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SUPPLEMENTARY MATERIAL 
Supplementary Fig. S1. Flow chart of study design. a) Biomarker feature selection using 

machine learning and network-based methods as detailed in the methods section. b) A subset 

of 345 patients from the CERTAIN study were analyzed: 100 for identification of transcript 

biomarkers of non-response to TNFi therapies and 245 for cross-validation. 273 patients 

enrolled in the NETWORK-004 blinded prospective observational study; 244 passed initial 

enrollment screening, 194 completed the 3-month follow-up visit and 168 completed the 6-

month follow-up visit. 87% (146/168) of patients who completed the study had complete 

molecular and clinical data required to perform validation analyses. 

 

Input features
and 6-month 

response outcomes

Top 100 features

Other features 

Random Forest

Assess accuracy 
and performance

(AUC)

80% of data 20% of data1. Randomly divide feature set data

2. Empirically rank features using
    Random Forest machine learning

3. Repeat first two steps 96 times to 
     generate 96 lists of 100 features

1 2 3 4 96...

4. Generate a list of features that 
    were included in at least 70% of 
    the top-100 lists 

5. Eliminate features neither in nor 
    significantly connected to the 
    subnetwork of RA disease on the 
    human interactome

Human interactome protein

RA disease subnetwork protein

Candidate biomarker 

Significant network 
relationship (p-value <0.05)

6. Combine biomarkers of 
    non-response into a classifier
    using a neural network algorithm Output: inadequate response prediction

Biomarker input 1
Biomarker input 2
Biomarker input 3
Biomarker input 4

Biomarker input 23

...

Mathematical integration 
of biomarker data

1

2

3

4

5

6

A

B
Certain study* Network-004 prospective

observational study

345 targeted therapy-
naive patient subset

Baseline RNA samples
and patient assessments

12-week patient 
assessments

24-week patient 
assessments

24-week patient 
assessments

12-week RNA samples
and patient assessments

Baseline RNA samples
and patient assessments

273 patients enrolled100 naive samples for feature selection

100 naive patient samples for biomarker selection

245 naive samples for 
cross-validation

146 naive samples
with complete

24-week assessments

391 naive patient samples for validation

113 TNFi-exposed patient samples for validation

113 TNFi-exposed patient samples with
24-week assessments
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comparative effectiveness study of biologic agents for rheumatoid arthritis patients. BMC Musculoskelet Disord 15, 113 (2014).  
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Supplementary Table S1. Characteristics of patients who did not complete the NETWORK-004 

prospective observational trial. 

Reason for leaving trial Percent of patients 
Lost to follow up 9% 

Screen failure 13% 

Other 27% 

Adverse Event 4% 

Withdrawal by subject 17% 

Study terminated by sponsor 1% 

Death 1% 

Physician decision 2% 

Non-compliance with treatment 8% 

Protocol violation 2% 

Failed final data review; incomplete molecular or clinical 

data 17% 

Other events (N = 29) Percentage of other events 

Financial problem  32% 

Switched targeted therapy 13% 

Protocol violation 26% 

TNFi not initiated during study period 19% 

Not reported 10% 
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Supplementary Table S2. Odds of a patient with a molecular signature of non-response having 

an inadequate response according to different criteria and follow-up assessment timepoints 

during cross-validation. 

 AUC Odds ratio (95% CI; p-value) 

Cross-validation, naive   

ACR50, 6 months 0.66 3.0 (1.6-5.5; 0.0002) 

ACR70, 6 months 0.66 3.4 (1.6-7.1; 0.0008) 

CDAI LDA, 6 months 0.67 3.7 (2.2-6.4; <0.0001) 

CDAI remission, 6 months 0.67 3.4 (1.6-7.6; 0.0014) 

DAS28-CRP LDA, 6 months 0.64 2.5 (1.5-4.3; 0.0005) 

DAS28-CRP remission, 6 months 0.65 2.7 (1.6-4.7; 0.0003) 

AUC = area under the curve, CI = confidence interval, ACR = American college of 

rheumatology, CDAI = clinical disease activity index, LDA = low disease activity, DAS28-CRP = 

disease activity score 28-joint count with C-Reactive protein, TNFi = tumor necrosis factor-ɑ 

inhibitor 
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Supplementary Table S3. Comparison of baseline demographic characteristics between 

patients who did or did not respond to TNFi treatment according to ACR50 non-responder (NR) 

and responder (R) status at 6 months. Total-cohort demographic information is reported in 

Table 2. 

 
 
 

CERTAIN study  
feature selection 

(N = 100) 

CERTAIN study  
cross-validation 

(N = 245) 

NETWORK-004 study targeted 
therapy-naïve  

(N = 146) 

Characteristic NR 
(n = 69) 

R 
(n = 31) 

p-value NR 
(n = 170) 

R 
(n = 75) 

p-value NR 
(n = 81) 

R 
(n = 65) 

p-
value 

Age (year), mean (SD) 54 (10.8) 55 (15.4) 0.82 56 (11.8) 52 (13.2) 0.07 59 (12.5) 55 (15.7) 0.11 

Female, n (%) 55 (79.7) 17 (54.8) 0.02 132 (77.6) 47 (62.7) 0.02 62 (76.5) 53 (81.5) 0.60 

Duration of disease 
(year), median (IQR) 

1 (1,4) 1 (1, 7.5) 0.63 2 (1, 6) 2 (1, 5.5) 0.76 1 (1,5) 1 (0, 4) 0.61 

Race, n (%)    0.36   0.47   0.69 

White 55 28  145 68  63 (77.8) 54 (83.1)  

African American 8 1  11 2  12 (14.8) 4 (6.2)  

Other 20 2  30 5  6 (7.4) 7 (10.8)  

Anti-CCP positive, n (%) 38 (55.1) 24 (77.4) 0.01 99 (58.2) 55 (73.3) 0.01 36 (44.4) 36 (55.4) 0.26 

RF positive, n (%) 51 (73.9) 25 (80.6) 0.61 117 (68.8) 55 (73.3) 0.71 22 (38.6) 33 (70.2) 0.005 

Prednisone at baseline, 
n (%) 

19 (27.5) 11 (35.5) 0.57 51 (30.0) 13 (17.3) 0.06 12 (14.8) 25 (38.5) 0.02 

Prednisone dosage, 
median (IQR) 

5 (5,10) 5 (5, 
8.75) 

0.61 5 (5,10) 5 (5,10) 0.95 5 (5,10) 5 (4, 5) 0.10 

Current csDMARD, n 
(%) 

  ND*      ND* 

Methotrexate 35 (50.7) 21 (67.7)  97 (57.1) 41 (54.7) N/A* 64 (79.0) 56 (86.2)  

 ≥2 csDMARDs 5 (7.2) 2 (6.5)  27 (15.9) 15 (20.0) N/A* 6 (7.4) 6 (9.2)  

        None 11 (15.9) 4 (12.9)  29 (17.1) 8 (10.7) N/A* 16 (19.8) 9 (13.8)  

TNFi use, n (%)   0.92   0.28   0.22 

Adalimumab 26 (37.7) 10 (32.3)  67 (39.4) 31 (41.3)  22 (27.2) 26 (40.0)  

Etanercept 23 (33.3) 12 (38.7)  52 (30.6) 24 (32.0)  19 (23.5) 12 (18.5)  

Infliximab 11 (15.9) 4 (12.9)  27 (21.8) 11 (14.7)  9 (11.1) 9 (13.8)  

Certolizumab 
pegol 

6 (8.7) 4 (12.9)  12 (7.1) 5 (6.7)  6 (7.4) 7 (10.8)  

Golimumab 3 (4.3) 1 (3.2)  2 (1.2) 4 (5.3)  25 (30.9) 11 (16.9)  

*ND: not determined; patients receiving methotrexate and a second csDMARD are included in 
both categories. SD = standard deviation, IQR = interquartile range, csDMARD = conventional 
synthetic disease modifying antirheumatic drug, TNFI = tumor necrosis factor-ɑ inhibitor, Anti-
CCP = anti-cyclic citrullinated protein 
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Supplementary Table S4.  Confusion matrix indicating the number of targeted therapy naïve 

RA patients who achieved remission at 6 months according to CDAI (≤2.8) and DAS28-CRP 

(<2.4) who also had a molecular signature of non-response detected at baseline.  

CDAI remission Non-responder Responder 

Signal detected 74 4 

Signal not detected 46 22 

DAS28-CRP remission Non-responder Responder 

Signal detected 64 11 

Signal not detected 33 33 
CDAI = clinical disease activity index, DAS28-CRP = disease activity score 28-joint count with 

C-Reactive protein



 6 

SUPPLEMENTARY DISCUSSION: BIOLOGY OF BIOMARKERS 

TNF-ɑ and cytokine biosynthesis 

TNF-α is synthesized as a transmembrane precursor (pro-TNF-α) and then proteolytically 

cleaved to a soluble, mature homotrimer [1, 2]. Release is primarily regulated at the 

transcriptional level after a stimulus triggers biosynthesis [3]. Newly formed pro-TNF-α is 

continuously secreted without the need for a second stimulus, by constitutive trafficking through 

the endoplasmic reticulum, Golgi and endosomal network to the cell surface where pro-TNF-α 

can be cleaved or endocytosed. Secretory and endocytic pathways modulate the number and 

availability of biologically active TNF-α molecules [4]. Secondly, binding of TNFi to 

transmembrane TNF-ɑ results in internalization of the TNFi/TNF complex first into early 

endosomes [5, 6].  

GOLGA1 encodes golgin-97, which is an autoantigen [7] and is essential for endosome-to-

trans-Golgi network trafficking [8]. 

COMMD5 is localized on early endosomes and recycling endosomes, [5] colocalizing with 

common endosomal markers to those of TNF-ɑ [9]. Recycling endosomes are specialized 

secretory compartments with functions that include trafficking of cytokines to cell surfaces. 

Furthermore, COMMD5 depletion results in re-organization of actin filaments and microtubules 

distribution, which impacts directional cell migration and junctions [5].  

T and B cell homeostasis 

T cells are crucial to the pathophysiology of rheumatoid synovitis, and previous studies of the 

molecular pathways that identify patients who will not respond to TNFi therapies demonstrated a 

connection between T cell signaling and RA disease biology [10-15]. Large numbers of 

activated T cells can be detected in the joints of RA patients and synovial inflammation includes 

natural killer cells, CD4+, and CD8+ T cells [16-20]. During T cell-dependent inflammatory 

responses, B cells can differentiate into antibody-producing plasma cells or enter follicles to 

form germinal centers. Dysregulation of germinal center response has been implicated in 

development of systemic autoimmunity [21-23]. TNF-ɑ is required for germinal center 

organization and development in mice during normal homeostatic conditions and infections [24-

27]. Germinal centers are common in inflamed synovia of RA patients and modulation of 

synovial inflammation by TNFi is associated with a reversal of synovial lymphoid neogenesis 

[28-31]. 
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SPON2 is secreted into the extracellular matrix that is essential for initiation of immune 

responses, acts as an integrin ligand for inflammatory cell recruitment and T cell priming, and 

SPON2 knockout mice display impaired humoral responses to T cell-dependent antigens [32-

34].  

STOML2 is upregulated in T cell upon effector responses while down-regulation of STOML2 

expression correlates with loss of sustained TCR signaling and decreased T cell activation [35, 

36]. Furthermore, IL-2 production by activated T cells is reduced in STOML2 knockout mice 

[37]. Interleukin-2 (IL-2) is a cytokine predominantly produced by CD4+ T cells and has 

numerous functions including promoting cell survival, activation, growth and differentiation [38]. 

IL-2 is a key regulator that controls the balance between regulatory and effector T cell function 

[38]. Peripheral blood mononuclear cells from RA patients, particularly from those with extra-

articular disease, exhibit lower levels of IL-2 production [39, 40]. Treatment with low dose 

recombinant human IL-2 protein is being explored as a therapy in RA (NCT02467504). 

BCL6 encodes a transcription factor that is the master regulator of germinal center creation and 

functions by recruiting co-repressor complexes to induce epigenetic changes and suppression 

of >1000 genes [41-43]. IL-21 signaling through STAT3 induces expression of BCL6 and mice 

deficient in IL21, IL21R, or STAT3 have defects in antibody responses and germinal center 

formation [44]. 

Response to methotrexate 

The American College of Rheumatology (ACR) treatment guidelines states the methotrexate is 

the preferred initial DMARD for most early RA patients [45]. Methotrexate is the most common 

csDMARD prescribed concurrently with TNFi therapies and, compared to TNFi therapy alone, 

therapy persistence is longer and development of anti-drug antibodies is reduced [46-49]. 

Furthermore, methotrexate may impact the biological response to TNFi therapies by altering the 

immunobiology of the cellular targets of TNFi inhibitors [50]. 

IMPDH2 is upregulated in and increases the sensitivity to methotrexate of human cancer cells 

[51, 52]. Furthermore, IMPDH2 expression changes occur upon methotrexate treatment of cell 

lines in culture [53] and methotrexate treatment induces IMPDH filament formation in cell culture 

[54]. Taken together, this suggests that IMPDH2 may be acting as a molecular marker that 

assesses methotrexate use among RA patients. Efforts to investigate IMPDH2 polymorphisms 

with respect to methotrexate response RA have been limited by insufficient data [55]. 
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Alternatively, IMPDH2 has been shown to form filaments during antigen-specific T cell activation 

in healthy mouse spleen, thymus and pancreas [56-58]. IMPDH inhibitors (eg. azathioprine, 

mycophenolic acid) limit lymphocyte proliferation and are used clinically as 

immunosuppressants [59, 60]. 

Bone destruction 

Elevated osteoclast activity, impaired osteoblast function and osteoblast differentiation 

contribute to focal bone erosion development in RA [61-64]. TNF-α is one of the several pro-

inflammatory cytokines involved in regulation of bone homeostasis by stimulating 

osteoclastogenesis and inhibiting osteoblast function. Treatment with TNFi therapies reduces 

radiographic progression [65-73]. However, disease activity correlates with radiographic 

progression, even among patients treated with TNFi therapies [74]. 

SPINT2 is upregulated in RA synovial fibroblasts compared with healthy synovial fibroblasts 

[75]. SPINT2 encodes the transmembrane protein HAI-2 that inhibits the hepatocyte growth 

factor activator (HGFA). HGFA proteolytically cleaves hepatocyte growth factor (HGF) into its 

active form, which regulates various physiological functions including immune regulation and 

viability of osteoblasts and osteoclasts [76]. Furthermore, HGF decreased circulating TNF-α, 

MCP-1, IL-1 and IL-6 levels in the serum of mice [76]. Among RA patients, elevated levels of 

HGF predicted more severe radiographic joint damage [77].  

ATRAID is induced by the ligand all-trans retinoic acid that binds NELL-1 [78], a secreted 

protein that promotes bone mineralization in mice and potentiates osteoblast differentiation in an 

ATRAID-dependent manner [79, 80]. Furthermore, loss of ATRAID function limits therapeutic 

responses to widely used medications for bone diseases [81]. 

ALPL encodes a tissue-nonspecific alkaline phosphatase. Alkaline phosphatase is an 

osteoblastic marker and a predictor of bone mineral density in osteoporosis [82, 83]. ALPL is 

necessary for postnatal bone formation and bone deformities are related to the extent of ALPL 

deficiency [84, 85]. Ablation of ALPL in mice induced premature bone aging [86].  

Unfolded protein response 

The unfolded protein response protects the cell from stresses that impact protein folding and 

quality and has been implicated in a growing number of inflammatory and autoimmune 

conditions [87, 88]. RA synovial fibroblasts are under ER stress that is further increased by 

TNF-α [89], and ER stress is buffered by activation of the unfolded protein response during 
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which misfolded proteins are transported from the ER to the cytosol for proteasomal 

degradation [90]. Furthermore, in response to TNF-α, autophagy stimulation increases 

dependence on the proteasome for RA synovial fibroblast cell viability [89]. 

KLHDC3 binds to and is an adaptor for the E3 ubiquitin ligase CUL2, thus targeting glycine-

ended peptides for proteasomal degradation [91, 92]. The majority of proteins targeted for 

degradation by the KLHDC3/CUL2 are aberrant proteins with molecular characteristics that 

direct them for elimination [93].  

NOD2 has also been linked to activation of the unfolded protein response through TRAF2 and 

RIP2 [94, 95]. 

Synovitis and pleiotropic pro-inflammatory signaling, including NFkB signaling  
Synovitis, when the joint becomes inflamed, is a hallmark of RA. Six features are master 

regulators of pro-inflammatory processes including transcription factors, regulators of NF-κB 

signaling, pro-inflammatory cytokines and key components of the JAK-STAT pathway. These 

features transmit intracellular signals that drive inflammation in RA patient synovia. These 

proteins also impact many of the other aspects of RA disease biology discussed above 

including innate immune pathways, adaptive immune cell activation, endoplasmic reticulum 

stress and autophagy. 

NOTCH1 encodes is a ubiquitous signaling receptor involved in nearly all aspects of the cellular 

life cycle [96]. Additionally, it regulates inflammatory responses [97]. In RA, Notch1 signaling 

proteins are over-expressed in synovial tissues and Notch expression in RA synoviocytes 

contributes to TNF-ɑ-induced proliferation [98, 99]. Furthermore, suppression of Notch signaling 

suppresses inflammatory arthritis and NF-kB proinflammatory cytokines, including TNF-ɑ, IL-6, 

IL-12 and IFN-ɣ [100-102].  

NOD2, belonging to the intracellular NOD-like receptor family, detects conserved motifs in 

bacterial peptidoglycan and promotes their clearance through activation of a proinflammatory 

transcriptional program and other innate immune pathways, including autophagy and 

endoplasmic reticulum stress [94, 103]. In murine autoimmune arthritis, Nod2 deficiency 

augments Th17 responses and exacerbates arthritis symptoms [104]. Nod2 activates NF-κB, 

which requires IKKɣ and is inhibited by dominant negative mutants of IκBɑ, IKKɑ, IKKβ, and 

IKKɣ [105].  

LIMK2 encodes a serine/threonine/tyrosine kinase that is phosphorylated by Rho-associated 

protein serine/threonine kinase (ROCK1) [106]. Treatment of cells in culture with TNF-α 

activates ROCK1 signaling [107] and LIMK2 has been identified as a potential response marker 
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to TNFi therapy in psoriasis [108, 109]. Enhanced ROCK activity has been reported in PBMCs 

and synovium from RA patients [110, 111]. Furthermore, inhibition of ROCK signaling reduced 

synovial inflammation in rats with collagen-induced arthritis and inhibited NFkB signaling ex vivo 

in PBMCs from RA patients [111].  

The Janus kinases (JAK) family of intracellular tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) 

are key components of the JAK-STAT pathway that transmit signals of many cytokines involved 

in the pathogenesis of numerous immune-mediated diseases [112]. The importance of JAK-

STAT signaling is typified by the inhibition of JAKs for treatment of RA [113, 114].  

IL1B is a proinflammatory cytokine that contributes to RA pathogenesis [115, 116]. IL-1 cytokine 

levels are elevated in plasma and synovial fluid of RA patients, correlate to aspects of disease 

activity and IL-1 receptor is the target of a targeted therapy for treatment of RA [117, 118].  

ZFP36 encodes tristatraprolin (TTP), which is a negative regulatory of proinflammatory gene 

expression by binding to and promoting degradation of specific RNA transcripts [119]. TTP 

expression is elevated in RA patient synovium [120]. Transgenic mice lacking TTP displayed 

characteristics of erosive arthritis, phenocopying chronic administration of TNF-α, which was 

prevented through treatment with anti-TNF antibodies [121].  

Apoptosis and autophagy 

Apoptosis is regulated cell death. In conjunction with FasL, TNF-α contributes to protection 

against apoptosis in the RA joint and promotes apoptosis of bone marrow progenitor cells that 

can cause anemia in chronic disease [122]. FasL or TNF-α can stimulate Fas (CD95) on 

fibroblasts and lymphocytes to activate an intracellular cascade of caspases that lead to 

apoptosis [123]. However, despite the expression of Fas in a variety of cells in RA synovial 

tissue, synovial cells rarely undergo apoptosis in vivo [124]. 

Autophagy is the regulated destruction of soluble macromolecules and organelles via 

lysosomes. This cellular process is critical to cellular homeostasis and contributes to 

inflammation in RA by controlling cell development, survival and proliferation [125, 126]. 

Furthermore, autophagy has implicated in generation of citrullinated peptides in RA [127] and 

autophagy influences resistance to TNFi therapy [128]. 

CFLAR encodes FLICE-inhibitory protein (FLIP) that prevents the association of caspase 8 with 

FADD and thus exerts an antiapoptotic effect through inhibition of Fas-mediated apoptosis. 

Furthermore, constitutive activation of murine FLIP causes autoimmunity in mice [129].  
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CDK11A encodes a cyclin dependent kinase that not only has a role in cell cycle regulation but 

is also required to induce autophagy [130].  

Innate immunity 

Innate immune cells – monocytes, macrophages and dendritic cells – are involved in 

inflammatory responses of RA patients and drive activation of the adaptive immune system 

[131]. Furthermore, the continual expression of macrophage-derived cytokines in RA (TNF-α, IL-

1 and IL-6) suggests that the innate immune system is persistently activated [132].  

TRIM25 encodes a ubiquitin E3 ligase active in innate immunity and cell fate decisions [133]. 

TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I has roles in 

early innate immunity, including negative regulation of RIG-I and modulation of p53 [134-136]. 

Furthermore, TRIM25 has been implicated in mediating response to ER stress, as discussed in 

the context of RA above in “Unfolded protein response” [137].  

Clinical features in the MSRC 

Clinical features included among the biomarkers are sex, BMI, anti-CCP antibody seropositivity 

and patient global assessment. The increased risk of RA in females has been associated with 

pregnancy, hormonal contraceptive use, and lower levels of testosterone [138, 139]. Men may 

respond better to TNFi treatment than women in early, but not established RA [140-143]. 

Seropositive RA is characterized by abnormally elevated levels of circulating autoantibodies 

including anti-CCP. Measurement of anti-CCP is highly specific (98%) and sensitive (80%) for 

RA and anti-CCP titer correlates with erosive disease and worse prognosis [144, 145]. 

However, many studies have reported conflicting results regarding the association of antibody 

titer and response to TNFi therapy [141, 146-157], suggesting that the transcript features in the 

MSRC may deconvolute additional variables that give rise to these conflicting results. The 

patient global assessment is one of the most widely used patient reported outcomes and is a 

key component of many validated disease assessments. It captures complex underlying factors 

such as pain, depression and anxiety, inability to participate in daily activities and fibromyalgia 

[158]. The patient global assessment may be a better indicator of improvement after treatment 

than other disease measures, such as the tender and swollen joint counts [159]. Independently, 

each clinical feature may be poorly predictive of response to TNFi therapy when considered in a 

diverse patient population but help to maximize predictive power when assessed in conjunction 

with the unique molecular disease biology of each patient.  
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