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1 Supplementary Notes

1.1 ATAC-seq library amplification primers

Ad1 noMX
AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG
Ad2.1 TAAGGCGA
CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGGAGATGT
Ad2.2 CGTACTAG
CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGT
Ad2.3 AGGCAGAA
CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGT
Ad2.4 TCCTGAGC
CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAGATGT
Ad2.5 GGACTCCT
CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGT
Ad2.6 TAGGCATG
CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAGATGT
Ad2.7 CTCTCTAC
CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGGAGATGT
Ad2.8 CAGAGAGG
CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTCTCGTGGGCTCGGAGATGT
Ad2.9 GCTACGCT
CAAGCAGAAGACGGCATACGAGATAGCGTAGCGTCTCGTGGGCTCGGAGATGT
Ad2.10 CGAGGCTG
CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCGTGGGCTCGGAGATGT
Ad2.11 AAGAGGCA
CAAGCAGAAGACGGCATACGAGATTGCCTCTTGTCTCGTGGGCTCGGAGATGT
Ad2.12 GTAGAGGA
CAAGCAGAAGACGGCATACGAGATTCCTCTACGTCTCGTGGGCTCGGAGATGT
Ad2.13 GTCGTGAT
CAAGCAGAAGACGGCATACGAGATATCACGACGTCTCGTGGGCTCGGAGATGT
Ad2.14 ACCACTGT
CAAGCAGAAGACGGCATACGAGATACAGTGGTGTCTCGTGGGCTCGGAGATGT
Ad2.15 TGGATCTG
CAAGCAGAAGACGGCATACGAGATCAGATCCAGTCTCGTGGGCTCGGAGATGT
Ad2.16 CCGTTTGT
CAAGCAGAAGACGGCATACGAGATACAAACGGGTCTCGTGGGCTCGGAGATGT
Ad2.17 TGCTGGGT
CAAGCAGAAGACGGCATACGAGATACCCAGCAGTCTCGTGGGCTCGGAGATGT
Ad2.18 GAGGGGTT
CAAGCAGAAGACGGCATACGAGATAACCCCTCGTCTCGTGGGCTCGGAGATGT
Ad2.19 AGGTTGGG
CAAGCAGAAGACGGCATACGAGATCCCAACCTGTCTCGTGGGCTCGGAGATGT
Ad2.20 GTGTGGTG
CAAGCAGAAGACGGCATACGAGATCACCACACGTCTCGTGGGCTCGGAGATGT
Ad2.21 TGGGTTTC
CAAGCAGAAGACGGCATACGAGATGAAACCCAGTCTCGTGGGCTCGGAGATGT
Ad2.22 TGGTCACA
CAAGCAGAAGACGGCATACGAGATTGTGACCAGTCTCGTGGGCTCGGAGATGT
Ad2.23 TTGACCCT
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CAAGCAGAAGACGGCATACGAGATAGGGTCAAGTCTCGTGGGCTCGGAGATGT
Ad2.24 CCACTCCT
CAAGCAGAAGACGGCATACGAGATAGGAGTGGGTCTCGTGGGCTCGGAGATGT

1.2 Irreproducible discovery rate (IDR) analysis

We identified regions of accessible chromatin with MOSAiCS for both separate and pooled
samples of each founder strain at false discovery rate (FDR) of 0.05 and applied irreproducible
discovery rate (IDR) analysis at IDR of 0.05 to generate peak sets of each strain.

1.3 Quality trimming of ATAC-seq master peaks

Quality trimming addressed a potential bias revealed by the positive correlation of the number
of strains shared by an ATAC-seq peak with the ATAC-seq signal. Specifically, we trimmed the
master peak list to maximize the overlap of the peaks with 15-state chromHMM annotations
across an existing large collection of mouse tissues from the ENCODE project. In total, 12
tissues from mouse were available: liver e16.5, heart e16.5, lung e16.5, kidney e16.5, forebrain
e16.5, midbrain e16.5, stomach e16.5, intestine e16.5, neural tube e15.5, hindbrain e13.5, limb
e11.5, embryonic facial e13.5 (Supplementary Fig. S5 and S4).

1.4 Promoter/Enhancer annotation of ATAC-seq master peaks

We overlapped ATAC-seq master peaks with ChIP-seq based promoter/enhancer lists from
ENCODE and aggregated the results over existing mouse tissues (pancreatic islet was not
available). The following datasets were included: embryofacial (H3K4me3 e14.5; H3K27ac
e14.5), forebrain (H3K4me3 e14.5; H3K27ac e14.5), hindbrain (H3K4me3 e14.5; H3K27ac
e14.5), lung (H3K4me3 e14.5; H3K27ac e14.5), midbrain (H3K4me3 e14.5; H3K27ac e14.5),
heart (H3K4me3 e16.5; H3K27ac e16.5), intestine (H3K4me3 e16.5; H3K27ac e16.5), kidney
(H3K4me3 e16.5; H3K27ac e16.5), limb (H3K4me3 e15.5; H3K27ac e15.5), liver (H3K4me3
e16.5; H3K27ac e16.5), stomach (H3K4me3 e16.5; H3K27ac e16.5).

1.5 Collective enrichment of islet β-cell TFs

For each of the 744 human or mouse JASPAR 2020 motifs, we computed the footprint depth
(FPD, Supplementary Fig. S21) for aggregated footprint profiles in B6 ATAC-seq samples.
In order to evaluate the collective enrichment of the known β-cell TFs (PB0042.1;Mafk 1,
PB0146.1;Mafk 2, PH0131.1;Pax4, PH0111.1;Nkx2-2, PB0015.1;Foxa2 1, PB0119.1;Foxa2 2,
PH0132.1;Pax6, MA0132.1;Pdx1, PH0118.1;Nkx6-1 1, PH0119.1;Nkx6-1 2), we first treated
their averaged FPD as observed statistic. We then applied a randomization test by uniformly
drawing similar TFs for each β-cell TF (width difference ≤ 1 and information content difference
≤ 0.2). We repeated the randomization for 100,000 times and computed the average FPD
during each iteration. A p-value was obtained by comparing the observed averaged FPD to
those obtained from the randomized samples.

1.6 Application of DAP-G and SuSiE for fine-mapping DO mice eQTLs

A standard application of human GWAS fine-mapping methods to DO-eQTL results considers
all the SNPs around the eQTL marker as candidates. As a showcase, we consider the Adcy5
locus with 27,307 SNPs within the 1 Mb of the eQTL marker of Adcy5 (representative LD
structure for 4, 616 SNPs within the 200Kb of the marker is provided in Fig. S31). The top signal
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cluster estimated by DAP-G contained 3,590 SNPs with cluster Posterior Inclusive Probability
(PIP) of 0.434 and an average LD of 0.956. SuSiE did not output any credible sets for any
coverage level. The maximum estimated SNP PIPs for both approaches were less than 0.003.
Next, we utilized the multi-omics prior for the 27,307 SNPs by classifying them as: (i) not within
an ATAC-seq peak; (ii) within an ATAC-seq peak but is not a local-ATAC-MV; (iii) local-ATAC-
MV. For (iii), we utilized the multi-omics priors (Πg) that we have used for INFIMA and set the
priors to 0.5 and 1, for (i) and (ii), respectively. However, the outputs from both DAP-G and
SuSiE were almost identical with or without using a prior, further supporting that the level of LD
in the DO mice hampers a standard application of fine-mapping methods designed for human
genetic studies.
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2 Supplementary Tables

Table S1: Founder ATAC-seq data alignment rates. In this manuscript, 129, AJ, B6,
CAST, NOD, NZO, PWK, and WSB are short for 129S1 SvImJ, A J, C57BL/6J, CAST EiJ,
NOD ShiLtJ, NZO HlLtJ, PWK PhJ, and WSB EiJ respectively.

Sample AlignOnce % AlignMultiple % chrM % Duplicate %
1 129-F 66.42 29.74 28.71 11.80
2 129-M 57.96 29.19 41.65 17.74
3 AJ-F 55.95 37.11 41.75 18.86
4 AJ-M 55.00 38.83 37.05 16.31
5 B6-F 55.47 32.22 35.35 15.68
6 B6-M 59.47 34.01 16.46 9.14
7 CAST-F 69.99 23.84 18.57 11.41
8 CAST-M 68.34 25.37 19.83 8.41
9 NOD-F 58.39 32.55 33.39 17.79

10 NOD-M 63.50 32.21 29.16 11.51
11 NZO-F 66.15 26.68 19.33 8.94
12 NZO-M 66.60 24.45 12.72 7.75
13 PWK-F 55.80 35.56 34.35 19.16
14 PWK-M 57.01 34.25 25.27 13.49
15 WSB-F 71.38 24.97 21.23 7.81
16 WSB-M 62.91 24.77 20.93 7.60
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Table S2: Comparison of rate of alignments to reference genome (mm10) and personalized
genomes.

Sample AlignReference % AlignPersonalized %
1 129-F 96.16 96.38
2 129-M 87.16 87.23
3 AJ-F 93.06 93.17
4 AJ-M 93.83 93.97
5 B6-F 87.64 87.64
6 B6-M 93.44 93.44
7 CAST-F 93.84 96.12
8 CAST-M 93.71 95.98
9 NOD-F 90.94 91.11

10 NOD-M 95.71 95.92
11 NZO-F 92.84 93.03
12 NZO-M 91.05 91.36
13 PWK-F 91.36 94.13
14 PWK-M 91.26 94.59
15 WSB-F 96.35 96.63
16 WSB-M 87.69 87.97

Table S3: Number of strain-specific ATAC-seq peaks before and after quality trimming.
Strain BeforeTrim AfterTrim

1 129 368 105
2 AJ 242 19
3 B6 1048 103
4 CAST 15894 1406
5 NOD 995 45
6 NZO 244 83
7 PWK 1924 430
8 WSB 5914 813

Table S4: P-values from pairwise Kolmogorov-Smirnov tests between cumulative distribution
curves of the five fine-mapping strategies. ”Most Likely” and ”Least Likely” refer to INFIMA
most and least likely predictions, respectively.

Strategy Most Likely Least Likely Random Closest to Marker
Least Likely <2.2e-16

Random <2.2e-16 <2.2e-16
Closest to Marker <2.2e-16 <2.2e-16 1.0e-15
Closest to Gene <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
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Table S5: Kullback–Leibler (KL) divergence between density curves of the five fine-mapping
strategies. ”Most Likely” and ”Least Likely” refer to INFIMA most and least likely predictions,
respectively.
Strategy Most Likely Least Likely Random Closest to Marker Closest to Gene
Most Likely 0 0.548 0.248 0.121 0.080
Least Likely 0.464 0 0.091 0.189 0.419
Random 0.236 0.098 0 0.069 0.215
Closest to Marker 0.126 0.216 0.072 0 0.085
Closest to Gene 0.091 0.478 0.220 0.082 0

Table S6: Bonferroni adjusted p-values from pairwise Chi-Squared tests comparing the distri-
bution of Hi-C scores of the five fine-mapping strategies across ten quantile bins. ”Most Likely”
and ”Least Likely” refer to INFIMA most and least likely predictions, respectively.

Strategy Most Likely Least Likely Random Closest to Marker
Least Likely 1.16e-201

Random 1.19e-86 2.61e-23
Closest to Marker 1.31e-39 3.36e-72 2.92e-12
Closest to Gene 3.08e-17 6.12e-160 1.71e-67 1.35e-17

3 Supplementary Figures
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Fig. S1: Summary of transcription start site (TSS) enrichment analysis. TSS scores are calcu-
lated by ataqv (https://github.com/ParkerLab/ataqv) and represent an enrichment metric
based on the transposition activity around the transcription start sites. Scores of 15 or larger
are deemed as ideal quality.
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Fig. S2: The full version of Fig. 2e.
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Fig. S3: Reproducibility of ATAC-seq samples. ATAC-seq read counts summarized over 200
bp bins along the genome across the male (M) and female (F) samples.
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Fig. S4: ATAC-seq signal of peaks shared by different numbers of strains. ”Before trim” and
”After trim” denote ATAC-seq signal of the master peaks before and after trimming, respectively,
as a function of the total number of strains a peak is shared by.
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Proportion of non−quiescent peaks after trimming 
Number of strains sharing a peak = 2

 Max = 0.735
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Proportion of non−quiescent peaks after trimming 
Number of strains sharing a peak = 3

 Max = 0.778
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Proportion of non−quiescent peaks after trimming 
Number of strains sharing a peak = 4

 Max = 0.798
 Min = 0.777
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Proportion of non−quiescent peaks after trimming 
Number of strains sharing a peak = 5

 Max = 0.822
 Min = 0.803
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Proportion of non−quiescent peaks after trimming 
Number of strains sharing a peak = 6

 Max = 0.832
 Min = 0.811
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Proportion of non−quiescent peaks after trimming 
Number of strains sharing a peak = 7

 Max = 0.862
 Min = 0.842
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Proportion of non−quiescent peaks after trimming 
Number of strains sharing a peak = 8

 Max = 0.954
 Min = 0.936
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Fig. S5: Trimming of the master peak list. Heatmaps depict the proportion of retained peaks
(Right columns) and the proportion of peaks in non-quiescent regions of the genome pooled
across a set of tissues (Left columns) as a function of the two trimming parameters for each
value of the number of strains sharing the peaks. The final percentiles for the tuning parameters
(MeanP, MeanSignal) were set as: (51, 45), (23, 6), (46, 1), (45, 0), (47, 0), (2, 14), (0, 0), (0,0)
for the number of strains sharing the peaks = 1, 2, 3, 4, 5, 6, 7, 8, respectively. Here, ”(MeanP,
MeanSignal) = (a, b)” corresponds to removing peaks of the master peak list with the lowest
(a-1)% of ‘MeanP’ and/or the lowest (b-1)% of ‘MeanSignal’.
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Fig. S6: The UpSet plot for 51,014 ATAC-seq master peaks after quality trimming. Bars repre-
sent the numbers of peaks that originate from different combinations of strains.
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Fig. S7: ATAC-seq signal of strain-specific peaks. ”Before trim” and ”After trim” denote ATAC-
seq signal of the master peaks before and after trimming, respectively.
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Fig. S8: Promoter/enhancer annotation of the ATAC-seq master peak list stratified by the num-
bers of strains sharing a peak (see URLs; Supplementary Notes).
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hancer. The total numbers of strain-specifc ATAC-seq peaks are displayed on top of each
bar.
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Fig. S10: Genomic location analysis of the ATAC-seq peaks with or without strain effect. Ex-
pected percentages are computed with the regioneR package using genomic location annota-
tions from ChIPseeker package.
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Fig. S11: Founder islet expressions of TFs in Fig. 3a. TFs that are not shown did not have
detectable levels of expression.
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Fig. S12: Kullback-Leibler (KL) divergence of highlighted TF motifs with footprints in Fig. 3a
to all other 744 TF motifs queried. Similarities between motifs were computed based on
both Kullback-Leibler divergence and Pearson correlation coefficient. After taking intersec-
tion among top 20 with respect to the two similarity metrics, top 10 motifs with KL less than
0.25 are labelled.
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Fig. S13: Kullback-Leibler (KL) divergence of highlighted TF motifs with footprints in Fig. 3a
to all other 744 TF motifs queried. Similarities between motifs were computed based on
both Kullback-Leibler divergence and Pearson correlation coefficient. After taking intersec-
tion among top 20 with respect to the two similarity metrics, top 10 motifs with KL less than
0.25 are labelled.
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Fig. S14: Kullback-Leibler (KL) divergence of highlighted TF motifs with footprints in Fig. 3a
to all other 744 TF motifs queried. Similarities between motifs were computed based on
both Kullback-Leibler divergence and Pearson correlation coefficient. After taking intersec-
tion among top 20 with respect to the two similarity metrics, top 10 motifs with KL less than
0.25 are labelled.
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Fig. S15: Kullback-Leibler (KL) divergence of highlighted TF motifs with footprints in Fig. 3a
to all other 744 TF motifs queried. Similarities between motifs were computed based on
both Kullback-Leibler divergence and Pearson correlation coefficient. After taking intersec-
tion among top 20 with respect to the two similarity metrics, top 10 motifs with KL less than
0.25 are labelled.
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Fig. S16: Kullback-Leibler (KL) divergence of highlighted TF motifs with footprints in Fig. 3a
to all other 744 TF motifs queried. Similarities between motifs were computed based on
both Kullback-Leibler divergence and Pearson correlation coefficient. After taking intersec-
tion among top 20 with respect to the two similarity metrics, top 10 motifs with KL less than
0.25 are labelled.
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Fig. S18: Histogram of numbers of local-ATAC-MVs within a SNP harboring differential ATAC-
seq master peak.
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Fig. S19: Genotype decomposition of local-ATAC-MVs. Groups of strains with the alternative
allele compared to reference B6 allele are displayed in the y-axis. Positive category: alternative
allele is associated with an increase in chromatin accessibility. Negative category: alternative
allele is associated with a decrease in chromatin accessibility.
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Fig. S21: Illustration of the footprint depth (FPD) calculation. y-axis represents normalized Tn5
cuts and x-axis represents distance to TF binding site in bp. La, Lb, M , Rb, and Ra represent
the average signal within regions of Left 26 - 50 bp, Left 0 - 25 bp, Middle, Right 0 - 25 bp,
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depict the average signal values within each of these regions. The footprint depth is defined
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. FPD values at individual motif locations are compared across

strains with the reference and alternative alleles of the SNP for each SNP-motif combination.
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Fig. S22: Summary of the atSNP and FPD analysis for individual footprints. Only the footprints
with pval rank < 0.05 and pval fpd < 0.05 are displayed in the figure (grey dashed lines).
The sign of x-axis: negative means ∆FPD < 0; positive means ∆FPD > 0. The sign of y-axis:
negative means motif disruption; positive means motif enhancing. Blue and red colored points
are the concordant footprints passing FDR of 0.05.
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Fig. S23: Summary of the atSNP results for individual footprints binned by motif information
content.
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Fig. S24: Heatmap of islet RNA-seq data from founder DO strains: row and columns represent
genes and samples, respectively. Transcripts of genes (rows) across samples are standardized
to [0, 1] and are clustered by using k-means with k = 10. Columns are not clustered.
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Fig. S25: Heatmap of pairwise Pearson correlations between 91 islet RNA-seq samples from
DO founder strains. Rows and columns are organized hierarchically.
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promoter-proximal (distance ≤ 3 Kb) and promoter-distal ATAC-seq peaks harboring the local-
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Fig. S27: B6 and CAST normalized ATAC-seq signals at the TSSs of eGenes that are differen-
tially expressed between the two strains. Left and right panels depict eGenes for B6 (expressed
more in B6) and CAST (expressed more in CAST), respectively.
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associated with (x-axis). Most eQTL markers are associated with only one gene.
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Fig. S31: The DO mice LD matrix of the imputed SNPs at the Adcy5 locus. Row and columns
depict the 4,616 SNPs within the 200 Kb of the eQTL marker and are ordered with respect to
their genomic coordinates. Red color indicates a perfect LD.
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Fig. S32: a. Evaluation of fine-mapping strategies by counting the number of causal local-
ATAC-MVs in each Hi-C quantile bin. b. A direct comparison between INFIMA ”Most Likely”
and ”Closest to Gene”.

40



Fig. S33: The DO mice LD matrix for the 3,671 local-ATAC-MVs from chromosome 1. Rows
and columns depict local-ATAC-MVs and are ordered with respect to their genomic coordinates.
Red color indicates a perfect LD.
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Fig. S35: An overview of the number of GWAS SNPs for 16 diabetic traits.
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Fig. S37: Number of DO-eQTL genes an ATAC-seq peak is linked to by INFIMA.
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Fig. S40: PDX1 orthologous atSNP results. Left: human GWAS SNPs. Right: mouse local-
ATAC-MVs.
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Fig. S41: PDX1 orthologous atSNP results. Left: human GWAS SNPs. Right: mouse local-
ATAC-MVs.
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Fig. S42: PDX1 orthologous atSNP results. Left: human GWAS SNPs. Right: mouse local-
ATAC-MVs.
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Fig. S43: PDX1 orthologous atSNP results. Left: human GWAS SNPs. Right: mouse local-
ATAC-MVs.
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Fig. S44: PDX1 orthologous atSNP results. Left: human GWAS SNPs. Right: mouse local-
ATAC-MVs.
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Fig. S45: PDX1 orthologous atSNP results. Left: human GWAS SNPs. Right: mouse local-
ATAC-MVs.
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Fig. S46: PDX1 orthologous atSNP results. Left: human GWAS SNPs. Right: mouse local-
ATAC-MVs.
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Fig. S47: PDX1 orthologous atSNP results. Left: human GWAS SNPs. Right: mouse local-
ATAC-MVs.
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Fig. S48: Promoter capture Hi-C links ADCY5 promoter to 4 GWAS SNPs which map to 1
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DO-eQTL marker (dashed line) linked to Adcy5 (promoters highlighted in translucent gray).
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Fig. S49: Promoter capture Hi-C links KCNQ1 promoter to 3 GWAS SNPs which map to 2
mouse local-ATAC-MV with INFIMA predicted susceptibility gene Kcnq1. Top: human genome
depictions of TH promoter or distal GWAS SNPs (translucent green) interactions with the
KCNQ1 promoter (translucent gray), together with the human ATAC-seq peaks. Bottom: mouse
genome depictions of ATAC-seq signal for local-ATAC-MVs (translucent red) where INFIMA
fine-maps DO-eQTL marker (dashed line) linked to Kcnq1 (promoters highlighted in translu-
cent gray).
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Fig. S50: Comparison of genomic location annotations between human GWAS SNPs and the
orthologous mouse genetic variants. Left: numbers of mapped GWAS SNPs within intronic,
distal, promoter, exonic, UTR and downstream genomic locations. Right: Barplots of the local-
ATAC-MVs mapping to the intronic, distal and promoter groups of GWAS SNPs, highlighting
marked conservation of genomic location types. Note that the mapping here is without the 10
Kb distance constraint in Fig. 8a. The level of genomic compartment conservation declines
when removing the distance constraint.
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