SUPPORTING INFORMATION FOR PUBLICATION

Bio-Inspired Amphoteric Polymer for Triggered-Release Drug Delivery on

Breast Cancer Cells Based on Metal Coordination.

Pin-Chun Chen^{a, b}, James J. Lai^c, Chun-Jen Huang^{a, b, d, e, *}

^a Department of Chemical & Materials Engineering, National Central University,

Jhong-Li, Taoyuan 320, Taiwan.

^b Department of Biomedical Sciences and Engineering, National Central University,

Jhong-Li, Taoyuan 320, Taiwan.

^c Department of Bioengineering, University of Washington, Seattle, Washington

98195, USA.

^d R&D Center for Membrane Technology, Chung Yuan Christian University, 200

Chung Pei Rd., Chung-Li City 32023, Taiwan.

^e NCU-DSM Research Center, National Central University, Jhong-Li, Taoyuan 320,

Taiwan.

* Corresponding author. E-mail: cjhuang@ncu.edu.tw (C.-J. H.)

Abbreviation	Term	
NCP	nanoscale coordination polymer	
Cur@NCP	curcumin-loaded nanoscale coordination polymer	
PMPC	poly(2-methacryloyloxyethyl phosphorylcholine)	
PserA	poly(serinyl acrylate)	
RAFT	reversible addition-fragmentation chain transfer	
DFO	deferoxamine mesylate	
CPD	4-cyano-4-(phenylcarbonothioylthio) pentanoicacid	
ACVA	4,4′ -azobis (4-cyanovaleric acid)	
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-	
	tetrazolium bromide	
M _n	polymer molecular weight	
Đ	polydispersity index	

Table S1. Abbreviations

Figure S1. (A) Calibration curve of DFO-Fe³⁺ complex in water using absorbance at 430 nm. The data was fit with the equation A = 0.0027C + 1.74e-5 ($r^2 = 0.999$), where A is the absorbance and C is the DFO-Fe³⁺ complex concentration. (B) Calibration curve of curcumin in acetone using absorbance at 419.6 nm. The data was fit with the equation A = 0.132C + 1.86e-3 ($r^2 = 0.999$), where A is the absorbance and C is the curcumin concentration.

Figure S2. (A) Drug release profiles of Cur@NCPs with addition of DFO (red) and without DFO (black). The equation for curve fitting was $C_t/C_0=C_{0.5}+A^*exp(-k^*t)$, where C_t is curcumin concentration at time t, C_0 is the initial curcumin concentration, $C_{0.5}$ is curcumin concentration at 0.5 h, A is the constant of integration, and k is the release rate constant. (B) Calibration curve of curcumin in PBS containing 0.5% Tween 80 based on absorbance at 425 nm. The data was fit with the equation $A = 0.0679C - 0.029 (r^2 = 0.994)$, where A is the absorbance and C is the curcumin concentration.

Statistics	Released curcumin from Cur@NCP	Released curcumin from Cur@NCP+DFO
C _{0.5}	1.18	13.7
Α	2.33	0.54
k	0.17	0.26
r ²	0.99	0.96

Table S2. Statistics for curves shown in Figure S2A.

Figure S3. ¹H NMR spectra of (A) serA, (B) PMPC₅₅, and (C) PMPC₅₅-*b*-PserA₂₅ in deionized water.

Figure S4. GPC chromatograms for PMPC₅₅ (black) and PMPC₅₅-*b*-PserA₂₅ (red). Polymer molecular weights (M_n , M_w) and polydispersity indices (\oplus) were determined by GPC in 0.15 M NaCl eluent at a flow rate of 0.6 mL/min.

Figure S5. (A) DLS measurement of PMPC in the absence of Fe^{3+} (black) and in the presence of Fe^{3+} (red). (B)UV-vis spectra of $FeCl_{3(aq)}$ (Na₂CO₃ added, and the precipitate filtered), PMPC, and PMPC with FeCl₃ (molar ratio of Fe^{3+} to MPC = 3) in PBS.

Figure S6. UV-vis spectra of $FeCl_3$ in deionized water, DFO in PBS, and DFO-Fe³⁺ complex in PBS.

Figure S7. Cell viability of MDA-MB-231 breast cancer cells treated with free curcumin.