Optimized protocol for the extraction of RNA and DNA from frozen whole blood sample stored in a single EDTA tube

Hirotaka Yamagata^{1,2*}, Ayumi Kobayashi¹, Ryouichi Tsunedomi³, Tomoe Seki^{1,2}, Masaaki Kobayashi¹, Kosuke Hagiwara¹, Chong Chen¹, Shusaku Uchida^{2,4}, Go Okada⁵, Manabu Fuchikami⁵, Toshiharu Kamishikiryo⁵, Jun-ichi Iga⁶, Shusuke Numata⁷, Makoto Kinoshita⁷, Takahiro A. Kato⁸, Ryota Hashimoto⁹, Hiroaki Nagano³, Yasumasa Okamoto⁵, Shuichi Ueno⁶, Tetsuro Ohmori⁷, & Shin Nakagawa¹

1 Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan.

2 Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

3 Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan.

4 SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.

5 Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.

6 Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.

7 Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, 3-18-5 Kuramoto-cho, Tokushima, 770-8503, Japan.

8 Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan.

9 Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8553, Japan.

*Correspondence to:

Hirotaka Yamagata, M.D., Ph.D.

Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan

Tel: +81 836 22 2255; Fax: +81 836 22 2253; e-mail: gata@yamaguchi-u.ac.jp

Supplementary information

Supplementary Table S1. Characteristics of RNA purified from peripheral whole blood sample under different conditions after short-term storage (Participants1). Data are shown as mean ± standard deviation. A260/280, absorbance ratio at 260 and 280 nm; A260/230, absorbance ratio at 260 and 230 nm; RIN, RNA integrity number; 28S/18S, 28S-to-18S rRNA ratio.

Supplementary Table S2. Characteristics of RNA purified from peripheral whole blood sample after long-term storage (Participants2). A260/280, absorbance ratio at 260 and 280 nm; A260/230, absorbance ratio at 260 and 230 nm; RIN, RNA integrity number; 28S/18S, 28S-to-18S rRNA ratio.

Supplementary Table S3. Characteristics of DNA purified from peripheral whole blood sample after long-term storage (Participants2). A260/280, absorbance ratio at 260 and 280 nm; A260/230, absorbance ratio at 260 and 230 nm.

Supplementary Table S4. Characteristics of RNA purified from peripheral whole blood sample (Participants3). RIN, RNA integrity number.

Supplementary Table S5. Expression of housekeeping genes in long-term storage samples (Participants2, n = 30) and control samples of fresh blood (Participants3, n = 10). SD, standard deviation; CV, coefficient of variation.

Supplementary Table S6. Demographic characteristics of the participants. Age is shown as mean \pm standard deviation.

Supplementary Table S7. Primer sequences used in this study and amplicon lengths.

Supplementary Table S8. Sequences of synthetic DNA.

Supplementary Table S9. Summary of statistical analyses.

Supplementary Fig. S1 Typical electropherograms of purified RNA. Thawing in a water bath increased the RNA degradation in samples P-37 and N-37 of participants 3 and 5.

Supplementary Fig. S2 Gel images of DNA. Agarose gel (1%) imaging was performed using ATTO printgraph and ATTO imageSaver AE-6905C. Five hundred nano grams of DNA was loaded in each lane. Five microliters of GeneRuler 100-bp Plus DNA Ladder (Thermo Fisher Scientific) was used for loading controls and markers.

Supplementary Fig. S3 Gel images of PCR products of GAPDH. Agarose gel (1.2%) imaging was performed using ATTO printgraph and ATTO imageSaver AE-6905C. Three microliters of GeneRuler 100-bp Plus DNA Ladder (Thermo Fisher Scientific) was used for loading controls and markers.

Supplementary Fig. S4 Gel images of PCR products of RPS18. Agarose gel (1.2%) imaging was performed using ATTO printgraph and ATTO imageSaver AE-6905C. Three microliters of GeneRuler 100-bp Plus DNA Ladder (Thermo Fisher Scientific) was used for loading controls and markers.

protocol	ID	time for thawing (minutes)	A260/A280	A260/A230	yeild (ug/mL) by A260	yeild (ug/mL) by Qubit	RIN	28S/18S
	1	_	2.09	1.87	2.03	2.13	8.4	1.3
	2	_	2.14	1.71	0.81	0.89	7.9	1.9
	3	_	2.14	1.51	1.91	2.00	6.9	1.8
P-Con	4	_	2.16	1.58	0.84	0.98	7.7	1.7
	5	_	2.07	2.08	2.11	1.73	7.3	2.0
	6	_	2.12	2.02	2.02	2.22	8	1.9
	7	_	2.11	1.56	0.86	0.94	9.2	1.6
	1	4.7	2.17	1.76	1.36	1.48	6.7	1.5
	2	4.7	2.22	1.52	0.90	1.05	6.4	1.4
	3	5.2	2.42	0.24	0.91	0.92	4.2	1.0
P-37	4	5.2	3.63	0.07	0.27	0.16	2.1	0.4
	5	5.3	2.05	1.48	0.73	0.79	4.5	1.1
	6	5.3	2.11	1.89	1.08	1.16	6	1.3
	7	5.3	2.15	1.32	0.60	0.65	6.1	1.0
	1	18.0	2.2	1.44	1.22	1.34	7	1.5
	2	18.0	2.17	1.89	1.68	1.77	7.5	1.8
	3	16.8	2.16	1.95	2.02	3.59	7.2	0.9
P-AI	4	16.8	2.22	1.45	0.71	0.77	5.3	1.4
	5	18.3	2.22	1.75	1.24	1.35	6.6	1.1
	6	18.3	2.18	1.94	1.19	1.18	6.8	1.1
	7	18.3	2.27	1.95	0.85	0.95	6.1	1.3
	1	4.5	2.04	1.64	6.93	6.30	6.4	0.8
	2	4.5	2.01	1.59	5.88	5.40	6.4	0.8
	3	5.3	2	1.62	6.93	7.06	4.7	0.8
N-37	4	5.3	1.42	0.69	1.04	0.43	4.2	1.6
	5	4.8	2	1.39	5.25	4.73	4.6	0.9
	6	4.8	2.08	1.79	8.26	8.04	6.2	0.8
	7	4.8	1.98	1.32	6.52	5.82	5.2	0.7
	1	16.5	2.01	1.71	7.50	6.47	6.5	0.9
	2	16.5	2.02	1.5	6.45	5.54	6.2	0.9
	3	17.7	2.01	1.72	8.36	8.18	6.2	0.6
N-AI	4	17.7	1.81	1.23	2.73	2.60	3.1	1.0
	5	18.5	2	1.44	6.05	5.60	5.6	1.0
	6	18.5	2	1.47	9.02	7.87	6.7	0.9
	7	18.5	1.96	1.36	6.73	5.80	6.3	0.6
	1	120	2.05	1.68	7.17	6.58	6.9	1.3
	2	120	2.03	1.5	5.70	5.35	6.5	0.9
	3	120	2.04	1.7	8.41	8.12	6.6	1.1
N-Ice	4	120	1.64	0.82	1.54	0.87	2.6	1.8
	5	120	2.02	1.42	6.55	5.54	5.8	1.0
	6	120	2.11	1.79	8.06	7.36	6.5	0.7
	7	120	2.05	1.54	6.20	5.32	5.8	0.9

ID	sex	age	A260/A280	A260/A230	Yield (μ g/ml)	RIN	28S/18S	Preservation period (years)
Dep007	F	25	2.01	1.49	6.67	5.9	1	8.5
Dep008	F	28	2.09	1.67	8.43	5.8	1.3	8.5
Dep029	Μ	39	2.08	1.62	9.58	5.4	1.4	8.2
Dep053	F	36	2.10	1.45	6.46	5.9	1	7.9
Dep060	F	39	2.01	1.58	6.95	5.6	1.4	7.8
Dep064	Μ	51	2.05	1.47	5.13	5.1	1.3	7.7
Dep077	М	44	2.08	1.94	11.90	6	0.9	7.6
Dep085	F	42	2.06	1.33	8.50	5.8	1.5	7.5
Dep093	Μ	41	2.10	1.83	13.96	6.4	1.7	7.4
Dep103	F	28	2.02	1.72	9.50	6.6	1.1	7.3
Dep130	Μ	47	2.05	1.77	8.00	5.3	1.4	6.7
Dep135	F	46	2.09	1.86	10.60	4.7	0.9	6.6
Dep137	М	33	2.06	1.96	16.98	4.7	0.7	6.5
Dep140	F	33	2.04	1.76	10.19	7	1.5	6.5
Dep142	Μ	55	2.05	1.48	9.33	7.1	1.2	6.5
Dep147	F	27	2.05	1.65	6.82	5.6	1.1	6.4
Dep153	F	41	2.03	1.70	8.71	7	1.3	6.3
Dep166	F	41	2.07	1.22	6.98	6.7	0.6	6.0
Dep169	F	27	2.06	1.40	5.42	5.3	1	6.0
Dep172	М	29	2.10	1.92	15.59	5	0.9	5.9
Dep173	М	43	2.06	1.60	6.73	5.5	1	5.8
Dep176	М	40	2.06	1.86	10.46	6.5	1	5.8
Dep180	М	28	2.02	1.55	6.35	7.1	1.8	5.6
Dep183	F	43	2.05	1.78	10.64	4.9	0.9	5.5
Dep211	F	39	2.05	1.45	7.84	5.7	1.1	5.1
Dep215	М	34	2.04	1.76	10.42	7.4	1.3	5.0
FD010	F	39	2.01	1.57	6.16	7.3	1.8	2.6
FD014	Μ	25	2.10	1.61	10.97	5.5	1	2.5
FD016	F	33	2.04	1.75	8.87	6.9	1.3	2.5
FD020	М	31	2.04	1.71	7.87	4.7	1	2.4

ID	sex	age	A260/A280	A260/A230	Yield (μ g/ml)	Preservation period (years)
Dep007	F	25	1.94	2.62	14.8	8.5
Dep008	F	28	1.93	2.40	18.7	8.5
Dep029	Μ	39	1.93	2.45	24.0	8.2
Dep053	F	36	1.92	2.37	15.9	7.9
Dep060	F	39	1.94	2.47	13.8	7.8
Dep064	М	51	1.91	2.45	15.3	7.7
Dep077	М	44	1.96	2.65	15.1	7.6
Dep085	F	42	1.91	2.41	21.6	7.5
Dep093	М	41	1.93	2.45	15.3	7.4
Dep103	F	28	1.94	2.54	18.5	7.3
Dep130	Μ	47	1.95	2.64	22.7	6.7
Dep135	F	46	1.91	2.38	16.6	6.6
Dep137	М	33	1.94	2.53	17.1	6.5
Dep140	F	33	1.91	2.36	25.6	6.5
Dep142	М	55	1.93	2.45	15.4	6.5
Dep147	F	27	1.93	2.43	16.6	6.4
Dep153	F	41	1.91	2.34	25.9	6.3
Dep166	F	41	1.91	2.45	18.9	6.0
Dep169	F	27	1.90	2.39	11.8	6.0
Dep172	М	29	1.93	2.49	13.8	5.9
Dep173	Μ	43	1.90	2.49	17.3	5.8
Dep176	Μ	40	1.90	2.41	25.1	5.8
Dep180	Μ	28	1.91	2.47	14.7	5.6
Dep183	F	43	1.91	2.38	22.0	5.5
Dep211	F	39	1.90	2.45	22.2	5.1
Dep215	Μ	34	1.92	2.54	12.2	5.0
FD010	F	39	1.94	2.49	13.8	2.6
FD014	М	25	1.93	2.54	20.7	2.5
FD016	F	33	1.96	2.51	12.6	2.5
FD020	М	31	1.94	2.43	26.8	2.4

ID	sex	age	Concentration (μ g/mL)	RIN
t1	F	25	100.0	8.5
t2	М	28	79.8	8.7
t3	М	39	92.0	8.4
t4	М	36	70.4	8.7
t5	F	39	94.2	8.6
t6	М	51	108.6	8.6
t7	F	44	83.6	8.8
t8	F	42	50.2	8.3
t9	F	41	43.0	7.8
t10	M	28	80.4	7.2

	F	articipar	nts2	Pa	rticipant	s3	corrected	
genes	Mean (TPM)	SD	CV	Mean (TPM)	SD	CV	p-values of F-test	
ACTB	2530.19	596.71	0.24	774.78	596.57	0.77	2.0.E-05	
ALAS1	9.34	2.80	0.30	10.83	4.42	0.41	1.000	
ATP5F1	30.77	9.44	0.31	32.98	12.41	0.38	1.000	
B2M	4287.65	1188.12	0.28	4330.86	1372.86	0.32	1.000	
G6PD	25.33	6.37	0.25	11.81	7.29	0.62	4.4.E-03	
GAPDH	345.33	91.27	0.26	288.59	122.27	0.42	1.000	
GUSB	11.15	2.96	0.27	6.62	2.85	0.43	1.000	
HMBS	6.24	1.06	0.17	9.53	2.11	0.22	1.000	
HPRT1	6.58	2.01	0.31	5.20	2.64	0.51	0.838	
IPO8	11.89	3.60	0.30	10.00	4.53	0.45	1.000	
PGK1	81.94	22.28	0.27	136.64	55.84	0.41	1.000	
POLR2A	22.11	7.31	0.33	7.23	6.65	0.92	4.7.E-04	
PPIA	68.97	21.35	0.31	58.57	21.25	0.36	1.000	
RPL13A	898.94	240.66	0.27	535.97	184.30	0.34	1.000	
RPLP0	370.98	103.78	0.28	319.62	99.42	0.31	1.000	
RPLP1	487.64	157.09	0.32	101.21	106.98	1.06	1.8.E-05	
RPLP2	1190.20	257.46	0.22	816.98	280.86	0.34	1.000	
RPS18	1254.58	365.46	0.29	550.45	186.51	0.34	1.000	
SDHA	17.93	4.69	0.26	14.82	8.96	0.60	0.012	
TBP	5.66	1.85	0.33	3.72	1.86	0.50	1.000	
TFRC	50.36	10.93	0.22	13.30	3.85	0.29	1.000	
UBC	101.02	29.35	0.29	184.46	63.82	0.35	1.000	
YWHAZ	249.88	76.32	0.31	139.48	65.28	0.47	1.000	

	number	sex (Male/Female)	age
Participants1 for RNA (short-term strorage)	n = 7	3/4	38.6 ± 8.3
Participants1 for DNA (short-term strorage)	n = 6	2/4	37.5 ± 8.5
Participants2 (long-term strorage)	n = 30	14/16	36.9 ± 7.9
Participants3 (Fresh blood)	n = 10	5/5	53.7 ± 8.9

Table S7

	Forward	CAGCCTCAAGATCATCAGCA					
GAPDH	Reverse	TGTGGTCATGAGTCCTTCCA					
	amplicon lengths	106 base pairs					
	Forward	CACTTCTGGGGCCTTCGTG					
RPS18	Reverse	TTCTTGGACACACCCACGGT					
	amplicon lengths	80 base pairs					

GAPDH	TGTTCGTCATGGGTGTGAACCATGAGAAGTATGACAA <u>CAGCCTCAAGATCATCAGCA</u> ATGC CTCCTGCACCAACTGCTTAGCACCCCTGGCCAAGGTCATCCATGACAACTTTGGTATC G <u>TGGAAGGACTCATGACCACA</u> GTCCATGCCATCACTGCCACCCAGAAGACTGTGGATGGC CCCTCCGGGAAACTGTGGCGTGATGGCCGCGGGGGCTCTCCAGAACATCATCCCTGCCTCT ACTGGCGC
RPS18	ACAGACAGAAGGATGTAAAGGATGGAAAATACAGCCAGGTCCTAGCCAATGGTCTGGACAA CAAGCTCCGTGAAGACCTGGAGCGACTGAAGAAGATTCGGGCCCATAGAGGGCTGCGT <u>CA CTTCTGGGGCCTTCGTG</u> TCCGAGGCCAGCACACCAAGACCACTGGCCGCCGTGGCCGC <u>AC CGTGGGTGTGTCCAAGAA</u> GAAATAAGTCTGTAGGCCTTGTCTGTTAATAAATAGTTTATAT ACCTATGG

Measurement	Statistical test	Comparison	Statisitcs	P value	Figures and Tables		
		Factor1: thawing	F(1,24) = 1.11	0.302			
Yield of RNA	2-way ANOVA	Factor2: kit	F(1,24) = 53.75	1.40E-07	Fig. 2a		
Measurement Yield of RNA RIN Yield of RNA		Interaction (F1 x F2)	F(1,24) = 0.003	0.957			
Measurement Yield of RNA RIN Yield of RNA RIN		Factor1: thawing	F(1,24) = 4.53	0.044			
	2-way ANOVA	Factor2: kit	0.511	Fig. 2b			
		Interaction (F1 x F2)	F(1,24) = 1.46	0.239			
	Repeated measures ANOVA	Repeated sures ANOVA		0.011			
Y IEIO OT RINA		N-37 vs N-Al		0.014	Fig. 2c		
Yield of RNA2-way ANOVARIN2-way ANOVAYield of RNARepeated measures ANOVAYield of RNARepeated measures ANOVARINRepeated measures ANOVARINRepeated measures ANOVA	<i>post-hoc</i> test	N-37 vs N-Ice		0.588			
	N-Al vs N-Ice		0.256				
	Repeated measures ANOVA		F(2,12) = 1.16	0.107			
RIN		N-37 vs N-Al		0.310	Fig. 2d		
	<i>post-hoc</i> test	N-37 vs N-Ice					
		N-Al vs N-Ice		0.390			

	Repeated measures ANOVA		F(5,30) = 8.57	3.90E-05				
		P-Con vs P-37		0.001				
		P-Con vs P-Al		1				
		P-Con vs N-37		0.171				
		P-Con vs N-Al		1				
		P-Con vs N-Ice		0.596				
СЛОПИ		P-37 vs P-Al		0.036				
GAFDIT		P-37 vs N-37		0.495	1 lg. Ja			
	<i>post-hoc</i> test	P-37 vs N-Al		0.495				
		P-37 vs N-Ice		0.391				
		P-AI vs N-37		0.484				
		P-AI vs N-AI		1				
		P-Al vs N-Ice		1				
		N-37 vs N-Al		0.807				
		N-37 vs N-Ice		1	1			
		N-Al vs N-Ice		1				
	Repeated		F(5 30) -					
	measures		1/ 91	2.30E-07				
	ANOVA		14.51					
		P-Con vs P-37		8.90E-04				
		P-Con vs P-Al		0.260				
		P-Con vs N-37		1				
		P-Con vs N-Al		0.448				
		P-Con vs N-Ice		0.495				
RPS18		P-37 vs P-Al		0.068	Fig 3h			
111 510		P-37 vs N-37		0.027	1 lg. 50			
	<i>post-hoc</i> test	P-37 vs N-Al		0.033				
		P-37 vs N-Ice		0.052				
		P-Al vs N-37		0.156				
		P-Al vs N-Al		0.066				
		P-Al vs N-Ice		0.122				
		N-37 vs N-Al		1				
		N-37 vs N-Ice		0.540				
		N-Al vs N-Ice		1				
	Repeated		F(2 10) =					
	measures		14 20	0.001				
Yield of DNA	ANOVA		1.20		Fig 4			
	ļ ,	Q-37 vs Q-Al		0.023	1 16. 1			
	<i>post-hoc</i> test	Q-37 vs Q-lce		0.353				
		Q-Al vs Q-lce		0.021				

ACTB			F(9,29) = 10.66	2.04E-05	
ALAS1			F(9,29) = 1.85	1	
ATP5F1	F-test		F(9,29) = 1.50	1	
B2M			F(9,29) = 1.31	1	
G6PD			F(9,29) = 6.02	4.45.E-03	
GAPDH		Participants2 vs Participants3	F(9,29) = 2.57	1	
GUSB			F(9,29) = 2.62	1	
HMBS			F(9,29) = 1.70	1	
HPRT1	F-test		F(9,29) = 2.76	0.838	
IPO8			F(9,29) = 2.24	1	
PGK1			F(9,29) = 2.26	1	
POLR2A			F(9,29) = 7.75	4.73.E-04	Table S4
PPIA			F(9,29) = 1.37	1	
RPL13A			F(9,29) = 1.65	1	
RPLPO			F(9,29) = 1.24	1	
RPLP1			F(9,29) = 10.77	1.84E-05	
RPLP2			F(9,29) = 2.53	1	
RPS18			F(9,29) = 1.36	1	
SDHA			F(9,29) = 5.34	0.012	
TBP			F(9,29) = 2.32	1	
TFRC			F(9,29) = 1.78	1	
UBC			F(9,29) = 1.42	1	
YWHAZ			F(9,29) = 2.35	1	

Figure S1

Figure S2 Gel images of DNA

Figure S3 Gel images of PCR products of GAPDH

P-Con								P-37									
ID1	2	3	4	5	6	7	1	2	3	4	5	6	7				
																- 3000k - 2000 - 1500 - 1200 - 1200 - 1000 - 900 - 800 - 700 - 600 - 600 - 500 - 400 - 300 - 200 - 100	γp
			P-Al							N-3	7						
ID1	2	3	4	5	6	7	1	2	3	4	5	6	7				
			N-A						Ν	√-lce							
ID1	2	3	4	5	6	7	1	2	3	4	5	6	7				
-																	

Figure S4 Gel images of PCR products of RPS18

