1	Supplementary Information
2	Salvaging high-quality genomes of microbial species from a meromictic lake
3	using a hybrid sequencing approach
4	Yu-Hsiang Chen ^{1,2,3} , Pei-Wen Chiang ³ , Denis Yu Rogozin ^{4,5} , Andrey G.
5	Degermendzhy ⁴ , Hsiu-Hui Chiu ³ , Sen-Lin Tang ^{2,3*}
6	
7	¹ Bioinformatics Program, Taiwan International Graduate Program, National Taiwan
8	University, Taipei, Taiwan
9	² Bioinformatics Program, Institute of Information Science, Taiwan International
10	Graduate Program, Academia Sinica, Taipei, Taiwan
11	³ Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
12	⁴ Institute of Biophysics, Siberian Division of Russian Academy of Sciences,
13	Krasnoyarsk, Russia
14	⁵ Siberian Federal University, Krasnoyarsk, Russia
15	* Corresponding author
16	Biodiversity Research Center, Academia Sinica
17	E-mail: sltang@gate.sinica.edu.tw
18	Tel: +886-2-27893863
19	Fax: +886-2-27890844

44 carbohydrate active-enzymes from recovered MAGs. a. The numbers of different types of BGCs identified from recovered MAGs by antiSMASH 5.0. The description 45 of different types of secondary metabolite clusters can be found in the glossary from 46 47 antiSMASH (https://docs.antismash.secondarymetabolites.org/glossary/). **b.** The 48 numbers of different types of CAZymes identified from MAGs using dbCAN 5.0. c. 49 Distribution of protein identities between newly identified CAZymes and their best hits in the NCBI nr database. The center line represents median, box limits represent upper 50 51 and lower quartiles, whisker represents 1.5X interquartile range, and black dots represent outliers. Abbreviations in figure S1a: T3PKS, Type III Polyketide synthase 52

53 (PKS); NPRS, Non-ribosomal peptide synthetase cluster; hglE-KS, heterocyst glycolipid synthase-like PKS; LAP, Linear azol(in)e-containing peptides; NAGGN, N-54 acetylglutaminylglutamine amide; head_to_tail, Head-to-tail cyclised cluster; 55 acyl_amino_acids, N-acyl amino acid cluster; TfuA-related; TfuA-related ribosomally 56 synthesized and post-translationally modified peptides. Abbreviation in figure S2b: 57 c:GT, GlycosylTransferase; GH, Glycoside Hydrolase; CE, Carbohydrate esterase; 58 CBM, Carbohydrate-Binding Module; AA, Auxiliary Activity; PL, Polysaccharide 59 60 Lyase. 61

- 01
- 62

Supplementary Figure 2. Pruned phylogenomic tree of *Methanomassiliicoccales* and presence of methanogenesis marker genes in MAGs. The tree contains GTDB representative genomes of host-associated (highlighted in blue) and environmental clades (highlighted in green) in the Methanomassiliicoccales order. The genomes are annotated with Pfam and KEGG orthologous genes by EnrichM. The methanogenesis markers were selected according to Borrel et al (2014)^{1,2}. KO numbers and Pfam IDs are listed in Table S2. The colored tiles indicate that the gene is present. Scale bar represents changes per amino acid site. Abbreviation: mmp, methanogenesis marker protein.

٥7								
57	KEGG module							
98	Glycolysis (Embden-Meyerhof pathway)	\oplus	\oplus	\oplus	\oplus	\oplus		
	TCA cycle ·			\bigcirc	\oplus			
99	Pentose phosphate cycle -					\bigcirc		
100	Glycogen biosynthesis, glucose-1P => glycogen/starch-					Х		
100	Glyoxylate cycle -	\bigcirc	\bigcirc	Х	Х			
101	Reductive pentose phosphate cycle (Calvin cycle)	Х	Х		Х	Х	\oplus	
	Nitrogen fixation, nitrogen => ammonia ·	Х	Х	Х	Х	Х		
102	Assimilatory nitrate reduction, nitrate => ammonia ·	Х	Х		Х	\oplus	X	presence
102	Dissimilatory nitrate reduction, nitrate => ammonia -	Х	Х	Х	Х	\oplus	X	1 block missing
103	Nitrification, ammonia => nitrite ·	X	X	Х	X	Х	\oplus	2 blocks missing
104	Assimilatory sulfate reduction, sulfate => H2S -	X	0		\oplus		\oplus	incomplete
104	Dissimilatory sulfate reduction, sulfate => H2S	Dissimilatory sulfate reduction, sulfate => H2S X X X X						
105	Thiosulfate oxidation by SOX complex, thiosulfate => sulfate -	X	X	X	X	X		Bin_ID
	Photosystem II-	X	X		X	X	X	M30B1
106		X	X		X	X	X	M30B2
107	Anoxygenic photosystem II	$\hat{\mathbf{v}}$	$\hat{\mathbf{v}}$	$\hat{\mathbf{v}}$		$\hat{\mathbf{v}}$		M30B3
107	NADR. quinone oxidoreductase, chlorenlasts and evanobacteria	$\hat{\mathbf{v}}$	$\hat{\mathbf{v}}$			$\hat{\mathbf{v}}$		M30B5
108	Succinate dehydrogenase, prokanotes	Ŷ	Ŷ	×		â		M50B4
		Ŷ	Ŷ		X	X	×	
109	Cytochrome bc1 complex respiratory unit	Ŷ	X	X	â	Â		
110	Cytochrome c oxidase, prokarvotes	x	x	ê	ŏ		X	
110	Cytochrome bd ubiquinol oxidase	x	X	X	X	X	Ô	
111	Cytochrome o ubiquinol oxidase			X	X		X	
	Cytochrome c oxidase, cbb3-type	X	X	X		Ŏ	X	
112	F-type ATPase, prokaryotes and chloroplasts ·	Х	Х					
112	L	-0B1	20B2		OB5	-0 ^{B6}	.50BA	•
112		N ₂	N/S-	War	Wa	W ₂	War	
114								

Supplementary Figure 3. Summary of metabolic features in the newly recoveredcomplete MAGs.

117 The genomes are annotated with KEGG orthologues, and the completeness of the 118 metabolic pathways is determined by EnrichM. The KEGG module numbers of each 119 metabolic pathway are listed in Table S2. Each KEGG module is made of multiple 120 functional units (blocks). Missing blocks represents missing gene(s) that form a 121 functional unit. Incomplete modules indicate that more than two blocks are missing. 122

		3.0m	5.0m	5.5m
		Nanopore re	eads	
Mean read lengt	h	2,063	1,000	7,006
Mean read quali	ty	10.6	11.1	11.6
Median read len	gth	761	472	3,669
Median read qua	ality	11.1	11.3	11.9
Number of read	s	6,705,136	12,569,375	683,928
Read length N50	0	5,578	1,775	13,545
Total bases		13,83 Gbp	12,57 Gbp	4,79 Gbp
Top 5 longest re	ads :			
	1.	150,131	133,860	133,934
	2.	132,395	130,047	120,861
	3.	128,047	128,699	114,105
	4.	121,232	123,796	114,062
	5.	120,736	123,662	112,369
		Illumina rea	ads	
Total reads (F+F	र)	486,655,848	579,511,508	509,594,810
Sequence length	n (bp)	45-100	45-100	45-100
Mean read lengt	th (F, R)	86, 91	91, 90	90, 93
Total bases		43.27 gbp	52.53 gbp	46.74 gbp
Q20 bases		42.12 gbp	52.53 gbp	45.82 gbp
O30 bases		38.06 gbp	52.53 gbp	42.41 gbp

156 Supplementary Table 1. Statistics on Nanopore and Illumina reads

Genes	Proteins/ functions	KEGG/TIGRFAMs #
Methanoge	enesis	
mcrA	Methyl-CoM reductase subunit A	K00399
mcrA2	Methyl-CoM reductase subunit A2	K00400
mcrB	Methyl-CoM reductase subunit beta	K00401
mcrG	Methyl-CoM reductase subunit G	K00402
mmp1	Methanogenesis marker protein 1	TIGR03266
mmp2	Methanogenesis marker protein 2	TIGR03267
mmp3	Methanogenesis marker protein 3	TIGR03268
mmp4	Methanogenesis marker protein 4	TIGR03270
mmp5	Methanogenesis marker protein 5	TIGR03271
ттрб	Methanogenesis marker protein 6	TIGR03272
mmp7	Methanogenesis marker protein 7	TIGR03274
mmp8	Methanogenesis marker protein 8	TIGR03275
mmp9	Methanogenesis marker protein 9	TIGR03277
mmp10	Methanogenesis marker protein 10	
	(putative methyl coenzyme M reductase-arginine	
	methyltransferase)	TIGR03278
mmp11	Methanogenesis marker protein 11	TIGR03280
mmp12	Methanogenesis marker protein 12	TIGR03281
mmp13	Methanogenesis marker protein 13	TIGR03282
mmp14	Methanogenesis marker protein 14	TIGR03285
mmp15	Methanogenesis marker protein 15	TIGR03286
mmp16	Methanogenesis marker protein 16	TIGR03287
mmp17	Methanogenesis marker protein 17	TIGR03291
Metabolic	pathways	
	Glycolysis (Embden-Meyerhof pathway)	M00001
	TCA cycle	M00009
	Pentose phosphate cycle	M00004
	Glycogen biosynthesis	M00854
	Glyoxylate cycle	M00012

166 Supplementary Table 2. KEGG Orthology and Pfam families used in this study

	Reductive pentose phosphate cycle	M00165
	Nitrogen fixation	M00175
	Assimilatory nitrate reduction	M00531
	Dissimilatory nitrate reduction	M00530
	Nitrification, ammonia => nitrite	M00528
	Assimilatory sulfate reduction, sulfate => H2S	M00176
	Dissimilatory sulfate reduction, sulfate => H2S	M00596
	Thiosulfate oxidation by SOX complex	M00595
	Photosystem II	M00161
	Photosystem I	M00161
	Anoxygenic photosystem II	M00597
	NADH:quinone oxidoreductase, prokaryotes	M00144
	NAD(P)H:quinone oxidoreductase, chloroplasts and	M00145
	cyanobacteria	
	Succinate dehydrogenase, prokaryotes	M00149
	Cytochrome b6f complex	M00162
	Cytochrome bc1 complex respiratory unit	M00151
	Cytochrome c oxidase, prokaryotes	M00155
	Cytochrome bd ubiquinol oxidase	M00153
	Cytochrome o ubiquinol oxidase	M00417
	Cytochrome c oxidase, cbb3-type	M00156
Flagellum		
flhG, fleN	flagellar biosynthesis protein FlhG	K04562
flhB2	flagellar biosynthesis protein	K04061
flgA	flagella basal body P-ring formation protein	K02386
flgB	flagellar basal-body rod protein FlgB	K02387
flgC	flagellar basal-body rod protein FlgC	K02388
flgD	flagellar basal-body rod modification protein	K02389
flgE	flagellar hook protein FlgE	K02390
flgF	flagellar basal-body rod protein FlgF	K02391
flgG	flagellar basal-body rod protein FlgG	K02392
flgH	flagellar L-ring protein precursor FlgH	K02393

flgI	flagellar P-ring protein precursor FlgI	K02394
flgJ	flagellar protein FlgJ	K02395
flgK	flagellar hook-associated protein 1 FlgK	K02396
flgL	flagellar hook-associated protein 3 FlgL	K02397
flgM	negative regulator of flagellin synthesis FlgM	K02398
flgN	flagella synthesis protein FlgN	K02399
flhA	flagellar biosynthesis protein FlhA	K02400
flhB	flagellar biosynthetic protein FlhB	K02401
flhC	flagellar transcriptional activator FlhC	K02402
flhD	flagellar transcriptional activator FlhD	K02403
flhF	flagellar biosynthesis protein FlhF	K02404
fliA	RNA polymerase sigma factor for flagellar operon	K02405
fliC	flagellin	K02406
fliD	flagellar hook-associated protein 2	K02407
fliE	flagellar hook-basal body complex protein FliE	K02408
fliF	flagellar M-ring protein FliF	K02409
fliG	flagellar motor switch protein FliG	K02410
fliH	flagellar assembly protein FliH	K02411
fliI	flagellum-specific ATP synthase [EC:3.6.3.14]	K02412
fliJ	flagellar FliJ protein	K02413
fliK	flagellar hook-length control protein FliK	K02414
fliL	flagellar FliL protein	K02415
fliM	flagellar motor switch protein FliM	K02416
fliNY, fliN	flagellar motor switch protein FliN/FliY	K02417
fliOZ, fliO	flagellar protein FliO/FliZ	K02418
fliP	flagellar biosynthetic protein FliP	K02419
fliQ	flagellar biosynthetic protein FliQ	K02420
fliR	flagellar biosynthetic protein FliR	K02421
fliS	flagellar protein FliS	K02422
fliT	flagellar protein FliT	K02423
flbT	flagellar protein FlbT	K06601
flaF	flagellar protein FlaF	K06602

flaG	flagellar protein FlaG	K06603
flaI	flagellar rod protein FlaI	K06604
Chemotaxis		
motA	chemotaxis protein MotA	K02556
motB	chemotaxis protein MotB	K02557
тср	methyl-accepting chemotaxis protein	K03406
cheA	two-component system, chemotaxis family, CheA	K03407
	[EC:2.7.13.3]	
cheW	purine-binding chemotaxis protein CheW	K03408
cheX	chemotaxis protein CheX	K03409
cheC	chemotaxis protein CheC	K03410
cheD	chemotaxis protein CheD [EC:3.5.1.44]	K03411
cheB	two-component system, chemotaxis family, response	K03412
	regulator CheB [EC:3.1.1.61]	
cheY	two-component system, chemotaxis family, response	K03413
	regulator CheY	
cheZ	chemotaxis protein CheZ	K03414
cheV	two-component system, chemotaxis family, response	K03415
	regulator CheV	
Pilus		
pilA	type IV pilus assembly protein PilA	K02650
flp, pilA	pilus assembly protein Flp/PilA	K02651
pilB	type IV pilus assembly protein PilB	K02652
pilC	type IV pilus assembly protein PilC	K02653
pilD, pppA	leader peptidase (prepilin peptidase) / N-	K02654
	methyltransferase [EC:3.4.23.43 2.1.1]	
pilE	type IV pilus assembly protein PilE	K02655
pilF	type IV pilus assembly protein PilF	K02656
pilG	twitching motility two-component system response	K02657
	regulator PilG	
pilH	twitching motility two-component system response	K02658
	regulator PilH	

pilI	twitching motility protein Pill	K02659
pilJ	twitching motility protein PilJ	K02660
pilK	type IV pilus assembly protein PilK	K02661
pilM	type IV pilus assembly protein PilM	K02662
pilN	type IV pilus assembly protein PilN	K02663
pilO	type IV pilus assembly protein PilO	K02664
pilP	type IV pilus assembly protein PilP	K02665
pilQ	type IV pilus assembly protein PilQ	K02666
pilR, pehR	two-component system, NtrC family, response	K02667
	regulator PilR	
pilS, pehS	two-component system, NtrC family, sensor histidine	K02668
	kinase PilS [EC:2.7.13.3]	
pilT	twitching motility protein PilT	K02669
pilU	twitching motility protein PilU	K02670
pilV	type IV pilus assembly protein PilV	K02671
pilW	type IV pilus assembly protein PilW	K02672
pilX	type IV pilus assembly protein PilX	K02673
pilYl	type IV pilus assembly protein PilY1	K02674
pilY2	type IV pilus assembly protein PilY2	K02675
pilZ	type IV pilus assembly protein PilZ	K02676
nitrate reduct	tase	
napA	nitrate reductase	K02567
nirB	nitrite reductase	K00362
nirD	nitrite reductase (NADH) small subunit	K00363
Urease and u	rea transporter	
ureA	urease subunit gamma	K01430
ureB	urease subunit beta	K01429
ureC	urease subunit alpha	K01428
urtA	urea transport system substrate-binding protein	K11959
urtB	urea transport system permease protein	K11960
urtC	urea transport system permease protein	K11961
urtD	urea transport system ATP-binding protein	K11962

<i>urtE</i> urea transport system ATP-binding protein		K11963
Others		
formamidase	formamidase	K01455

170 Supplementary References

171	1	Borrel, G. et al. Comparative genomics highlights the unique biology of
173		Methanomassiliicoccales, a Thermoplasmatales-related seventh order of
174		methanogenic archaea that encodes pyrrolysine. Bmc Genomics 15, doi:Artn
175		679
176	10.118	6/1471-2164-15-679 (2014).
177	2	Zinke, L. A. et al. Evidence for non-methanogenic metabolisms in globally
178		distributed archaeal clades basal to the Methanomassiliicoccales. Environ
179		Microbiol 23 , doi:10.1111/1462-2920.15316 (2021).
180	3	Salcher, M. M., Schaefle, D., Kaspar, M., Neuenschwander, S. M. & Ghai, R.
181		Evolution in action: habitat transition from sediment to the pelagial leads to
182		genome streamlining in Methylophilaceae. Isme Journal 13, 2764-2777,
183		doi:10.1038/s41396-019-0471-3 (2019).
184		