
Supplement 1 for “A modular framework for early-phase seamless

oncology trials”

S1 Theoretical introduction to Bayesian isotonic re-

gression model

Let the binary variable Yi, i = 1, . . . , n indicate dose-limiting toxicity (DLT), where Yi = 1 in-

dicates the occurrence of DLT and Yi = 0 indicates no DLT. Let Xi indicate a categorical dose

level taking one of K possible values. The parameter vector of interest is ξ = {ξ1, . . . , ξK}

or, more compactly, {ξj}Kj=1, where

ξj = Pr(Yi = 1|Xi = dose level j). (1)

A monotonic non-decreasing assumption implies that the set of increments {ξj − ξj−1}K+1
j=1 ,

where ξ0 ≡ 0 and ξK+1 ≡ 1, forms a simplex.

Now, let α = {αj}K+1
j=1 be a set of non-negative parameters, with at least one being strictly

positive, satisfying ξj − ξj−1 = αj/
∑K+1

k=1 αk, j = 1, . . . , K. This is equivalent to

ξj =

j∑
k=1

αk/
K+1∑
k=1

αk, j = 1, . . . , K. (2)

The partial sum
∑j

k=1 αk is non-decreasing in j, ensuring that ξj is similarly non-decreasing,

as required.

The Bayesian isotonic regression option provided in modules 2 and 4 (bayes_isoreg) uses

the model in (1) and (2) equipped with a prior on α derived from the ‘regularized horseshoe

distribution’ [1–5]. Specifically, let N+(0, σ2) be the half-normal distribution with standard

deviation σ and its density function proportional to exp{−x/(2σ2)}I(x ≥ 0). Let C+(0, 1)
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be the standard half-Cauchy distribution with the density function proportional to (1 +

x2)−1I(x ≥ 0). Let c be a positive constant. For j = 1, . . . , K + 1,

[αj | τ, λj ] ∼ N+

(
0,

1

1 + 1/[c2τ 2λ2j ]

)
, λj ∼ C+(0, 1), τ ∼ C+(0, 1). (3)

The half-horseshoe distribution serves as a hierarchical shrinkage prior, in which the global

shrinkage parameter τ controls overall shrinkage to zero, and the local shrinkage parameters

λj can be large to offset this overall shrinkage as warranted by the data. The value of c in

(3) is a user-supplied hyperparameter and discussed in further detail below.

The constant value 1 that is added to 1/[c2τ 2λ2j ] in the denominator of the half-normal

standard deviation expression in (3) serves a two-fold purpose. First, it dominates the

standard deviation expression when c2τ 2λ2j is very large, making the standard deviation

approximately equal to 1 in such cases and thinning the heavy tails that would otherwise

result if no constant were added [5]. Second, adding a constant identifies the parameters c

and τ . If this constant was not added, the standard deviation would reduce to cτλj, and the

expression cτ would cancel out in the numerator and denominator of equation (2). Piironen

and Vehtari [4] proposed a more general recipe by adding 1/d2 instead of a constant 1, with

d either a fixed constant or a hyperparameter having a hyperprior of its own. However,

in our unique extension of the horseshoe prior, d and c cannot both independently vary,

again, due to relative nature of each αk in equation (2). Thus, we set d = 1. Also different

from previous versions of the horseshoe prior, our formulation places a half -normal prior on

each αj, with support only on the positive half of the real line, to match the context of the

problem. To summarize, these modifications are unique to our application of the horseshoe

prior to this problem and arise from the relative relationship of the scale parameters.

Our implementation of the horseshoe prior in equations (3) also has only one fixed value,

namely c, that can be user-supplied or selected. The choice of c codifies an implicit assump-

tion about the anticipated number of non-zero elements in α [4], which, in our case, is the
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number of non-zero jumps in the dose-toxicity curve, with larger values corresponding to

anticipating more non-zero elements. The original horseshoe prior used c = 1, but Piironen

and Vehtari [4] argue that for most applications c � 1 is a much more appropriate choice.

In the simulation study, we always used c = 10−7.

Figure 1 illustrates this Bayesian isotonic regression model fit against six different ex-

emplar datasets. The black circles in each panel are the data. Specifically, they are∑n
i=1 (Yi × I(Xi = j)) /

∑n
i=1 I(Xi = j), i.e. the observed proportion of outcomes per dose

level, plotted against j. Datasets in the left column have n = 5 observations per dose level,

and datasets in the right column have n = 25. The types of dataset range proportions that

increase at a constant rate across dose levels (top row), proportions that don’t increase at all

(middle row), and proportions that suddenly increase between dose levels 3 and 4 (bottom

row). The solid line indicates the posterior medians of each ξj, which is defined in (1), and

the transparent ribbon denotes the 80% pointwise credible intervals for each ξj.
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Figure S1: Comparison of fitted Bayesian isotonic regression curves and 80% posterior credible intervals
(lines and shaded ribbons) and observed outcomes (single black circles) for six different exemplar datasets
defined by sample size per dose level (n = 5 observations per dose level in left column; n = 25 observations
per dose level in right column) and three types of data set (constant increase in top row; no increase in
middle row; sudden increase in bottom row)
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S2 Additional figure from trial simulator

Figure S2: Distribution of dose assignments at subjects 10, 30, and 50 (based on 2000 simulations)
for three 3+3-type designs (out of six total) across ten scenarios. The right-hand column gives the true
generating toxicity and efficacy curves. Each row corresponds to a different scenario, and consecutive pairs
of scenarios (1&2, 3&4, etc.) are linked in that they share a common dose-toxicity curve but differ in the
dose-response curve. The proportion(s) corresponding to the preferred dose level are bordered by a solid
box. If a trial has stopped for futility or safety, the patient was treated as having been assigned to dose level
‘0’. Figure 4 in the main manuscript gives the same results for the three CRM-type designs.
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