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Supplementary Information Text 
 

We detail the findings outlined in the main text in five steps. First, we provide additional 

detail on Fig. 3. Second, we shed light on the mechanisms associated with the main effects 

on infections and deaths by looking at data on testing activity. Third, we zero in on the impact 

on the performance of the Test and Trace system. Fourth, we report a battery of robustness 

analyses outlined in the main text. In the fifth and final step, we discuss the quantification of 

the effects estimated across our set of estimation strategies. 

 

Additional information on Fig. 3 

In Table S2, we report estimation results underlying the coefficient plot in Fig. 3. We 

estimate the effect of late referrals to contact tracing per capita on new infections per capita 

(columns 1-3) and new COVID-19 deaths per capita (columns 4-5). We re-run our baseline 

analyses (columns (1) and (3)) on new infections and deaths while including additional 

controls. In columns (2) and (4), we add a large vector of 55 additional area characteristics 

and interact them fully with a set of time fixed effects. The area characteristics are: 

employment shares in 1-digit industries; educational attainment; socio-economic status of the 

resident population, which also captures shares in full time education or in university; and 

regular in-, and out commuting flows. These characteristics come from the 2011 Census. We 

also leverage the detailed demographic makeup of an area’s population by expressing 

population demographics as shares in ten-year age intervals. We further control for death 

rates in the first wave of the pandemic in spring 2020; population density and its variability 

across small geographies within an area. Throughout, despite these empirically highly 

demanding specifications that control for non-linear case growth that may be induced by, e.g., 

school- or university reopenings, the results remain virtually unchanged. 

Note that the data glitch simultaneously led to lower publicly announced new case 

numbers. Local variation in the share of cases that was missing from these announcements 

might have affected people’s behavior. More specifically, lower local case counts may be 

associated with less social distancing, more public activities etc. It is unclear to which extent 

the population attends to and internalizes case numbers at the local level. The most salient 

figures are arguably those at the national level. The aggregate national growth in cases due to 

the data glitch, however, is orthogonal to the regional variation that our analyses exploit. To 

assess to which extent this endogenous response to reported local cases numbers affects our 

results, we employ a method of approximating people’s activity based on mobility data (1) as 

has been successfully done in other work related to COVID-19 (2). Previous research showed 

that mobility measures pick up people’s response to COVID-19 such as staying at home and 

predict the progression of the pandemic. 

As shown in columns (3) and (6) of Table S2, however, controlling for a mobility metric does 

not affect estimates of the effect of late referrals, indicating that the behavioral response to the 

local number of reported cases does not play a significant role here. 

To complement these results, we estimate an extended regression specification that 

provides these treatment effects separately for each calendar week. Fig. S7 displays 

coefficient estimates for the weekly effects on infections (Panel A) and COVID-19 deaths 

(Panel B). Reassuringly, there is no systematic relationship between late referrals and 

infections or deaths in the pre-treatment period. We observe highly significant and 

quantitatively large positive effects of late referrals on new infections in calendar weeks 39 to 

41. The effect is largest in calendar week 40, roughly 2 weeks following the first delays in 

contact tracing and subsides around calendar week 44. In Panel B, we observe positive 

effects starting in week 40 and peaking in calendar week 43. The effect on the death toll lags 

behind the increase in infections due to the normal lag between infections and COVID-19-

related deaths.  

 

Effect on COVID-19 testing 

Contacts of infected persons are encouraged by contact tracers to self-quarantine for 14 

days. Note that without symptoms, a contact is neither required nor advised to take a test 
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themselves (3, 4). A negative test does not rule out an infection and the procedures required 

to conduct tests can by themselves contribute to the spread of the disease if a person is 

already infectious. By contrast, a contact who is not reached by the contact tracing system 

and never learns of their potential infection will not self-quarantine or take other precautionary 

measures, especially if they are asymptomatic or pre-symptomatic. A failure of contact tracing 

means that non-contacted individuals cannot respond to their potential infection, increasing 

the likelihood both of infecting others and of getting infected by a third infectious person if they 

are not already infected.  

In Panel A of Fig. S5, we show the effect of late referrals due to the data glitch on the total 

number of tests taken in a given district, based on a regression specification analogous to the 

ones above (equation (2)). We document a sizeable increase in the number of tests 

conducted. The COVID-19 testing data are available at the weekly level. In order to be able to 

directly compare the magnitudes with the previous results, we divide the weekly testing 

figures by seven to obtain an estimate of the daily testing rate. Our main difference-in-

differences estimate suggests that each late referral led to, on average, 2.7 additional tests 

taken per day between calendar week 39 and 44 (Table S3, Panel A, column (1)). 

At the same time, we report a strongly positive effect on the number of positive tests per 

capita as well as the test positivity rate, see Panels B and C of Fig. S5, respectively. We 

estimate that each additional late referral led to a significant increase in a district’s test 

positivity rate by 0.1 percentage points, given an average positivity rate of 3.6% (Table S3, 

Panel C, column (1)). The share of positive tests reverted back to pre-treatment levels in 

calendar week 43. 

Our estimate of the effect on weekly positive tests per capita data lends credence to our 

above estimate for the effect on new infections which uses a different data source. We obtain 

a baseline estimate of 0.67 on positive tests (Table S3, Panel B, column (1)), which is closely 

in line and statistically indistinguishable to our estimate of 0.61 for new cases (Table S7, 

Panel A, column (1)). 

 

Effects on the performance of contact tracing 

Next, we analyze the repercussions on the effectiveness of the contact tracing system. To 

contain the further spread of the pandemic, a timely referral of cases to the contact tracing is 

essential. Unfortunately, the publicly available data on the Test and Trace system, especially 

on contact tracing performance, are far from exhaustive. As described above, contact tracing 

begins after positive cases are reported by laboratories to PHE, which in turn transfers case 

information to NHS Test and Trace. Contact tracers contracted by NHS Test and Trace then 

first contact individuals who tested positive. At this stage already, not all individuals that tested 

positive may be successfully reached. Even if an individual is reached and asked to provide 

contact details of recent close contacts, they may not properly recall or they may not be willing 

to disclose all relevant information. The actual contact tracing only sets in after contact 

information is obtained either through the contact tracer or the secure website. This implies 

that there are multiple margins through which contact tracing – even under normal 

circumstances – may fail: (a) not all COVID-19 positive individuals may be successfully 

reached; (b) those individual may imperfectly recall or incompletely disclose recent contacts; 

(c) and the contact tracing system may fail to reach all identified contacts. 

Fig. S2 studies aggregate performance data capturing the fraction of close contacts that 

were advised to self-quarantine by the time taken to reach them. It demonstrates the possible 

effect that the data glitch had on the time taken to reach contacts. Note that this figure zooms 

in on the number of contacts that were actually reached, i.e., it focuses on step (c) above 

conditional on success in steps (a) and (b). While the fraction of those who were reached 

within the first 24 hours hovered above 80% in the weeks preceding the data glitch, the 

fraction plummeted to just above 60% in calendar week 40. Strikingly, we find that the tracing 

system’s performance remains low even in the three weeks following the correction of the 

data glitch. The share of contacts reached within 24 hours only appears to revert back to pre-

treatment levels by week 44. This suggests that the tracing system was jammed by the late 

referrals from late September, adversely affecting the tracing performance for cases referred 
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after the data glitch was corrected on October 3. Put differently, the tracing system may not 

have been well adapted to handle both a sudden influx of thousands of COVID-19 positive 

tested individuals referred to contact tracing with a delay and the subsequent higher infection 

levels that arose due to the preceding failure of a timely referral to Test and Trace. 

In Fig. S6 we present findings on the Test and Trace performance at the Upper Tier Local 

Authority level, analyzed using the same baseline specifications as above. Areas that 

experienced a larger impact on late referrals saw a deluge of referrals to contact tracing from 

calendar week 40. Note that a part of this increase may be mechanical as the contact tracing 

statistics for the week from October 1 to October 7 – that straddles calendar weeks 40 and 41 

– is matched to calendar week 40. We find that the impact on referrals persists throughout the 

subsequent weeks, similar to our estimates of the effects on infections and testing activity. 

This prolonged impact likely captures the fact that many of the individuals that were referred 

late to the contact tracing system further spread the disease, resulting in an overall worsening 

of the local pandemic situation. 

The only subnational performance measure available at the UTLA level captures the 

share of contacts reached out of all contacts recorded from those positively tested individuals 

who were both referred to the contact tracing system and successfully reached. These data 

do not include the time it took to reach individuals. In Panel C of Fig. S6, we document some 

(more noisily estimated) evidence suggesting that the performance of contact tracing declined 

more drastically in parts of England that experienced a stronger impact on late referrals due to 

the data glitch. These estimates imply that the performance deteriorated with fewer close 

contacts being successfully reached. Late referrals are associated with a prolonged negative 

effect on the performance of the Test and Trace system that extends well beyond the 

correction on October 3. The corresponding difference-in-differences estimates are presented 

in Table S4. 

 

Robustness exercises 

We conduct a number of additional analyses to shed light on the robustness of our 

findings. 

 

Refined difference-in-differences estimation using matched pairs We construct a refined 

difference-in-differences estimator based on a procedure of matching areas which are highly 

similar in terms of their pre-treatment exposure to the pandemic. This approach aims at 

creating even more accurate treatment-control comparisons. In columns (4) to (6) of Table S7, 

we report results that correspond to those in columns (1) to (3) except for the different 

construction of control groups. We reliably estimate treatment effects that are statistically 

indistinguishable from the plain difference-in-differences approach. Similar robustness 

exercises are reported for the other outcome measures that we study, see columns (4) to (6) 

in Tables 3 and 4. 

We point out that the matched-pairs design is empirically exceptionally demanding. By 

creating matched pairs and controlling for time-fixed effects specific to each pair, we conduct 

like-for-like comparisons by studying pandemic outcomes within pairs of districts that have 

been on a highly similar trajectory just prior to the data glitch. 

 

Regional heterogeneity Before exploring to which extent our results are driven by individual 

regions, we examine the regional heterogeneity of the estimated treatment effects. To obtain 

these estimates, we refer back to our main difference-in-differences model and interact the 

main treatment measure with a set of region dummies, plotting out the coefficients along with 

90% confidence bands. These are presented in Fig. S14. The results suggest that the impact 

of delayed referrals on subsequent infections is most pronounced in the East Midlands, the 

North West, the South East as well as in Yorkshire. The effects on COVID-19-related deaths 

are more noisily estimated. This analysis suggests that the positive impact on deaths is most 

severe in the East, London, the North West and Yorkshire. 
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Sensitivity to geographic regions and spatial disaggregation So far, we reported our 

analyses at the level of the Lower Tier Local Authority (315 units, Table S7). In Tables S9 and 

S10 we replicate our findings at the Upper Tier Local Authority Level (149 units) as well as the 

NUTS3 region level (Nomenclature of Territorial Units for Statistics, 93 units). We obtain very 

similar results irrespective of the spatial resolution of the data, which further shows that the  

results are not an artefact of or significantly impacted by inter-regional spillovers of the 

treatment effect. Moreover, in Fig. S15 we examine the sensitivity of our findings to excluding 

individual areas from the estimation. We show the distribution of the leave-one-out-estimator 

of the effect of late referrals on new cases and deaths, separately for analyses conducted at 

the LTLA, UTLA and NUTS3 levels. The observed sensitivity of the treatment effects to 

excluding individual regions is small. 

 

Alternative functional forms for the relationship between late referrals and COVID-19 
spread Our main regression specifications estimate the effect of the per capita level of late 

referrals on the per capita level of measures of COVID19 spread, controlling for the level as 

well as non-linear trends in pre-treatment exposure to the pandemic. The non-linear nature of 

infection dynamics suggests specifications with logarithms as an alternative. In Table S11, we 

additionally estimate the same type of regressions using different combinations, such as a 

log-log as well as a log-levels specification, replicating our main findings. 

 

Alternative measures of late referrals We made conservative assumptions to construct our 

baseline measure of late referrals, but there is some degree of flexibility in the calculation of 

the treatment measure. We explore the sensitivity of our findings to the use of alternative 

approaches in Table S12. Our main measure of late referrals aggregates all cases with a 

specimen date between September 20 and September 26 that were not referred to Test and 

Trace as of October 2. This measure is conservative in terms of the number of late referrals it 

predicts: it relies on 7,242 late referrals that can most clearly be identified as such, which is 

less than half of the officially reported figure of 15,841 late referrals. We report regression 

results analogous to those in Table S7 for three alternative ways of inferring of late referrals 

that are due to the data glitch. 

To this end, we non-parametrically estimate the time path of the typical reporting lag from 

the time immediately preceding the data glitch, i.e., for specimen dates between September 1 

and September 20. This allows us to predict the fraction of cases with a given specimen date 

that should be reported a given number of days after the test was taken. 

We use this prediction exercise, first, to create an even more conservative measure than 

our baseline by subtracting the number of cases that we would expect to not have been 

reported by October 2 under the typical reporting lag. As argued above, this barely affects our 

measure. Even for the latest date in the specimen date range considered, September 27, we 

would expect 95.9% of cases to have been reported by October 2 under normal 

circumstances (see Table S1). This more conservative measure reduces our predicted 

number of late referrals from 7,242 to 

6,044. 

Second, we create a more comprehensive, yet less conservative measure by including 

specimen dates of up to October 1, and by accounting for the typical reporting lag using the 

same non-parametric estimation as above. Note that due to the potential divergence between 

the estimated typical reporting lag from pretreatment data and the actual reporting lag, this 

measure is noisy, especially for lower spatial aggregation. This measure leads to a total 

number of 9,755 late referrals, still below the officially reported figure of 15,841 missed cases. 

Third, we re-run our analyses using our baseline measure of late referrals as a fraction of 

the total number of cases between September 20 and September 27 in a given area. This 

measure suffers from statistical bias: because a fraction measure is noisy in areas with low 

case counts, it has an artificial upward bias. We present estimation results for the fraction 

measure as well as a version that exclude areas with a total case count below 50 during the 

time of September 20 and 27. 
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All of these results are presented in Table S12. We replicate our main results for each of 

these three alternative measures, and more compellingly, find that the estimated effect 

magnitude varies little across specifications. 

 

Placebo tests In Fig. S16, we present a series of placebo tests. To do so, we construct a 

simple estimator of late referrals by specimen date as follows. First, for each specimen date, 

we retrieve the number of cases that was reported as of seven days following that specimen 

date. Second, we subtract this number from the final, “true” case count for that specimen date, 

which is the number of cases known for this specimen date as of the most recent version of 

the data. This allows us to construct, for each specimen date, a measure of the number of 

cases that are were not yet reported as of one week following the specimen date. We 

construct this measure for each specimen before, during and after the period that was 

affected by the Excel error. 

The hypothesis of this placebo exercise is that judging from this measure of late referrals 

for a specific specimen date, only specimen dates between September 20 and September 25 

should be predictive of future case growth. For tests taken on September 26, the case count 

seven days was already subject to the correction of the data glitch that occurred on October 3. 

We test this hypothesis by running our main specification (equation (2)) using these 

measures. The results are presented for both new infections and new COVID-19-related 

deaths in Fig. S16. We document that only the missing case figures constructed in this 

fashion from around September 20 to September 26 strongly predict subsequent case growth 

and deaths. 

 

Alternative inference Inference in the paper is conducted using clustering of standard errors 

at the spatial level at which the outcome data is measured. An alternative is to conduct a type 

of randomization inference. To do so, we draw repeated random samples of the main missing 

cases measure, redistributing the missing cases randomly across districts. We do this in three 

ways: reshuffling district exposure measures Mi across all districts in England; across all 

districts within the 9 NUTS1 regions; and across all districts within the 33 NUTS2 regions. For 

each exercise, we create 100 reshuffled treatment exposure measures using these three 

approaches. This allows us to estimate the treatment effects for these placebo treatment 

assignments. We would expect that the point estimate that are obtained based on the true 

spatial distribution of the missed cases to be sharply different from the null effects we would 

expect for the reshuffled distribution. 

The latter may not be the case, especially for the reshuffling exercises at the region or 

NUTS2 region level: due to potential spatial autocorrelation, our treatment effect estimates 

may spuriously pick up treatment effects due to such spatial correlation. We present these 

results for new COVID-19 cases and deaths in Fig. S17 as a set of kernel density plots of the 

distribution of the 100 point estimates that are obtained from these placebo exercises. We 

indicate with a vertical line the point estimate obtained from using the true distribution of the 

district exposure measures Mi. Throughout the exercises and the outcomes, we can reject the 

null hypothesis that the effect we observe is spurious with implied p-values that are below 

0.01%. 

 

Distribution of estimated effect sizes We estimate a distribution of effect sizes across the 

universe of our robustness analyses laid out above. Regarding our key outcomes of new 

infections and new COVID19-related deaths, we estimate the following effect ranges: in our 

collection of point estimates, we find that each late referral that we identify as being due to the 

data glitch was related to between 17.5 and 19 additional cases, and to between 0.21 and 

0.29 additional COVID19-related deaths during the six-week post-treatment period. 

 

Quantification of effects 

We offer a tentative quantification of the effects across the whole of England and the 

English regions in Table S8. We anchor these point estimates on the main point estimates 
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presented in Table S7 as well as the most conservative point estimate obtained from our most 

saturated specification in Table S2. 

To arrive at the presented figures, we leverage the point estimate and simulate the full 

distribution of effects for the post-treatment period that ranges from calendar week 39 to 

including calendar week 44. For the cumulative new infections, our point estimates suggest 

that with 90% confidence, between 13% to 40% of the nearly 600,000 new detected COVID-

19 infections may be attributable to the failure to contact tracing. This calibration implies that 

127,018 infections, or around 21% of all detected infections may be due to the contact tracing 

failure. 

The numbers of additional COVID-19-related deaths linked to the error are estimated less 

precisely. Our central conservative point estimate would suggest that, out of the total of 7,196 

COVID-19 deaths during the time window, a similar share of around 21% are due to the 

contact tracing error. 

The table provides a range of further upper- and lower-bound estimates as implied by the 

90% confidence intervals spanning around the point estimates. It also highlights that, not 

surprisingly, the effect is quite homogenous across the English regions in relative terms. 

We advise caution, however, against taking these effect sizes at face value: due to the 

complex structure of a pandemic, such as externalities across areas and the non-linear nature 

of infectious developments, effect magnitudes are inherently difficult to interpret. 
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Materials and Methods 
 
Empirical context: contact tracing in England 
 

In England, laboratories report positive COVID-19 test results to Public Health England (PHE) on 

a daily basis. The PHE aggregates all nation-wide test results using an automated reporting 

dashboard, which forms the basis for the official reporting of case numbers as well as contact 

tracing (5). Specifically, data on positive cases are passed on to the NHS Test and Trace (Test 

and Trace) system, a government-funded service that was established in 2020 to organize all 

contact tracing at the national level (4). For all cases that do not come from a high exposure 

setting such as a school or a prison, the infected person is contacted via a text, email alert or 

phone call and asked to shared details of their recent close contacts and places they have visited. 

They can respond online via a secure website or by telephone with a contact tracer. 

Data on COVID-19 in England  

Our baseline analyses leverage three sources of publicly available data. 
 

Reporting dashboard Our primary dataset is constructed using the UK’s COVID19 dashboard.1 

This dashboard provides granular data on COVID-19 infections and deaths at different spatial 

resolutions. Our geographical focus is on England, because other countries in the UK were not 

affected by the Excel error. The data include daily lab-confirmed positive test results and deaths. 

Data on positive cases are characterized by two dates: the specimen date, i.e., the date when the 

sample is taken from the person being tested, and the reporting date, i.e., the date when a 

positive case is first included in the published totals and referred to Test and Trace, so that 

contact tracing can begin. In order to reconstruct the time line of case reporting for each 

specimen date, we collect “vintage datasets” published on past reporting dates. The distinction 

between specimen and reporting date forms the basis for our analysis of delays in contact tracing 

due to the Excel error. 

We conduct analyses at different levels of spatial disaggregation. England has 315 lower tier 

local authority districts (LTLA). While most COVID-19 data are published at this level, some data 

are only available at the upper tier authority district level (UTLA) – of which there are 149 in 

England. Our baseline analyses exploit variation at the LTLA level but we replicate our results at 

the UTLA level as well as NUTS3 region level, of which there are 93 units. 

The resulting core dataset is a balanced daily panel. Our estimation window focuses on the 

period starting in calendar week 28 (starting July 6, 2020) all the way to calendar week 44 

(starting October 26), covering a total of 37,485 observations. 

 

Test and Trace statistics We also draw on data on testing and tracing statistics provided by 

NHS Test and Trace (6). These data are published weekly and provide some statistics on the 

effectiveness of the contact tracing efforts such as the fraction of contacts reached, delays as well 

as the total number of tests taken and test positivity rates. These data are available at different 

geographical and temporal resolutions than the daily case data. Specifically, while the COVID-19 

test statistics are provided for the most granular lower tier local authority district level (LTLA), the 

contact-tracing data are more patchy and only available at the coarser UTLA level. The data are 

provided at the weekly level for weeks starting on Thursday and ending on Wednesday. This 

implies that calendar weeks are not cleanly separated in this dataset. We matched reporting 

windows to calendar week based on the largest overlap. For example, calendar week 39 ranges 

from September 21 to September 28. The nearest reporting window for the Test and Trace 

statistics is the week starting on September 24 and ending on September 30, which straddles 

four days of calendar week 39 and three days of calendar week 40. We match this week to 

calendar week 39. This implies, however, that the identification of the exact timing of effects is 

more challenging in the weekly data. 

 
1 Available at https://coronavirus.data.gov.uk/. 
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Figure S13 provides an overview of the process flow and highlights the sources of delays and 

potential caveats to bear in mind when studying and interpreting the data, especially relating to 

contact tracing and its performance. The performance of the system, for example, is undermined 

if, e.g., a high fraction of COVID19 positive individuals cannot be contacted or reached. This 

naturally implies that potential close recent contacts may not be identified. Similarly, even if an 

individual that tested positive is successfully contacted, they may not remember the individuals 

they spent notable time together during the time they may have been infectious. And even if 

individuals provide details of close contacts, these may not be reached in a timely fashion or may 

not be reached at all. 

There appears to be room for improvement in the comprehensiveness of public reporting and 

the statistical presentation of the data.2 

 

Additional weekly death statistics In addition to the daily death statistics, we also leverage 

weekly death statistics at the local authority level as published by the Office for National Statistics 

(7). These data report on new COVID-19-related deaths by the type of location where the death 

occurred, e.g., at home, in hospitals or in care homes. 

 

Identifying delayed referrals to contact tracing 
 

We rely on granular data on positive COVID-19 tests to construct a measure capturing the 

extent to which positive COVID-19 cases have been affected by the delayed referral to contact 

tracing across different parts of England. The official PHE announcement only specified the total 

number of late referrals but provided no information about the geographical distribution and the 

specimen dates of these cases. A Freedom of Information request has been raised by the 

authors to obtain a detailed geographic and temporal break down of all cases that were referred 

to contact tracing with a delay – so far, these data have not been made 

available.3 

 

Baseline measure of late referrals Despite the lack of official data, we can infer which individual 

cases have been affected by a delayed referral. To do so, we study the reported case figures at 

different points in time. The logic of our approach follows from Table S6 and Fig. S8. Table S6 

shows the COVID-19 case counts as they were reported on three different dates: November 15, 

October 4 and October 2. The case counts are broken down by the date on which the test sample 

was taken (specimen date). For all tests taken on September 24, the most recent figures from 

November 15 imply a total of 6199 positive cases known as of November 15. Because more than 

1.5 months have passed between the specimen date of September 24 and the reporting date of 

November 15, all tests should have been processed and entered the statistics. We can interpret 

the number from November 15 as the final case count for this specimen date. In fact, the typical 

time lag between the specimen date and the reporting date is much shorter. Table S1 and Fig. S1 

highlight that usually, between 94% to 96% of all positive cases are identified and reported within 

the five days following the specimen date. For our baseline measure, we therefore restrict our 

attention to the earliest specimen dates that where likely impacted by the Excel error, September 

20 to September 27. By the time the error was discovered on October 3, tests taken during this 

specimen date range should have almost fully entered the statistics under normal circumstances. 

Panel B of Fig. S8 visualizes the striking discontinuity caused by the data glitch in the otherwise 

smooth increase of the fraction of cases reported in the days following a given specimen date. 

Taking the example of the specimen date September 24, we observe that the fraction reported 

had converged to a steady level by October 2, but then a sudden upward revision occurred on 

October 3. This stands in contrast to the overall smooth evolution of the fraction reported for 

 
2 The authors have launched a public FOIA request to request more granular data. The FOIA request can be 

accessed here: https://www.whatdotheyknow.com/request/nhs_test_and_trace_statistics_re. 
3 The FOIA is in the public domain on 

https://www.whatdotheyknow.com/request/regional_breakdown_of_cases_not.  
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specimen dates not affected by the data glitch, as shown in Appendix Fig. S9. These figures 

capturing the over-time conversion to the final case count on a given specimen date leverage 

data from different historically published versions of the COVID-19 dataset. 

Judging from the typical reporting lag as observed between September 1 and September 19, 

we would expect that at least 95.9% of the positive tests taken on September 27 and at least 

99.3% of the positive tests taken on September 20 have been reported before October 3. In 

reality, however, this share turned out to be much lower as a result of the late referrals. Fig. S1 

visualizes the share of cases reported with different reporting delays – the fraction reported by 

day five following a specimen date dropped to roughly 60% during the period affected by the data 

glitch. 

For reasons of parsimony, our baseline measure is constructed assuming that all cases taken 

between September 20 and 27 would have been reported by October 2 in the absence of the 

data glitch. Formally, this means we define the number of late referrals in district i that were likely 

due to the Excel error as 

 

!! = # True	Case!,#$$	&'(	)*)* − Case!,#*)	+,-	)*)*.
).	/01	)*)*

#2)*	/01	)*)*
 

 

Specifically, across target specimen dates we sum up the difference between the final, “true” 

case count approximated by the most recent dataset version (November 15) and the case count 

known as of October 2. Note that, first, this baseline measure is transparent and does not impose 

auxiliary assumptions about the structure of the counterfactual reporting lag. Second, missed 

cases from earlier specimen dates are likely to have had the most pronounced effect on the 

development of the pandemic. A contact who contracted the disease from a person who tested 

positive on September 20, for example, could in turn infect others before the contact was finally 

traced by Test and Trace on October 3 or thereafter. This implies that the adverse effect of 

delayed contact tracing is stronger for cases with earlier specimen dates. In total, we calculate a 

number of 7,242 late referrals to contact tracing with specimen dates between September 20 and 

27. This figure broken down to the LTLA level forms the basis for our measure of the local impact 

on late referrals due to the Excel error. We thus have a time-invariant scalar measure of 

treatment intensity in terms of late referrals. 

Our baseline measure captures substantial variation in the extent to which different areas 

were affected by the data glitch. To illustrate, Panel D of Fig. S8 shows a distinct geographic 

signature – there is substantial heterogeneity in the fraction of cases that we categorize as late 

referrals in each area. We confirm below that this heterogeneity is as-if random: it appears to be 

unrelated to all area-specific characteristics that are relevant for the local development of the 

pandemic, and we can therefore exploit it to evaluate the quasi-causal effects of the intensity of 

contact tracing. 

 

Alternative measures of late referrals While our baseline measure relies on just 7,242 late 

referrals out of the total of 15,841 cases that were officially acknowledged, our subset of late 

referrals from early specimen dates are likely to have had the strongest impact on the 

progression of COVID-19, and we can most cleanly identify these from the available sources of 

data. We construct a set of alternative measures of late referrals covering shorter or longer 

windows of specimen dates, e.g., from September 20 to 25, or from September 20 to 30. We 

further complement these analyses with a more parametric approach that statistically 

approximates the time path of the “typical reporting lag”, i.e., the distribution of delays in the 

absence of a processing error. Specifically, we proceed in two steps. First, for a given window of 

specimen dates, e.g., September 20 to October 1, we determine the reported case numbers that 

should be expected under the typical reporting lag, which we obtain by statistically approximating 

the usual evolution of reported fractions as shown in Fig. S1. To this end, we estimate the fraction 

of cases that would be reported d days after the test was taken by fitting the following function 

using non-linear least squares: 



 
 

11 
 

!!,# = 1 − (1 − & '
1 + )$%(#$')*

#
). (1) 

 

The above functional form is often invoked to approximate converging processes in variety of 

domains and can be estimated using non-linear least squares (see (8) for an implementation in 

R). The fit of this estimation for the pre-treatment period of September 1 to September 19 is 

illustrated in Fig. S11. 

In a second step, we compare the predicted number of reported cases to the actually 

reported number of cases by October 2 to construct our measure of late referrals: 

 

!! = # True	Case!,#$$	&'(	)*)*(1 − 03,4(#)1)
$	+,-	)*)*

#2)*	/01	)*)*
 

 

The above model 1 can be estimated at the country-level, but can also be trained at the 

region level to allow for region-specific variation in the typical reporting lag. 

Our baseline specification relies on the number of late referrals normalized by the population 

size, while flexibly controlling for the local level and dynamics of the evolution of the pandemic. As 

an alternative measure, we can express the number of late referrals as a fraction of the final 

number of positive cases reported for September 20 to 27, by computing 

 

3! =
∑ True	Case!,#$$	&'(	)*)* − Case!,#*)	+,-	)*)*).	/01	)*)*
#2)*	/01	)*)*

∑ True	Case!,#$$	&'(	)*)*).	/01	)*)*
#2)*	/01	)*)*

 

 

This measure is conceptually appealing in that it accounts for the local severity of the 

pandemic but it is statistically problematic due to a small sample issue. A fraction measure is 

noisy for areas with a low true case count, which creates a positive bias in our application. We 

use the above as an auxiliary measure imposing some sample restrictions, i.e., by focusing on 

places with at least a minimum number of cases. In the Appendix, we explore a variety of 

measures and show that our findings are robust to those. 

 

Empirical strategy 
 

Our empirical strategy exploits cross-sectional variation in the extent to which different parts 

of England were affected by the delayed referral of COVID-19 positive cases to contact tracing 

efforts. This cross-area variation in exposure is quasirandom as a result of the Excel data entry 

error, allowing us to study the causal effect of contact tracing on measures of subsequent 

COVID-19 spread. We follow a simple and a refined difference-in-differences estimation 

approach at different geographic resolutions of the data. 

 

Difference-in-differences specification The basic difference-in-differences estimate is obtained 

from estimating 

 

-!,' = .! + /! + . × 1234' ×5! + 6′8!,' + 9 (2) 

 

where yi,t denotes a measure of COVID-19 spread in area i at time t (either a specific date or a 

week). The regression controls for district fixed effects, ηi, as well as a set of time fixed effects γt. 

To account for the non-linear nature of case growth we add a host of additional measures Xi,t of 

the disease progression across areas and control flexibly for these. 

Specifically, we measure an area’s average number of new COVID-19 cases per capita, the 

number of tests per capita as well as the positivity rate of the tests during calendar weeks 37 to 

38 (September 7 to September 20), directly preceding the data glitch. For each of these 

measures, we categorize districts into deciles according to its empirical distribution across 
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districts. We successively control for non-linear time trends in these variables by decile. This 

ensures that we are not confounding or wrongly attributing differences in the outcome variables to 

the fact that different parts of England had been at different stages in the pandemic. Instead, this 

specification aims at identifying the differential effect that late referrals to contact tracing had on 

the subsequent spread of COVID-19, comparing areas that have been on a very similar trajectory 

in the pandemic in the weeks just prior to the data glitch. 

Naturally, the above exercise can be extended to flexibly estimate treatment effects over 

time. This will further allow us to shed light on the common-trends identification assumption 

implicit in the above difference-in-differences approach. 

Specifically, we estimate 

 

-!,' = .! + /! +:.' × ;(<))=' = 4)
'

×5! + 6′8!,' + 9 (3) 

 

This allows us to plot the estimated coefficients 576   and explore to what extent differences in 

the outcome emerge around the time that the contact tracing shock happened and to what extent 

this affected the pandemic development going forward. 

 

Zooming in on districts with similar pandemic evolution  We supplement our baseline 

difference-in-difference exercise with an additional exercise that aims to tackle potential concerns 

about the non-linear growth in cases. To do so, we refine the control group for our difference-in-

differences design. For each district i, we compute the similarity between that district i and every 

other district j in terms of their disease progression just prior to the Excel error. To measure 

distance, we use the cosine similarity metric, applied to the following vector of seventeen 

characteristics Xi capturing the disease progression in a district i: new COVID-19 cases and 

deaths per capita reported on October 1, 2020; the number of COVID19 tests along with the 

positivity rate in calendar week 40; the average number of new COVID-19 cases and deaths per 

capita in calendar weeks 37 and 38; the average number of COVID-19 tests per capita and 

positivity rate during weeks 37 and 38; and the growth in new COVID-19 cases, tests, deaths and 

the positivity rate between week 37 and 38. We also add measures of the pandemic progression 

in the first wave, such as the death rates in March to June, as well as other area characteristics, 

such as population density. The similarity measure is computed as: 

 

similarity!) = cos(A) = 8! ⋅
8)

∥ 8! ∥∥ 8) ∥
= ∑ E!,*E),*+

*,-

F∑ E!,*.+
*,- F∑ E),*.+

*,-

 
(4) 

 

To illustrate this exercise, Fig. S12 displays the cosine similarity measure between Adur and 

Watford (red diamonds), as well as their similarity to all other districts (blue dots) on the horizontal 

axis, along with a set of measures capturing the pandemic situation prior to the data glitch. Based 

on cosine similarity, Adur and Watford are closest to each other and are used to form a matched 

pair. Across all individual measures included in the similarity measure, the two districts are highly 

similar, showcasing that cosine similarity allows to identify districts with similar disease 

progression statistics. Even though the two districts share a cosine similarity score of 0.97, they 

differ substantially in terms of their number of late referrals, owing to the idiosyncratic effect of the 

data glitch. While Adur experienced 6.3 late referrals per 100k, Watford only saw 3.44 late 

referrals in that same time period. This highlights that our measure captures heterogeneity in 

exposure to the data glitch even in this matching approach that zooms in on otherwise highly 

similar districts. 

For each district i, we identified a “best match” j using matching without replacement. We 

obtain 157 matched pairs from 314 districts, omitting the last district. We estimate a version of the 

above specification, 

 

-!,' = .! + /*,' + . × 1234' ×5! + 6′8!,' + 9, (5) 
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where we now control for matched-pair-by-time fixed effects γp,t. In our most demanding 

specification, we control for 157 different sets of time fixed effects, allowing individual non-linear 

time trends for places that have been on a similar pandemic trajectory in the pre-treatment period. 

Practically, we estimate nearly 18,683 (157 x 119 days) separate time effects. This addresses the 

fact that infection dynamics in a pandemic may produce non-linear growth in cases. By virtue of 

zooming in on matched pairs of districts that look very similar in terms of the pandemic just 

around the Excel error occurred and affected these districts quite differentially, this will further 

strengthen the identification offered by this natural experiment. 

 

 

References 

1. T. Fetzer, et al., Global Behaviors and Perceptions in the COVID-19 Pandemic. Harvard 

Business School Working Paper 20-111 (2020).  

2. Google, “Google COVID-19 Community Mobility Reports.,” 2020, 

(https://www.google.com/covid19/mobility/). [the easiest access to this source is via the URL] 

3. NHS, “If you’re told to self-isolate by NHS Test and Trace or the NHS COVID-19 app” 

(https://www.nhs.uk/conditions/coronavirus-covid-19/testing- and-tracing/nhs-test-and-trace-

if-youve-been-in-contact-with-a-person-who-has- coronavirus/). [the easiest access to this 

source is via the URL] 

4. Department of Health & Social Care, “NHS Test and Trace statistics (England): methodology” 

(https://www.gov.uk/government/publications/nhs-test-and-trace-statistics-england- 

methodology/nhs-test-and-trace-statistics-england-methodology). [the easiest access to this 

source is via the URL] 

5. Department of Health & Social Care, “COVID-19 testing data: methodology note” 

(https://www.gov.uk/government/publications/coronavirus-covid-19-testing-data- 

methodology/covid-19-testing-data-methodology-note). [the easiest access to this source is 

via the URL] 

6. Department of Health and Social Care, “NHS Test and Trace (England) and coronavirus 

testing (UK) statistics” (https://www.gov.uk/government/publications/nhs-test-and-trace-

england-and-coronavirus-testing-uk-statistics-22-october-to-28-october). [the easiest access 

to this source is via the URL] 

7. ONS, “Death registrations and occurrences by local authority and health board” 

(https://www.ons.gov.uk/datasets/weekly-deaths-local-authority/editions/time-

series/versions/8). [the easiest access to this source is via the URL] 

8. N. C. Steer, P. M. Ramsay, M. Franco, nlstimedist: An R package for the biologically 

meaningful quantification of unimodal phenology distributions. Methods in Ecology and 

Evolution. 10, 1934–1940 (2019).  

 

 

 

  



 
 

14 
 

Fig. S1. Fraction of positive COVID-19 cases tested on a specific date by reporting delay 

 

 

Notes: Figure plots the share of positive COVID-19 test results that are reported, published and 

referred to contact tracing as a function of the number of days since the test was taken. The maroon 

dashed line represents case data from Sept 1 to Sept 20, 2020. On day 5 after the test was taken, 

on average, 92% of all test results have been published and individuals have been referred to 

contact tracing. The blue line represents the same curve but for tests performed from Sept 20 to 

Oct 1st. There are notably fewer positive cases reported and referred to contact tracing as a result 

of the spreadsheet error. Up to five days after the specimen for a test was taken only 61% of positive 

test results have been published. The black dotted line presents the same data but for the period 

from Oct 5 to Oct 15 highlighting this was a temporary glitch. 
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Fig. S2. Evolution of performance of centrally managed contact tracing effort over time 

 

 

Notes: Figure plots the share of contacts of individuals who were advised to self-quarantine by 

time taken to reach them. The vertical axis presents the share of all contacts of individuals that 

were asked to self-quarantine that have been reached within 24h. This excludes data pertaining to 

cases where the individuals that are supposed to self-quarantine have not been contacted and may 

also exclude individuals who have not provided any details of close contacts. Individuals that were 

asked to self-quarantine in response to a positive test in weeks 39 and 40 were affected by the 

Excel error. The untimely referral caused the contact tracing performance to decline. 
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Fig. S3. Evolution of local COVID-19 incidence in areas with above median vs. areas with below 

median exposure to delays in contact tracing due to the Excel error: Median split by deciles of pre-

treatment infection intensity 

Notes: Figure is similar to Fig. 2, but defining above/below median share of local delays in contact 

tracing based on deciles of pre-treatment infection intensity compared to quintilesin Fig 2. For each 

of the 315 Lower Tier Local Authorities in England, we calculate the share of positive COVID-19 

tests taken between September 20 and September 27 that were referred to contact tracing with an 

unusual delay of 6 to 14 days due to the Excel error. We create two equally sized groups of areas 

based on whether they – by chance – experienced above median or below median exposure to 

unusual delays in contract tracing. We plot the average incidence of COVID-19 for each group by 

test date. We observe virtually identical pre-treatment trends across groups but a substantive 

divergence in COVID-19 spread at the onset of the period during which the Excel error occurred, 

which is highlighted by the dashed lines. 90% confidence intervals displayed. 
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Fig. S4. Evolution of local COVID-19 incidence in areas with above median vs. areas with below 

median exposure to delays in contact tracing due to the Excel error: Daily data 

 
Notes: Figure is similar to Fig. 2, but using daily instead weekly data. For each of the 315 Lower 

Tier Local Authorities in England, we calculate the share of positive COVID-19 tests taken between 

September 20 and September 27 that were referred to contact tracing with an unusual delay of 6 

to 14 days due to the Excel error. We create two equally sized groups of areas based on whether 

they – by chance – experienced above median or below median exposure to unusual delays in 

contract tracing. We plot the average incidence of COVID-19 for each group by test date. We 

observe virtually identical pre-treatment trends across groups but a substantive divergence in 

COVID-19 spread at the onset of the period during which the Excel error occurred, which is 

highlighted by the dashed lines. 90% confidence intervals displayed. 
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Fig. S5. Impact of delayed referral of COVID-19 positive cases to Test and Trace on subsequent 

COVID-19 testing performance 

Panel A: Tests per capita Panel B: Positive Tests per capita 

 

 

Panel C: Share of positive tests 

 

Notes: Figure presents regression estimates capturing the impact of cases that tested positive 

between Sept 20 to Sept 27 but were not referred to contact tracing until the earliest October 3, 

2020 on the outcome variables indicated in the figure panel heads. Note that the subnational Test 

& Trace statistics are made available lack a lot of detail and reporting is not following conventional 

calendar week definitions. Rather, a week refers to a time window ranging from Thursday to 

Wednesday of the subsequent week. That implies that the week 39 label, covering to the period 

from 24 Sep 2020 to 30 Sep 2020, straddles four days of calendar week 39 and three days of 

calendar week 40. All regressions control for district fixed effects and date fixed effects, along with 

non-linear time trends in the extent of true infections measured as of today during calendar weeks 

37 and 38. Standard errors are clustered at the district level with 90% confidence intervals shown. 
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Fig. S6. Impact of delayed referral to contact tracing on Test and Trace 

Panel A: Referrals to Test and Trace per capita Panel B: Number of contacts reached 

 

Panel C: Share of contacts reached 

 

Notes: Figure presents regression estimates capturing the impact of cases that tested positive 

between Sept 20 to Sept 27 but were not referred to contact tracing until the earliest October 3, 

2020 on the outcome variables indicated in the figure panel heads. Note that the subnational Test 

& Trace statistics are made available lack a lot of detail and reporting is not following conventional 

calendar week definitions. Rather, a week refers to a time window ranging from Thursday to 

Wednesday of the subsequent week. That implies that the week 39 label, covering to the period 

from 24 Sep 2020 to 30 Sep 2020, straddles four days of calendar week 39 and three days of 

calendar week 40. All regressions control for district fixed effects and date fixed effects, along with 

non-linear time trends in the extent of true infections measured as of today during calendar weeks 

37 and 38. Standard errors are clustered at the district level with 90% confidence intervals shown. 
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Fig. S7. Impact of delayed referral to contact tracing, new COVID-19 infections and deaths 

 

           Panel A: Number of new COVID-19 cases per capita Panel B: Number of new COVID-19 deaths per capita 

        

Notes: Figure presents regression estimates capturing the impact of cases that tested positive between Sept 20 to Sept 27 but were not referred to 

contact tracing until the earliest October 3, 2020 on the outcome variables indicated in the figure panel heads. All regressions control for district fixed 

effects and date fixed effects, along with non-linear time trends in the extent of true infections measured as of today during calendar weeks 37 and 

38. Standard errors are clustered at the district level with 90% confidence intervals shown. 
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Fig. S8. Delayed contact tracing referral: Identification of delayed referral to contact tracing 

 

 Panel A: Identifying missing cases across vintages Panel B: Cumulative positive test results for tests taken Sept 24 

 

Notes: Panel A documents the number of cases by date on which a test was taken for three different versions of the dataset: Nov 11, Oct 4 and Oct 

2nd. The data for Oct 4 includes a large set of the missing positive cases that were not reported in the Oct 2 data version resulting in large upward 

revisions. These revisions capture cases that were not referred to contact tracing until Oct 3 or 4th the earliest. Panel B illustrates this using data for 

all tests taken on Sept 24. Over time the reported cumulative value of positive COVID-19 cases converges to the true value as all test results get 

processed. Usually, 5 days after a test is taken at least 95% of all test results have been published. Between October 2 and October 3, the case 

count for Sept 24 jumps by around 715 cases or 12% of all cases due to the Excel glitch. 
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Fig. S9. Delayed referral to contact tracing affecting individual cases with positive test result from 
Sept 20 - Sept 30 

 

 Sept 19 Sept 20 Sept 21 Sept 22 

 

 Sept 23 Sept 24 Sept 25 Sept 26 

 

 Sept 27 Sept 28 Sept 29 Sept 30 

 

Notes: Figure plots the cumulative number of positive tests on the date indicated in the column 
head. The vertical axis presents the number of positive cases while the horizontal axis presents the 
date on which a case count was published. There are notable jumps in the case counts starting 
Sept 20 due to positive cases not being reported and submitted to contact tracing due to an excel 
spreadsheet error. 
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Fig. S10. Geographic signature of Oct 4 upward revision of Sept 24 COVID-19 positive cases 
across districts 

 

Panel A: Sept 24 cumul. cases across vintages  Panel B: Spatial spread of Oct 2 to Oct 4 jump 

 

Notes: Figure plots the COVID-19 cumulative case figures as reported for Sept 24 across different 
reporting dates in Panel A. Panel B presents the spatial distribution of the absolute number of cases 
that were added between Oct 2 and Oct 4 (for the specimen date Sept 24). The color shades 
represent different quintiles of the distribution of this absolute number of added cases. 
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Fig. S11. Fitting evolution of reported cases since test date 

 

 

Days since test taken 

Notes: Figure plots data capturing the share of all positive COVID-19 tests that have been 
processed, reported and referred to contact tracing as a function of the number of days that have 
passed since the COVID-19 test was taken on the horizontal axis. The hallow circles refers to the 
average pattern in the data for Sept 1 to Sept 19. The red line is the one obtained from fitting non-
linear least squares of equation 1. The dashed line presents the evolution of the fraction of COVID-
19 cases reported and referred to contact tracing for tests taken on Sept 24. The fraction of reported 
cases jumps nine days after the test was taken which coincides with the upward revision of October 
3. 
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Fig. S12. Example visualization of cosine similarity measure for a pair of districts 

 

 Cases per capita weeks 37 and 38 Tests per capita performed in week 39 

 

 Share of positive tests in week 39 New cases as of Oct 1 per capita 

 

Notes: Figure plots example of the similarity measure used to construct matched pairs. The cosine 
similarity measure is plotted along the horizontal axis. The vertical axis presents a subset of 
features that are included in the cosine similarity measure. The matched pairs are indicated as red 
diamonds representing two districts that are closest in terms of cosine similarity and form a matched 
pair. Throughout, the two districts are very similar not just in terms of cosine similarity but also in 
terms of similarity regarding each individual uni-dimensional measure.  
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Fig. S13. Contact tracing flowchart 

 

Notes: Figure presents the process activating contact tracing as presented on (18).  
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Fig. S14. Regional heterogeneity in impact of delayed contact tracing referral on new cases and 
deaths 

 

 Panel A: COVID-19 cases per day Panel B: COVID-19 deaths per day 

 

Notes: Figure plots the impact of delayed referrals to test and trace on subsequent new COVID-
19 cases (left panel) and new COVID-19 deaths (right panel). All regressions correspond to the 
specifications presented in column (1) of Table S7, but allowing the effect to be heterogenous 
across regions. 90% confidence intervals obtained from clustering standard errors at the district 
level are indicated. 
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Fig. S15. Distribution of point estimates when dropping one geographical unit at a time  
(NUTS = Nomenclature of Territorial Units for Statistics) 

 
Panel A: Dropping each of the 9 NUTS1 regions in turn 

 

(a) New Cases per capita                              (b) New Deaths per capita  

Panel B: Dropping each of the 30 NUTS2 regions in turn 

 

 (c) New Cases per capita (d) New Deaths per capita 

Panel C: Dropping each of the 93 NUTS3 regions in turn 

 

 (e) New Cases per capita (f) New Deaths per capita 

Notes: Figures present the distribution of the point estimates obtained when dropping all 
observations pertaining to one region a time. The estimating regression has as dependent variable 
either the number of new COVID-19 infections or the number of new COVID-19 deaths after week 
40 as recorded in the most recent data version. All regressions control for area fixed effects, time 
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fixed effects and a non-linear time trend in the extent of the local COVID-19 spread measured per 
capita during weeks 37 and 38. Standard errors are clustered at the district level. 
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Fig. S16. Estimates of the effects of missing cases on COVID-19 case growth and deaths for the treatment period (Sept 20 to Sept 27) and the 

placebo periods (before Sept 20 and after Sept 27). 

 
                                      Panel A: Cases per capita        Panel B: Deaths per capita 

 

Notes: Figure presents regression estimates of the number of missing cases on subsequent new COVID-19 case growth post calendar week 39 in 

Panel A and new COVID-19 deaths in Panel B. The number of missing cases on a specific date is computed by measuring, for each date, the 

difference between the case count reported in the most recent data version from November 15, 2020 and the case count published seven days after 
the actual test was taken. That is, the Sept 23 figures represent the gap in reported cases between the Sept 30 version of the case count and the 

Nov 10, 2020 version of the case count for Sept 23. This implies missing cases affected by the Excel glitch would appear in all data from Sep 20 to 

Sep 26 as the Excel error was only starting to be rectified from October 3. The point estimates obtained for the “missing cases measure” for dates 

before Sept 20 and after Sept 30 serves as a placebo estimate. Standard errors are clustered at the district level with 90% confidence intervals 

shown.

32 
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Fig. S17. Randomization inference: reshuffling the district-level exposure measure randomly  
(NUTS = Nomenclature of Territorial Units for Statistics)   
 
Panel A: Reshuffling Mi across whole of England 

 
 (a) New Cases per capita (b) New Deaths per capita 

Panel B: Reshuffling Mi across districts within each of the 9 NUTS1 regions 

 
 (c) New Cases per capita (d) New Deaths per capita 

Panel C: Reshuffling Mi across districts within each of the 33 NUTS2 regions 

 
 (e) New Cases per capita (f) New Deaths per capita 
Notes: Figures present the distribution of point estimates obtained from estimating the main 
difference-in-difference specification in column (1) of Table S7 when using 100 different reshuffled 
treatment exposure measure. Reshuffling is either across all districts in England in Panel A; across 
all districts within each of the 9 NUTS1 regions; across all districts within each of the 33 NUTS2 
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regions. The kernel density plots the distribution of the point estimates. The vertical line indicates 
the point estimate obtained when using the actual Mi estimate which corresponds to the point 
estimates presented in column (1) of Table S7. 
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Table S1. Comparison of usual case count share reported at least five days after a test was taken 
across different data windows 

 
Published date 

 Sept 24 Oct 2 Oct 14 
 

Test date Sept 12 - Sept 19 Sept 20 - Sept 27 Oct 2 - Oct 9 
Number of days since test 
5 95.9% 61.0% 94.0% 
6 97.1% 72.7% 97.4% 
7 98.8% 79.9% 99.2% 
8 98.9% 85.3% 99.4% 
9 98.9% 85.5% 99.3% 
10 99.2% 96.6% 99.6% 
11 99.0% 98.3% 99.6% 
12 99.3% 94.1% 99.5% 

Notes: Table presents the share of all positive tested cases published by the date indicated in the 
column head covering different time windows up to a specific number of days after the test was 
conducted. During the period affected by the Excel error, only 61% of all cases occurring between 
Sept 20 and Sept 27 have been published and referred to contact tracing five days after the test 
was done. This compares with 95.9% of positive cases immediately prior to the Excel glitch and 
94% of cases immediately after the Excel glitch. 
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Table S2. Robustness of results to additional controls 

 
 (1) (2) (3) (4) (5) (5) 

Post week 39 × Missing cases 20-27 Sept per capita 0.606*** 0.419*** 0.395*** 0.007** 0.006** 0.005** 
 (0.119) (0.108) (0.102) (0.003) (0.003) (0.002) 

Mean DV 11.906 11.906 11.991 0.185 0.185 0.185 
Observations 28119 28119 27755 28119 28119 27755 
Spatial units 309 309 305 309 309 305 
Additional controls 2730 7462 7462 2730 7462 7462 
Non-linear time trends in COVID-19 intensity weeks 36-38 X X X X X X 
Non-linear time trends in vector of area controls  X X  X X 

Google Daily Mobility Scores   X   X 

Notes: Impact of delays in contact tracing on new COVID-19 infections and deaths. Difference-in-
differences regression estimates (at level of Lower Tier Local Authority) for the effect of the number 
of delayed referrals to contact tracing per capita on new infections per capita (columns 1-3) and 
new COVID-19 deaths per capita (columns 3-6). All regressions control for district fixed effects and 
date fixed effects. Columns 1 and 4 control for non-linear time trends in cases per capita just prior 
to the error. Columns 2 and 5 additionally control for non-linear time trends in a vector of 55 area-
specific characteristic. Columns 3 and 6 further control for mobility data that accounts for the 
potential behavioral effect of lower locally reported case numbers. Standard errors are clustered 
at the district level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1. 
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Table S3. Impact of non-timely contact tracing on weekly COVID-19 test data 

 
 (1) (2) (3) (4) (5) (5) 

Panel A: Weekly Tests Per Capita 
Post week 39 × Missing cases 20-27 Sept per capita 2.665*** 2.894*** 2.746*** 2.459*** 2.792*** 2.656*** 
 (0.512) (0.501) (0.516) (0.767) (0.796) (0.860) 

Mean DV 304.007 304.007 304.070 304.322 304.322 304.387 

Observations 28301 28301 28119 28210 28210 28028 
Spatial units 311 311 309 310 310 308 
Additional controls 1001 1911 2821 15288 16198 17108 

Panel B: Weekly Positive Tests Per Capita 
Post week 39 × Missing cases 20-27 Sept per capita 

0.674*** 0.685*** 0.676*** 0.792*** 0.760*** 0.790*** 
 (0.122) (0.122) (0.130) (0.166) (0.168) (0.173) 

Mean DV 13.468 13.468 13.496 13.475 13.475 13.502 

Observations 27762 27762 27664 27671 27671 27573 
Spatial units 311 311 309 310 310 308 
Additional controls 1001 1911 2821 15274 16184 17094 

Panel C: Share of tests returning a positive result 
Post week 39 × Missing cases 20-27 Sept per capita 

0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Mean DV 0.036 0.036 0.036 0.036 0.036 0.036 

Observations 27762 27762 27664 27671 27671 27573 
Spatial units 311 311 309 310 310 308 
Additional controls 1001 1911 2821 15274 16184 17094 

Non-linear time trends in COVID-19 intensity weeks 36-38 
  
Cases per capita deciles x Date                                                X  X X X X X 
Tests per capita deciles x Date X X  X X 

Positive test rate deciles x Date  X   X 

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) 
present the main difference-in-differences results. Columns (4) - (6) control for matched pair by 
time fixed effects. Matched pairs are constructed by identifying for each district one that is closest 
in terms of the Cosine distance between the following variables: new COVID-19 cases as of Oct 1, 
new COVID-19 deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in 
week 39, the average new cases and deaths per capita, the average positive test share, the 
average number of tests performed during weeks 36-38, along with the growth rates in new cases, 
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are 
clustered at the district level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1. 
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Table S4. Impact of non-timely contact tracing on the weekly performance of contact tracing 
 

 
 (1) (2) (3) (4) (5) (5) 

Panel A: Referrals to Test and Trace Per Capita 
Post week 39 × Missing cases 20-27 Sept per capita 0.801*** 0.790*** 0.748*** 0.275 0.287 0.358* 

 (0.171) (0.170) (0.169) (0.253) (0.292) (0.212) 

Mean DV 14.924 14.977 15.102 14.964 15.017 15.144 

Observations 14378 14287 14105 14287 14196 14014 
Spatial units 149 148 146 148 147 145 
Additional controls 1001 1911 2821 7735 8645 9555 

Panel B: Contacts Reached Per Capita 
Post week 39 × Missing cases 20-27 Sept per capita 

0.897*** 0.880*** 0.836*** 0.312 0.346 0.379 
 (0.232) (0.232) (0.234) (0.330) (0.387) (0.312) 

Mean DV 20.232 20.295 20.442 20.270 20.333 20.482 

Observations 14378 14287 14105 14287 14196 14014 
Spatial units 149 148 146 148 147 145 
Additional controls 1001 1911 2821 7735 8645 9555 

Panel C: Share of contacts reached 
Post week 39 × Missing cases 20-27 Sept per capita 

-0.000 -0.000 -0.001 -0.002* -0.001 
-
0.002* 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Mean DV 0.633 0.633 0.633 0.633 0.633 0.633 

Observations 14378 14287 14105 14014 13832 13468 
Spatial units 149 148 146 145 143 139 
Additional controls 1001 1911 2821 7735 8554 9282 

Non-linear time trends in COVID-19 intensity weeks 36-38 
  Cases per capita deciles x Date X 

X X X X X 
Tests per capita deciles x Date X X  X X 

Positive test rate deciles x Date  X   X 

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) 
present the main difference-in-differences results. Columns (4) - (6) control for matched pair by 
time fixed effects. Matched pairs are constructed by identifying for each district one that is closest 
in terms of the Cosine distance between the following variables: new COVID-19 cases as of Oct 1, 
new COVID-19 deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in 
week 39, the average new cases and deaths per capita, the average positive test share, the 
average number of tests performed during weeks 36-38, along with the growth rates in new cases, 
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are 
clustered at the district level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1. 
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Table S5. Impact of non-timely contact tracing on the pandemic progression 

 
 (1) (2) (3) (4) (5) (5) 

Panel A: Daily new COVID-19 cases per capita 
Post week 39 × Missing cases 20-27 Sept per capita 0.606*** 0.619*** 0.606*** 0.725*** 0.692*** 0.713*** 

 (0.111) (0.111) (0.119) (0.146) (0.148) (0.156) 

Mean DV 11.790 11.848 11.906 11.796 11.854 11.912 

Observations 28665 28301 28119 28574 28210 28028 
Spatial units 315 311 309 314 310 308 
Additional controls 1001 1911 2821 15288 16198 17108 

Panel B: Daily new COVID-19 deaths per capita 
Post week 39 × Missing cases 20-27 Sept per capita 

0.008*** 0.008*** 0.007** 0.007*** 0.007*** 0.006** 
 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Mean DV 0.183 0.184 0.185 0.184 0.184 0.185 

Observations 28665 28301 28119 28574 28210 28028 
Spatial units 315 311 309 314 310 308 
Additional controls 1001 1911 2821 15288 16198 17108 

Non-linear time trends in COVID-19 intensity weeks 36-38 
Cases per capita deciles x Date X 

X X X X X 
Tests per capita deciles x Date X X  X X 

Positive test rate deciles x Date  X   X 

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) 
present the main difference-in-differences results. Columns (4) - (6) control for matched pair by 
time fixed effects. Matched pairs are constructed by identifying for each district one that is closest 
in terms of the Cosine distance between the following variables: new COVID-19 cases as of Oct 1, 
new COVID-19 deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in 
week 39, the average new cases and deaths per capita, the average positive test share, the 
average number of tests performed during weeks 36-38, along with the growth rates in new cases, 
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are 
clustered at the district level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1. 
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Table S6. Measuring the number of missing cases across data set vintages 

 
Date PHE Cases by test date and vintage ∆ Missing case measure 
  Nov 11 Oct 2 Oct 4 Oct 4 - Oct 2 Nov 11 - Oct 2 Nov 11 - Oct 4 

20 September 2020 - 4578 4308 4569 261 270 9 
21 September 2020 - 4609 4540 4604 64 69 5 
22 September 2020 - 5269 5102 5251 149 167 18 
23 September 2020 - 5795 4962 5704 742 833 91 
24 September 2020 957 6199 5297 6132 835 902 67 
25 September 2020 744 5912 4732 5840 1108 1180 72 
26 September 2020 757 5560 4048 5476 1428 1512 84 
27 September 2020 - 5944 3635 5898 2263 2309 46 
28 September 2020 1415 8405 4969 8317 3348 3436 88 
29 September 2020 3049 8598 4793 8461 3668 3805 137 
30 September 2020 4133 10400 3123 10040 6917 7277 360 
01 October 2020 4786 11172 51 10073 10022 11121 1099 

Notes: Table illustrates how the number of missing cases is identified contrasting different versions 
of case data published on the official English Coronavirus dashboard. We focus on our shock 
measure computing the missing cases between Sept 20 and Sept 26. The bulk of the increase in 
cases for tests taken between Sept 20 - Sept 27 is corrected by the data update between Oct 4 to 
Oct 2. Revisions of figures for Sept 20 - Sept 27 are marginal after Oct 4th. 
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Table S7. Impact of non-timely contact tracing on the pandemic progression 

 
 (1) (2) (3) (4) (5) (5) 

Panel A: Daily new COVID-19 cases per capita 
Post week 39 × Missing cases 20-27 Sept per capita 0.606*** 0.619*** 0.606*** 0.725*** 0.692*** 0.713*** 

 (0.111) (0.111) (0.119) (0.146) (0.148) (0.156) 

Mean DV 11.790 11.848 11.906 11.796 11.854 11.912 

Observations 28665 28301 28119 28574 28210 28028 
Spatial units 315 311 309 314 310 308 
Additional controls 1001 1911 2821 15288 16198 17108 

Panel B: Daily new COVID-19 deaths per capita 
Post week 39 × Missing cases 20-27 Sept per capita 

0.008*** 0.008*** 0.007** 0.007*** 0.007*** 0.006** 
 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Mean DV 0.183 0.184 0.185 0.184 0.184 0.185 

Observations 28665 28301 28119 28574 28210 28028 
Spatial units 315 311 309 314 310 308 
Additional controls 1001 1911 2821 15288 16198 17108 

Non-linear time trends in COVID-19 intensity weeks 36-38 
    
  Cases per capita deciles x Date                                                  X X X X X X 

Tests per capita deciles x Date X X  X X 

Positive test rate deciles x Date  X   X 

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) 
present the main difference-in-differences results. Columns (4) - (6) control for matched pair by 
time fixed effects. Matched pairs are constructed by identifying for each district one that is closest 
in terms of the Cosine distance between the following variables: new COVID-19 cases as of Oct 1, 
new COVID-19 deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in 
week 39, the average new cases and deaths per capita, the average positive test share, the 
average number of tests performed during weeks 36-38, along with the growth rates in new cases, 
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are 
clustered at the district level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1. 
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Table S8. Quantification of impact of delayed or missing contact tracing on pandemic spread 
between calendar weeks 39 to 44 
 

  Estimate 90% CI Estimate 90% CI Low High Low High 

North East 44878 16573 11559 21587 11404 6828 15979 6828 21587 15% 48% 
North West 161232 66903 46661 87145 46036 27565 64506 27565 87145 17% 54% 
Yorkshire & ... 101873 27164 18945 35382 18691 11192 26190 11192 35382 11% 35% 
East Midlands 59919 12703 8860 16547 8741 5234 12248 5234 16547 9% 28% 
West Midlands 63546 17922 12500 23345 12332 7384 17280 7384 23345 12% 37% 
East of England 29047 6339 4421 8257 4362 2612 6112 2612 8257 9% 28% 
London 61371 19017 13263 24771 13085 7835 18336 7835 24771 13% 40% 
South East 43307 10845 7564 14126 7462 4468 10456 4468 14126 10% 33% 
South West 32208 7128 4972 9285 4905 2937 6873 2937 9285 9% 29% 

England 597381 184595 128745 240445 127018 76056 177981 76056 240445 13% 40% 
 

  Estimate  90% CI Estimate 90% CI Low High Low High 

North East 694 209 86 331 136 26 246 26 331 4% 48% 
North West 2195 842 348 1337 550 107 992 107 1337 5% 61% 
Yorkshire & ... 1085 342 141 543 223 43 403 43 543 4% 50% 
East Midlands 653 160 66 254 104 20 188 20 254 3% 39% 
West Midlands 747 226 93 358 147 29 266 29 358 4% 48% 
East of England 474 80 33 127 52 10 94 10 127 2% 27% 
London 529 239 99 380 156 30 282 30 380 6% 72% 
South East 547 137 56 217 89 17 161 17 217 3% 40% 
South West 272 90 37 142 59 11 106 11 142 4% 52% 

England 7196 2324 960 3689 1516 295 2738 295 3689 4% 51% 

Notes: Table provides a quantification exercise of the implied effects of the delayed contact tracing 
of COVID19 positive cases on subsequent infections and deaths across English regions from 
calendar week 39 to 44 inclusive. Cases and Deaths refers to the cumulative total of new COVID19 
infections and deaths since week 39 up to week 44 inclusive. The subsequent columns provide the 
estimate of the number of cases and deaths that appear econometrically linked to the cases that 
have not been referred to contact tracing. The table provides on the figures implied by the central 
point estimate as well as the most conservative estimate. It further provides ranges associated with 
90% confidence intervals for the individual point estimates. The column head makes a reference 
to the specific point estimates leveraged. 
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Table S9. Robustness of impact of non-timely contact tracing on the pandemic progression: 
Analysis at the Upper Tier Local Authority level 

 
 (1) (2) (3) (4) (5) (6) 

Panel A: New Cases 
Post week 39 × Missing cases 20-27 Sept per capita 0.619*** 0.621*** 0.635*** 0.680*** 0.688*** 0.776*** 

 (0.160) (0.157) (0.161) (0.168) (0.176) (0.202) 

Mean DV 14.069 14.115 14.228 14.054 14.043 14.083 
Observations 14378 14287 14105 14014 13832 13468 
Spatial units 149 148 146 145 143 139 
Additional controls 1001 1911 2821 7735 8554 9282 

Panel B: Deaths 
Post week 39 × Missing cases 20-27 Sept per capita 0.010*** 0.009** 0.009** 0.011*** 0.011*** 0.014*** 

 (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) 

Mean DV 0.202 0.202 0.204 0.201 0.201 0.202 
Observations 14378 14287 14105 14014 13832 13468 
Spatial units 149 148 146 145 143 139 
Additional controls 1001 1911 2821 7735 8554 9282 

Panel C: Tests 
Post week 39 × Missing cases 20-27 Sept per capita 2.934*** 2.842*** 2.878*** 3.599*** 3.441*** 4.166*** 

 (0.574) (0.602) (0.652) (0.678) (0.665) (0.894) 

Mean DV 311.369 311.369 311.714 311.617 311.617 311.740 
Observations 14287 14287 14105 13832 13832 13468 
Spatial units 148 148 146 143 143 139 
Additional controls 1001 1911 2821 7644 8554 9282 

Panel D: Positivity rate 
Post week 39 × Missing cases 20-27 Sept per capita 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Mean DV 0.044 0.044 0.044 0.045 0.045 0.045 
Observations 13860 13860 13769 13118 13118 12936 
Spatial units 148 148 146 143 143 139 
Additional controls 1001 1911 2821 7322 8232 9051 

Panel E: Contact tracing referral 
Post week 39 × Missing cases 20-27 Sept per capita -0.000 -0.000 -0.001 -0.002* -0.001 -0.002* 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Mean DV 0.633 0.633 0.633 0.633 0.633 0.633 
Observations 14378 14287 14105 14014 13832 13468 
Spatial units 149 148 146 145 143 139 
Additional controls 1001 1911 2821 7735 8554 9282 

Non-linear time trends in COVID-19 intensity weeks 36-38 
 

  Cases per capita deciles x Date X X X X X X 
Tests per capita deciles x Date X X  X X 

Positive test rate deciles x Date  X   X 

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) 
present the main difference-in-differences results. Columns (4) - (6) control for matched pair by 
time fixed effects. Matched pairs are constructed by identifying for each district one that is closest 
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in terms of the Cosine distance between the following variables: new COVID-19 cases as of Oct 1, 
new COVID-19 deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in 
week 39, the average new cases and deaths per capita, the average positive test share, the 
average number of tests performed during weeks 36-38, along with the growth rates in new cases, 
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are 
clustered at the UTLA level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1. 
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Table S10. Robustness of impact of non-timely contact tracing on the pandemic progression: 
Analysis at the NUTS3 level (Nomenclature of Territorial Units for Statistics) 

 
 (1) (2) (3) (4) (5) (6) 

Panel A: New Cases 
post × Missing cases 20-26 Sept per capita 1.210*** 1.275*** 1.039*** 0.899** 0.894** 0.704* 

 (0.256) (0.293) (0.276) (0.393) (0.414) (0.403) 

Mean DV 11.051 11.113 11.267 10.986 10.959 11.253 
Observations 11067 10948 10710 10948 10710 10234 
Spatial units 93 92 90 92 90 86 
Additional controls 1309 2499 3689 6783 7854 8806 

Panel B: Deaths 
post × Missing cases 20-26 Sept per capita 0.025*** 0.023*** 0.024*** 0.022*** 0.021*** 0.024*** 

 (0.006) (0.007) (0.007) (0.006) (0.007) (0.008) 

Mean DV 0.186 0.187 0.190 0.184 0.184 0.189 
Observations 11067 10948 10710 10948 10710 10234 
Spatial units 93 92 90 92 90 86 
Additional controls 1309 2499 3689 6783 7854 8806 

Panel C: Tests 
post × Missing cases 20-26 Sept per capita 6.258*** 6.360*** 6.183*** 5.948*** 5.336** 5.292* 

 (1.577) (1.828) (1.918) (2.077) (2.193) (2.879) 

Mean DV 281.180 281.180 281.833 280.602 280.602 282.266 
Observations 10948 10948 10710 10710 10710 10234 
Spatial units 92 92 90 90 90 86 
Additional controls 1309 2499 3689 6664 7854 8806 

Panel D: Positivity rate 
post × Missing cases 20-26 Sept per capita 0.002*** 0.002*** 0.001*** 0.001* 0.001* 0.001 

 (0.001) (0.001) (0.000) (0.001) (0.001) (0.001) 

Mean DV 0.036 0.036 0.036 0.038 0.038 0.038 
Observations 10017 10017 9926 8946 8946 8764 
Spatial units 92 92 90 90 90 86 
Additional controls 1309 2499 3689 5740 6930 8029 

Panel E: Contact tracing referral post × 
Missing cases 20-26 Sept per capita -0.002* -0.002* -0.002* -0.003*** -0.003** -0.003* 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) 

Mean DV 0.634 0.634 0.633 0.633 0.634 0.634 
Observations 8463 8372 8190 8372 8190 7826 
Spatial units 93 92 90 92 90 86 
Additional controls 1001 1911 2821 5187 6006 6734 

Non-linear time trends in COVID-19 intensity weeks 36-38 
 

  Cases per capita deciles x Date X X X X X X 
  Tests per capita deciles x Date X X  X X 

Positive test rate deciles x Date X   X 

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) 
present the main difference-in-differences results. Columns (4) - (6) control for matched pair by 
time fixed effects. Matched pairs are constructed by identifying for each district one that is closest 
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in terms of the Cosine distance between the following variables: new COVID19 cases as of Oct 1, 
new COVID-19 deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in 
week 39, the average new cases and deaths per capita, the average positive test share, the 
average number of tests performed during weeks 36-38, along with the growth rates in new cases, 
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are 
clustered at the NUTS3 level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1. 
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Table S11. Robustness of results to alternative functional forms 

 (1) (2) (3) (4) (5) (6) 

Panel A: Main specification 
Post week 39 × Missing cases 20-27 Sept per capita 

0.606*** 0.619*** 0.606*** 0.008*** 0.008*** 0.007** 
 (0.111) (0.111) (0.119) (0.003) (0.003) (0.003) 

Mean DV 11.790 11.848 11.906 0.183 0.184 0.185 

Observations 28665 28301 28119 28665 28301 28119 
Spatial units 315 311 309 315 311 309 
Additional controls 1001 1911 2821 1001 1911 2821 

Panel B: Log-Log per capita 
Post week 39 × log(Missing cases 20-27 Sept +1 per capita) 

0.239*** 0.248*** 0.224*** 0.045** 0.050** 0.045** 
 (0.045) (0.045) (0.048) (0.021) (0.021) (0.023) 

Mean DV 1.746 1.748 1.753 -0.228 -0.229 -0.233 

Observations 28665 28301 28119 28665 28301 28119 
Spatial units 315 311 309 315 311 309 
Additional controls 1001 1911 2821 1001 1911 2821 

Panel C: Levels-Levels 
Post week 39 × Missing cases 20-27 Sept 

0.977*** 0.967*** 0.970*** 0.009*** 0.009*** 0.009*** 
 (0.139) (0.131) (0.135) (0.003) (0.003) (0.003) 

Mean DV 24.169 24.361 24.505 0.346 0.348 0.350 

Observations 28665 28301 28119 28665 28301 28119 
Spatial units 315 311 309 315 311 309 
Additional controls 1001 1911 2821 1001 1911 2821 

Panel D: Log-Levels per capita 
Post week 39 × Missing cases 20-27 Sept per capita 

0.020*** 0.022*** 0.022*** 0.006** 0.007** 0.007** 
 (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) 

Mean DV 1.746 1.748 1.753 -0.228 -0.229 -0.233 

Observations 28665 28301 28119 28665 28301 28119 
Spatial units 315 311 309 315 311 309 
Additional controls 1001 1911 2821 1001 1911 2821 

Panel E: Log-Log 
Post week 39 × log(Missing cases 20-27 Sept +1) 

0.220*** 0.228*** 0.222*** 0.097*** 0.101*** 0.104*** 
 (0.029) (0.029) (0.031) (0.015) (0.016) (0.017) 

Mean DV 2.167 2.172 2.181 0.193 0.194 0.195 

Observations 28665 28301 28119 28665 28301 28119 
Spatial units 315 311 309 315 311 309 
Additional controls 1001 1911 2821 1001 1911 2821 

Non-linear time trends in COVID-19 intensity weeks 36-38  
 
Cases per capita deciles x Date X X X X X X 
Tests per capita deciles x Date  X X  X X 

Positive test rate deciles x Date   X   X 

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) use 
new daily COVID-19 cases as dependent variable while columns (4) - (6) explore new daily COVID-
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19 deaths as dependent variable. Standard errors are clustered at the district level with starts 
indicating *** p< 0.01, ** p< 0.05, * p< 0.1. 
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Table S12. Robustness of results to alternative treatment exposure measures 

 
 (1) (2) (3) (4) (5) (6) 

Panel A: Main specification 
Post week 39 × Missing cases 20-27 Sept per capita 0.606*** 0.619*** 0.606*** 0.008*** 0.008*** 0.007** 

 (0.111) (0.111) (0.119) (0.003) (0.003) (0.003) 

Mean DV 11.790 11.848 11.906 0.183 0.184 0.185 
Observations 28665 28301 28119 28665 28301 28119 
Spatial units 315 311 309 315 311 309 
Additional controls 1001 1911 2821 1001 1911 2821 

Panel B: Curve fit Sep 20 - Sep 27 
Post week 39 × Missing cases Sept/Oct per capita 0.654*** 0.664*** 0.641*** 0.008*** 0.009*** 0.008** 

 (0.125) (0.126) (0.133) (0.003) (0.003) (0.003) 

Mean DV 11.790 11.848 11.906 0.183 0.184 0.185 
Observations 28665 28301 28119 28665 28301 28119 
Spatial units 315 311 309 315 311 309 
Additional controls 1001 1911 2821 1001 1911 2821 

Panel B: Curve fit Sep 20 - Oct 1 
Post week 39 × Missing cases Sept/Oct per capita 0.442*** 0.452*** 0.430*** 0.005*** 0.005*** 0.005** 

 (0.077) (0.076) (0.076) (0.002) (0.002) (0.002) 

Mean DV 11.790 11.848 11.906 0.183 0.184 0.185 
Observations 28665 28301 28119 28665 28301 28119 
Spatial units 315 311 309 315 311 309 
Additional controls 1001 1911 2821 1001 1911 2821 

Panel D: Fraction Missing cases Sept 20-27 
Post week 39 × fracmissed2027sh 12.705** 12.232* 11.369* 0.037 0.053 0.015 

 (5.650) (6.246) (6.656) (0.098) (0.104) (0.111) 

Mean DV 11.790 11.848 11.906 0.183 0.184 0.185 
Observations 28665 28301 28119 28665 28301 28119 
Spatial units 315 311 309 315 311 309 
Additional controls 1001 1911 2821 1001 1911 2821 

Panel E: Missing cases Sept 20-27 high incidence places 
Post week 39 × fracmissed2027sh cens2 39.734*** 41.164*** 45.858*** 0.245 0.311 0.324 
 (13.521) (14.468) (15.262) (0.216) (0.223) (0.241) 

Mean DV 14.130 14.212 14.212 0.210 0.211 0.211 
Observations 21385 21112 21112 21385 21112 21112 
Spatial units 235 232 232 235 232 232 
Additional controls 1001 1911 2821 1001 1911 2821 

Non-linear time trends in COVID-19 intensity weeks 36-38 
 

  Cases per capita deciles x Date X X X X X X 
Tests per capita deciles x Date X X  X X 

Positive test rate deciles x Date  X   X 

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) use 
new daily COVID-19 cases as dependent variable while columns (4) - (6) explore new daily COVID-
19 deaths as dependent variable. Standard errors are clustered at the district level with starts 
indicating *** p< 0.01, ** p< 0.05, * p< 0.1.  
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Table S13. Impact of non-timely contact tracing on the weekly death statistics as reported by the 
Office of National Statistics by place of death 
 

(1) (2) (3) (4) (5) (6) 
Panel A: Weekly COVID-19 Deaths Per Capita 
Post week 39 × Missing cases 20-27 Sept per capita  0.006*** 0.007*** 0.006*** 0.005** 0.006*** 0.006*** 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 
Mean DV 0.080 0.081 0.081 0.080 0.081 0.081 

Observations 28665 28301 28119 28574 28210 28028 
Spatial units 315 311 309 314 310 308 
Additional controls 1001 1911 2821 15288 16198 17108 

Panel B: Weekly COVID-19 Deaths Recorded in Hospitals Per Capita 
Post week 39 × Missing cases 20-27 Sept per capita 0.006*** 0.006*** 0.005*** 0.006*** 0.006*** 0.006*** 
 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 
Mean DV 0.060 0.060 0.060 0.060 0.060 0.060 

Observations 28301 28301 28119 28210 28210 28028 
Spatial units 311 311 309 310 310 308 
Additional controls 1001 1911 2821 15288 16198 17108 

Panel C: Weekly COVID-19 Deaths Recorded in Care Homes Per Capita 
Post week 39 × Missing cases 20-27 Sept per capita  0.000   0.001   0.001  -0.001   -0.001   -0.001 
 (0.001)  (0.001)  (0.001)  (0.001)  (0.001)  (0.001) 
Mean DV 0.014 0.014 0.014 0.014 0.014 0.015 

Observations 28301 28301 28119 28210 28210 28028 
Spatial units 311 311 309 310 310 308 
Additional controls 1001 1911 2821 15288 16198 17108 

Panel D: Weekly COVID-19 Deaths Recorded in Other Communal Establishments Per Capita  
Post week 39 × Missing cases 20-27 Sept per capita -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Mean DV 0.000 0.000 0.000 0.000 0.000 0.000 

Observations 28301 28301 28119 28210 28210 28028 
Spatial units 311 311 309 310 310 308 
Additional controls 1001 1911 2821 15288 16198 17108 

Non-linear time trends in COVID-19 intensity weeks 36-38 
 

Cases per capita deciles x Date X X X X X X 
Tests per capita deciles x Date X X  X X 

Positive test rate deciles x Date  X   X 

Notes: All regressions control for district fixed effects and date fixed effects. Columns (1) - (3) 
present the main difference-in-differences results. Columns (4) - (6) control for matched pair by 
time fixed effects. Matched pairs are constructed by identifying for each district one that is closest 
in terms of the Cosine distance between the following variables: new COVID-19 cases as of Oct 1, 
new COVID-19 deaths on Oct 1, the positive test rate in week 39, the number of tests per capita in 
week 39, the average new cases and deaths per capita, the average positive test share, the 
average number of tests performed during weeks 36-38, along with the growth rates in new cases, 
new deaths, positive test rate and tests performed in between weeks 36-38. Standard errors are 
clustered at the district level with starts indicating *** p< 0.01, ** p< 0.05, * p< 0.1. 
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Table S14. Covariate Balance: Correlation between area characteristics and the exposure to the 
Excel error 

 
 

 main curve fit  
20-27th 

curve fit 20-
1st 

all high 

 (1) (2) (3) (4) (5) 

Panel A: Employment 
makeup (2011 census) % 
working in Agriculture, ... 13.921 13.609 51.797* -0.163 -0.602 

 (18.626) (16.769) (29.517) (0.517) (0.495) 

% working in Mining, ... 107.501 83.134 382.062** -0.123 -0.702 
 (142.681) (123.317

) 
(181.288) (1.553) (1.418) 

% working in Manufacturing -11.830 -9.082 -25.753 -0.056 -0.071 
 (12.449) (10.442) (16.466) (0.125) (0.096) 

% working in Utilities -62.517 -43.732 -55.491 0.119 -0.157 
 (79.738) (69.080) (129.500) (0.888) (0.702) 

% working in Construction -12.668 -6.335 -43.116 0.037 -0.057 
 (28.884) (24.644) (35.701) (0.328) (0.275) 

% working in Wholesale, Retail Trade & 
Hospitality accommodation 

-0.375 -1.383 -2.602 -0.137 -0.061 

 (10.762) (9.449) (13.803) (0.192) (0.191) 

% working in Transportation, storage -13.804 -11.244 -53.799** -0.293 0.047 
 (14.424) (12.551) (21.473) (0.241) (0.194) 

% working in Information, Communication -4.920 -6.519 -11.191 -0.003 -0.167 
 (13.198) (11.263) (19.243) (0.253) (0.229) 

% working in Finance, Insurance -17.184** -13.779* -12.996 0.031 0.003 
 (8.524) (7.672) (13.034) (0.181) (0.150) 

% working in Admin and support services 40.455 29.162 -20.569 0.839 0.554 
 (56.994) (48.635) (77.872) (0.610) (0.618) 

% working in Public administration 24.292* 21.442* 33.895 0.152 0.176 
 (14.260) (12.242) (26.334) (0.142) (0.138) 

% working in Education 7.087 3.663 17.968 -0.117 0.105 
 (22.319) (19.996) (28.502) (0.297) (0.189) 

% working in Human Health and other 
services 

18.966 14.577 49.964*** 0.166 0.139 

 (12.830) (11.003) (16.222) (0.156) (0.131) 

Panel B: Educational attainment of 
resident population (2011 census) % with 
No formal qualifications 2.606 3.094 -0.512 -0.069 0.013 

 (9.881) (8.485) (12.821) (0.121) (0.086) 

% with Level 1 qualifications -19.116 -11.724 -48.234* -0.102 -0.053 
 (20.765) (17.800) (24.473) (0.237) (0.166) 

% with Level 2qualifications -5.466 1.528 -31.952 0.078 -0.031 
 (23.940) (20.350) (30.308) (0.208) (0.171) 
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% with Level 3+ qualifications 1.243 1.156 5.123 0.059 -0.024 
 (5.280) (4.688) (6.653) (0.086) (0.060) 

% School children and full-time students -132.340 -77.938 -388.788* 0.569 -0.517 
 (138.281) (119.182

) 
(211.005) (0.968) (1.105) 

% Full Time Students 71.705 39.993 127.459 0.001 0.524 
 (95.119) (80.542) (126.980) (0.729) (0.630) 

Panel C: National Statistics Socio-economic classification of 
occupation (2011 census) 

% Higher Managerial -6.171 -4.730 -6.055 0.029 -0.088 
 (9.000) (8.016) (11.008) (0.151) (0.112) 

% Lower Managerial -4.522 -1.924 -5.839 0.145 -0.018 
 (10.273) (9.096) (13.939) (0.136) (0.120) 

% Intermediate Occupations -10.142 -4.146 -39.639 0.077 0.118 
 (18.548) (15.855) (24.085) (0.293) (0.191) 

% Small employers -11.871 -5.188 -20.790 0.190 -0.174 
 (16.867) (14.943) (24.704) (0.272) (0.249) 

% Lower supervisory and technical 
occupations 

2.076 4.271 -12.856 -0.155 0.029 

 (33.185) (28.470) (37.914) (0.333) (0.276) 

% Semi routine occupations 7.899 6.881 7.773 -0.104 -0.007 
 (15.079) (13.051) (17.598) (0.200) (0.162) 

% Routine occupations -2.930 -3.151 -7.165 -0.153 -0.007 
 (12.061) (10.319) (15.758) (0.148) (0.119) 

% Never worked 2.675 -5.451 11.566 -0.047 0.084 
 (26.990) (23.092) (41.910) (0.257) (0.228) 

% Long Term Unemployed 35.568 18.464 42.039 -0.690 0.472 
 (76.859) (67.842) (117.709) (1.035) (0.863) 

Panel D: First COVID19 wave exposure 
COVID19 Deaths March-July 2020 per 
capita -1307.415 -977.313 -1489.710 -18.609 -5.458 

 (1137.140) (960.435) (1596.095) (14.678) (12.267) 

Other Deaths March-July 2020 per capita 520.024 561.006 585.432 -1.220 -2.117 
 (665.428) (565.685) (888.565) (8.248) (6.555) 

Panel E: 
Demographic 
makeup % aged 
0-20 -38.251** -35.355** -79.422*** -0.188 -0.126 

 (16.383) (13.943) (24.337) (0.210) (0.202) 

% aged 20-30 13.905 8.604 35.363 -0.029 0.122 
 (15.739) (13.434) (21.746) (0.119) (0.099) 

% aged 30-40 -8.723 -10.836 -10.682 0.072 0.230 
 (16.586) (14.493) (25.265) (0.268) (0.230) 

% aged 40-50 -69.953** -57.152** -
153.503*** 

0.116 -0.139 

 (29.809) (25.573) (43.062) (0.418) (0.412) 

% aged 50-60 5.711 14.371 -14.076 0.098 -0.128 
 (36.314) (30.926) (50.124) (0.300) (0.286) 
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% aged 60-70 19.170 21.103 27.455 -0.010 -0.214 
 (25.326) (21.642) (34.466) (0.296) (0.271) 

% aged 70+ 5.274 7.671 9.847 0.061 -0.102 
 (12.927) (10.957) (18.227) (0.180) (0.156) 

Panel F: Area and 
Population density 
Population 0.001 -0.000 0.006 0.000 0.000 

 (0.005) (0.004) (0.008) (0.000) (0.000) 

Area size of district in km2 0.070 -0.041 0.574 0.002 0.004 
 (0.525) (0.436) (0.838) (0.003) (0.003) 

Population density 0.014 -0.002 0.113 0.002 0.002 
 (0.155) (0.135) (0.234) (0.002) (0.002) 

Variability of population density within 
district 

-0.163 -0.234 0.207 0.002 0.004 

 (0.385) (0.334) (0.508) (0.004) (0.003) 

Panel G: Commuting 
exposure (2011 census) All 
commuters per resident 
population -16.126 -13.050 -24.668 -0.179 -0.194 

 (12.976) (11.235) (20.061) (0.157) (0.128) 

Out commuters per resident population -18.952* -16.688* -33.868** -0.135 -0.077 

In commuters per resident population 
46(10.383) 

-0.806 
(2.463) 

(9.026) 
-1.067 
(2.022) 

(15.138) 
1.120 
(3.240) 

(0.168) 
-0.044 
(0.029) 

(0.130) 
-0.028* 
(0.015) 

Notes: Table presents correlation between area characteristics indicated in the panel head and the 
treatment intensity measures. Column (1) is the main treatment intensity measure Mi capturing the 
missing cases (in per capita terms) that were referred to contract tracing with a delay. Column (2) 
and (3) uses two alternative measures constructed using the curve fitting exercise. Columns (4) 
and (5) use the fraction-based measure covering the share of infections in an area affected by the 
error. Column (4) uses the full set of areas while column (5) focuses on areas with significant overall 
infection levels. All regressions partial out the deciles in the pre-treatment positive test rate, the 
deciles in the pre-treatment number of cases per capita and the pre-treatment deciles in test 
performed per capita. Standard errors are clustered at the district level with stars indicating *** p< 
0.01, ** p< 0.05, * p< 0.1. 

 


