatiye hpm‘ldity Filter: NO2 gntrati
: i content > i

Predicted acceleration of daily COVID-19 cases (% day?)

-1 i
f: .
; .
n=3145 n=2645 . n=2727
P<0.001 i P<0.001 ~ P<0.001
2 R=0.36 R?=053 R2=058
i MSE=1.18 MSE=1.18 MSE=1.02
1 S L u
Predictor: Humah mobility Predictor: Human mobility Predictor: Humah meobility Predictor: Humah mobility
Filter: GDP i Filter: Population / Filter: Precitablejwater Filter: Relative hnidity
content i
i 4 i /
£
i
/ /
i i
K i i
n=3145 ./ n=2645 o n=2727 ¥, n=2727 ‘n=2777
P<0.001 P<0.001 P<0.001 4 P<0.001 P<0.001 |
=) ._.-" R*=0.35 R?*=0.56 R*=0.57 4 R*=0.36 | R®=0.56 i R¥=057
MSE=1.20 MSE=1.10 MSE=1.05 MSE=1.33 o | MSE=1.08 ; | MSE=079
32101 2 3 32401 2 3 32101 2 3 a3 D QA 32 3 3241012 3 32401 2 3

Observed acceleration of daily COVID-19 cases (% day-2)

Fig. S15. Comparison of the predicted weekly acceleration of daily COVID-19 cases (A) to
observations in leave-one-out cross-validation by filtering data with different thresholds. A
is predicted using NO2z change (Anoz2) (A—F) or alternatively using the OXCGRT NPIs (G-L), the
PHSM NPIs (M-R) and the Google/Baidu human mobility (S—X) as a predictor, while 10
socioeconomic and environmental indicators as other predictors are identical. We filter data with
precitable water content in the air and relative humidity above the median, or GDP, population and
NO:2 column concentration below the median. Because R? of A increases remarkably by filtering
data with precitable water content in the air and NO:2 column concentration, we show the
performance by filtering data with these two indicators together in (F, L, R, X). The moving averages
are shown at an interval of 50 (thick lines).
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Hindcast simulation for 8 weeks since the end of the 3" week
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Fig. S16. Hindcast and forecast simulations of daily COVID-19 cases. Hindcast (A) and
forecast (B) simulations of new COVID-19 cases over 8 weeks since the end of the 3" week after
the COVID-19 outbreak or since 25 Nov. 2020. In hindcast simulation scenario, we considered 8
scenarios using the real Anoz, constant Anoz of 0 (T0), —10% (T1), —30% (T3) and —50% (T5) in all
territories, T5 with the discrete variable k held at 1, and Anoz of -50% in the 10% (T5-eff10) and
20% (T5-eff20) of territories with the highest sensitivity of A to Ano2. In forecast simulation scenario,
we considered 8 scenarios as those in hindcast simulation scenario, but for Ano2 of 0 (T0), —10%
(T1), —20% (T2) and —30% (T3).
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Fig. S17. Dependences of daily COVID-19 cases for 21 January 2021 on the global total GDP
weighted by Anoz using different data inputs. (A) as Fig. 6A, except for using tropospheric
vertical column density of nitrogen dioxide (NO2) measured by the Tropospheric Monitoring
Instrument (TROPOMI) and daily COVID-19 cases reported by the European Centre for Disease
Prevention and Control (ECDPC). (B) as Fig. 6A, except for using NO2 measured by the Ozone
Monitoring Instrument (OMI) and daily COVID-19 cases reported by the World Health Organization

(WHO).
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Fig. S18. Comparison of tropospheric vertical column density of nitrogen dioxide (NOy)
measured by the Ozone Monitoring Instrument (OMI) and the Tropospheric Monitoring
Instrument (TROPOMI). The OMI and TROPOMI data are used to estimate NO2z change (Ano2) in
Wuhan, China (A-C) and Los Angeles, the USA (D-F). (A, D) Comparison of Ano2 using the OMI
(2016—2020) and TROPOMI (2019-2020) data at a resolution of 0.01°x0.01°, 0.25°x0.25°, 1°x1°
and 2°x29°, respectively. To show the influence of a longer period measuring data by the OMI (2016—
2020) than the TROPOMI (2019-2020) instrument, the estimated Ano2 using the OMI data for
2016-2020 (grey line) is compared to that using the OMI data only for 2019-2020 (blue line). (B,
E) Distribution of Anoz using TROPOMI data for 2019-2020. (C, F) Distribution of Ano2 using OMI
data for 2016—2020. The fraction of missing data (Fmissing) iS given in (B, C, E, F).
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Fig. S19. Optimization of the model predicting the weekly acceleration of daily COVID-19
cases (A) from NO, change (4no2) along with 10 socioeconomic and environmental
indicators by machine learning. To evaluate the model performance under different parameters
adopted for machine learning, we plot the dependence of the mean square error (MSE) in the four-
fold cross-validation on the maximum depth of each tree, learning rate and the number of trees in
the gradient-boosting-decision-tree regression.
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Table S1. Time of lockdowns in typical regions or countries.

15t lockdown

2" Jockdown

Region Start End Start End Data sources

France 3.17 511 10.30 12.01 Flaxman, S. et al. Estimating the effects

Italy 3.09 5.18 11.06 12.03 of non-pharmaceutical interventions on

Spain 3.14 5.09 . i} COVID-19 in Europe. Nature 584, 257-

UK 3.23 7.04 11.05 12.02 261 (2020).

Germany 3.23 5.10 11.02 11.30

Singapore 4.07 6.01 - -

Korea - - - - https://en.wikipedia.org/wiki/COVID-

Japan - - - - 19 pandemic_lockdowns

Beijing 2.10 4.30 - - http://www.gov.cn/xinwen

Wuhan 1.23 4.08 - - http://www.gov.cn/xinwen
http://wap.sh.gov.cn/nw2/nw2314/nw23

Shanghai 2.10 3.24 - - 19/nw44142/u26aw64656.html

India 3.25 6.07 - -

Iran 3.14 4.20 - -

Iraq 3.22 411 - -

South Africa 3.26 4.30 - -

Turkey 4.23 4.27 - -

Peru 3.16 6.30 - -

Argentina 3.29 5.04 - - https://en.wikipedia.org/wiki/COVID-

California 319 518 ; } 19 pandemic_lockdowns

New York 3.22 6.13 - -

Washington 3.25 4.10 - -

North Korea 7.25 8.14 - -

Vietham 4.01 4.22 - -

Thailand 3.25 5.31 - -

Sao Paulo 3.24 5.10 - -
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Table S2. Coefficient of determination (R?) in the prediction of weekly acceleration of COVID-
19 cases (A) in leave-one-out cross-validation by filtering data with different thresholds. A
is predicted using OMI NO:2 changes (4no2) (a—f), or alternatively the OXCGRT NPIs, the PHSM
NPIs and human mobility as the predictor, while other predictors are identical. To consider the
impact of noises in satellite data, we filter data with precitable water content in the air and relative
humidity (related to clouds) above a threshold, or the GDP, population and average NO:2 column
concentration below a threshold. Because R? of A predicted from Anoz increases remarkably by
filtering data with precitable water content and average NO2 column concentration, we show the
performance by filtering data with these two indicators together. We select the median or the 75%
(p™®) and 90% (p°°) percentiles as the threshold to filter data.

R2
Filtering variable(s) Threshold OXCGRT PHSM Human
OMI NO; NPIs NPIs mobility
GDP p%0° 0.55 0.43 0.44 0.42
Population pgo 0.57 0.46 0.43 0.46
Precitable water pso 0.56 0.44 0.46 0.45
content
Relative humidity p%° 0.48 0.36 0.34 0.36
NO2 concentration p%° 0.55 0.45 0.44 0.44
Precitable water
content and NO; p%° 0.57 0.46 0.47 0.48
concentration
GDP p7s 0.59 0.45 0.46 0.47
Population p75 0.55 0.47 0.47 0.45
Precitable water ps 0.58 0.46 0.47 0.48
content
Relative humidity p’e 0.47 0.30 0.30 0.31
NOz concentration pr 0.56 0.43 0.43 0.44
Precitable water
contentand NO; p’™ 0.60 0.50 0.51 0.49
concentration
GDP median 0.49 0.35 0.36 0.35
Popu|ati0n median 0.56 0.53 0.53 0.56
Precitable water median 0.63 0.57 0.58 0.57
content
Relative hum|d|ty median 0.50 0.35 0.34 0.36
NO2 concentration median 0.60 0.54 0.54 0.56
Precitable water
contentand NO> median 0.62 0.56 0.58 0.57

concentration
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