Supporting Information

Marinoterpins A–C, Rare Linear Merosesterterpenoids from Marine-Derived Actinomycete Bacteria of the Family Streptomycetaceae

Min Cheol Kim,[†] Jaclyn M. Winter,^{*,‡} Ratnakar N. Asolkar,[†] Chollaratt Boonlarppradab,[†] Reiko Cullum,[†] and William Fenical^{*,†,§}

[†] Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA,

‡ Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA,

§ Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, 92093, USA

Corresponding Authors

William Fenical wfenical@ucsd.edu Phone: 858-534-2133

Jaclyn M. Winter Jaclyn.winter@utah.edu Phone: 801-585-7117

Table of Contents

Table S1. 2D COSY, HMBC, and ROESY NMR data of marinoterpin A (1) (CD ₃ OD, 500 MHz)	S3
Table S2. 2D COSY, HMBC, and NOESY NMR data of marinoterpin B (2) (CD ₃ OD, 500 MHz)	S4
Table S3. 2D COSY, HMBC, and ROESY NMR data of marinoterpin C (3) (CD ₃ OD, 500 MHz)	S5
Figure S1. ¹ H NMR spectrum of marinoterpin A (1) (500 MHz) in CD ₃ OD	S6
Figure S2. ¹³ C NMR spectrum of marinoterpin A (1) (125 MHz) in CD ₃ OD	S7
Figure S3. ¹ H- ¹ H COSY spectrum of marinoterpin A (1) (500 MHz) in CD ₃ OD	S8
Figure S4. HSQC spectrum of marinoterpin A (1) (500 MHz) in CD ₃ OD	S9
Figure S5. HMBC spectrum of marinoterpin A (1) (500 MHz) in CD ₃ OD	S10
Figure S6. ROESY spectrum of marinoterpin A (1) (500 MHz) in CD ₃ OD	S11
Figure S7. Homo 2D J-resolved ¹ H NMR spectrum of marinoterpin A (1) (500 MHz) in CD ₃ OD	S12
Figure S8. HR-ESI-TOFMS spectrum of marinoterpin A (1)	S13
Figure S9. ¹ H NMR spectrum of marinoterpin B (2) (500 MHz) in CD ₃ OD	S14
Figure S10. ¹³ C NMR spectrum of marinoterpin B (2) (125 MHz) in CD ₃ OD	S15
Figure S11. ¹ H- ¹ H COSY NMR spectrum of marinoterpin B (2) (500 MHz) in CD ₃ OD	S16
Figure S12. HMQC NMR spectrum of marinoterpin B (2) (500 MHz) in CD ₃ OD	S17
Figure S13. HMBC NMR Spectrum of marinoterpin B (2) (500 MHz) in CD ₃ OD	S18
Figure S14. Mass spectrum of marinoterpin B (2)	S19
Figure S15. ¹ H NMR Spectrum of marinoterpin C (3) (500 MHz) in CD ₃ OD	S20
Figure S16. ¹³ C NMR spectrum of marinoterpin C (3) (125 MHz) in CD ₃ OD	S21
Figure S17. ¹ H- ¹ H COSY NMR spectrum of marinoterpin C (3) (500 MHz) in CD ₃ OD	S22
Figure S18. HMQC NMR spectrum of marinoterpin C (3) (500 MHz) in CD ₃ OD	S23
Figure S19. HMBC NMR spectrum of marinoterpin C (3) (500 MHz) in CD ₃ OD	S24
Figure S20. mrt biosynthetic cluster from Streptomyces. sp. AJS-327	S25
Table S4. Annotation of the 16 open reading frames of the mrt gene cluster from Streptomyces sp. AJS-32	7S25
Figure S21. Phylogenetic analysis of aryl-CoA ligases	S26
Figure S22. Phylogenetic analysis of polyprenyl synthases	S27
Figure S23. Phylogenetic analysis of prenyltransferases	S28
Figure S24. Phylogenetic analysis of flavin monooxygenases	S29
References	S29

Marinoterpin A (1)				
No.	δ н/ δ с	COSY	НМВС	ROESY
1 -N-O				
2	-/147.6			
3	-/135.5			
4	8.48/129.5		C-1′, C-2, C-5, C-8a	H-5, H-2a', H-2b'
4a	-/128.9			
5	8.16/130.8	H-6	C-4, C-7, C-8a	H-4
6	7.79/130.2	H-5, H-7	C-4a, C-7, C-8	
7	7.97/134.2	H-6, H-8	C-5, C-8a	
8	8.66/120.0	H-7	C-4a, C-6, C-7, C-8a	
8a	-/142.4			
9	2.78/16.1		C-2, C-3, C-8, C-8a	
1'	-/202.9			
2'	3.12/49.8		C-1', C-3', C-4', C-21'	H-4, H-3′
	2.97		C-1', C-3', C-4', C-21'	
3'	2.17/30.3		C-1', C-2', C-4', C-5', C-21'	H-21′
4'	1.51/37.4		C-3', C-5', C-6', C-21'	
	1.37			
5'	1.99/27.8		C-4′, C-6′, C-7′	
6'	5.33/121.3		C-8′, C-22′	H-8a'
7'	-/140.1			
8'	2.59/40.3	H-9′	C-6', C-7', C-22'	
	2.18	H-9′	C-7′, C-9′	
9'	4.57/77.5	H-8', H-10'	C-7', C-11', C-22'	
10'	5.19/126.2	H-9', H-23'	C-8′, C-9′, C-23′	
11'	-/140.7			
12'	2.04/40.0		C-10', C-13', C-14', C-23'	
13′	2.02/28.6		C-11', C-12', C-14'	
14'	5.31/120.8		C-16', C-24'	H-16a′
15'	-/140.2			
16'	2.59/40.2	H-17′	C-14′, C-15′	
	2.18	H-17′	C-15′, C-17′	
17'	4.57/77.4	H-16', H-18'	C-15', C-19', C-24'	
18'	5.19/125.9	H-17′, H-25′	C-16', C-17', C-20', C-25'	
19'	-/138.0			
20'	1.73/25.9		C-18', C-19', C-25'	
21'	1.03/20.1		C-2', C-3', C-4'	H-3′
22'	4.39/69.0		C-6', C-7', C-8', C-9'	
	4.23			
23'	1.70/16.7		C-9', C-10', C-11', C-12'	
24'	4.39/69.0		C-14', C-15', C-16', C-17'	
	4.23			
25'	1.70/18.3		C-17', C-18', C-19', C-20'	

δ _H /δ _C	COSY	HMBC	NOESY
-/149.6			
-/149.6			
-/134.4			
7.89/129.2		C-2, C-3, C-8a, C-1′	H-5
-/129.8			
7.97/129.3	H-6	C-4, C-7, C-8a	H-4, H-6
7.69/129.5	H-5, H-7	C-4a, C-8	
7.82/131.7	H-6, H-8	C-5, C-8a	H-6, H-8
8.60/119.7	H-7	C-4a, C-6	H-7
-/138.5			
2.73/15.0		C-2, C-3	H-1′
3.61/33.1	H-2′	C-2, C-3, C-4, C-2', C-3'	H-9, H-21'
5.33/122.1	H-1'	C-1', C-4', C-21'	H-4'
-/139.4			
2.18/40.2	H-5′	C-5′	H-2'
2.11/28.7	H-4′, H-6′	C-6', C-7'	H-22a', H-22
	,		b'
5.32/121.0	H-5′	C-22′	H-8a', H-8b'
-/140.2			,
2.18/40.3	H-9′	C-7′	H-6'
2.58	H-9′	C-7', C-22'	H-6', H-9'
4.55/77.5	H-8', H-10'	C-22'	H-8b', H-23'
5.18/126.3	H-9'	C-8′, C-23′	H-12′
-/140.7		,	
2.06/40.0	H-13′	C-10′, C-11′, C-13′, C-23′	H-10'
2.05/28.6	H-12', H-14'	C-14', C-15'	H-24a', H-24
2100/2010		0 11, 0 10	b'
5.29/120.8	H-13′		~ H-16a', H-16
0.27/120.0	11 10		h'
-/140 2			2
2 18/40 3	H-17'	C-15′	H-14′
2.58	H-17'	C-15', C-24'	H-17'
4 55/77 4	H-16' H-18'	C-24'	H-16b' H-25'
5 18/125 9	H-17'	$C_{-16'}$ $C_{-20'}$ $C_{-25'}$	H-20'
-/138.0	11 17	0,020,020	11 20
1 72/25 9		C-18' C-19' C-25'	H-18′
1.72/25.5		$C_{-10}, C_{-10}, C_{-20}$	H-1'
4 21 d (13)/69 0	H-6'	$C_{-6'}$ $C_{-7'}$	H-5'
4 38 t (12 5)	H-6'	C-6' $C-7'$ $C-9'$	H-5'
1 67/16 7	11-0	$C_{-10'}$ $C_{-11'}$ $C_{-12'}$	H_9'
4 21/69 0	H-14'	$C_{-14'}$ $C_{-15'}$	H-13'
4.38	H-14'	C_{-14} C_{-15} C_{-17}	H-13'
1 69/18 3	11-14	C_{11}, C_{10}, C_{11}	H_17'
	-/129.8 7.97/129.3 7.69/129.5 7.82/131.7 8.60/119.7 -/138.5 2.73/15.0 3.61/33.1 5.33/122.1 -/139.4 2.18/40.2 2.11/28.7 5.32/121.0 -/140.2 2.18/40.3 2.58 4.55/77.5 5.18/126.3 -/140.7 2.06/40.0 2.05/28.6 5.29/120.8 -/140.2 2.18/40.3 2.58 4.55/77.4 5.29/120.8 -/140.2 2.18/40.3 2.58 4.55/77.4 5.18/125.9 -/138.0 1.72/25.9 1.79/16.4 4.21 d (13)/69.0 4.38 t (12.5) 1.67/16.7 4.21/ 69.0 4.38 1.69/18.3	-/129.8 $7.97/129.3$ $7.69/129.5$ $7.69/129.5$ $7.69/129.5$ $7.69/129.5$ $7.69/129.5$ $7.69/129.5$ $7.69/129.5$ $7.69/129.5$ $7.69/129.5$ $7.82/131.7$ $H-6, H-8$ $8.60/119.7$ $-/138.5$ $2.73/15.0$ $3.61/33.1$ $H-2'$ $5.33/122.1$ $H-1'$ $-/139.4$ $2.18/40.2$ $2.18/40.2$ $2.18/40.3$ $H-9'$ $4.55/77.5$ $H-8', H-10'$ $5.18/126.3$ $H-9'$ $-/140.7$ $2.06/40.0$ $2.18/40.3$ $H-13'$ $2.05/28.6$ $H-13'$ $2.05/28.6$ $H-13'$ 2.58 $H-17'$ $-/140.2$ $2.18/40.3$ $H-13'$ $2.05/28.6$ $H-13'$ $7/140.2$ $2.18/40.3$ $H-17'$ $-/138.0$ $1.72/25.9$ $1.79/16.4$ $4.21 d (13)/69.0$ $H-6'$ $4.38 t (12.5)$ $H-6'$ $1.67/16.7$ $4.21/69.0$ $H-14'$ 4.38 $H-14'$ 4.38 $H-14'$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S2. 2D COSY, HMBC, and NOESY NMR data for marinoterpin B (2) (CD₃OD, 500 MHz).

	N	larinoterpin C (3)	
Position	δн/δс	COSY	HMBC
1 -N			
2	-/163.1		
3	-/138.3		
4	7.67/135.5		C-2, C-3, C-5', C-8a, C-1'
4a	-/121.3		
5	7.64/128.2	H-6	C-4, C-7, C-8a
6	7.29/122.6	H-5, H-7	C-4a, C-8
7	7.60/129.8	H-6, H-8	C-5, C-8a
8	7.55/114.4	H-7	C-4a, C-6
8a	-/138.5		
9	4.55/77.1		C-2, C-3
1′	3.33/28.9	H-2′	C-2, C-3, C-4, C-2', C-3'
2'	5.41/121.2	H-1′	C-1', C-4', C-21'
3'	-/138.2		
4'	2.19/39.1	H-5′	C-5′
5'	2.13/27.7	H-4', H-6'	C-6', C-7'
6'	5.37/129.6	H-5′	C-22′
7'	-/138.8		
8'	2.18/39.1	H-9′	C-7′
	2.58	H-9′	C-7', C-22'
9'	4.55/76.3	H-8', H-10'	C-22′
10′	5.19/124.8	H-9′	C-8', C-23'
11'	-/139.6		
12'	2.06/38.5	H-13′	C-10', C-11', C-23'
13'	2.05/28.9	H-12', H-14'	C-14', C-15'
14'	5.30/120.1	H-13′	
15′	-/137.1		
16'	2.58/39.5	H-17′	C-15', C-24'
17'	4.55/76.1	H-16', H-18'	C-24′
18'	5.18/125.2	H-17′	C-16', C-20', C-25'
19′	-/139.6		
20'	1.73/24.8		C-18', C-19', C-25'
21'	1.61/16.1		C-2', C-3', C-4'
22'	4.21/67.9	H-6′	C-6', C-7'
	4.39	H-6′	C-6', C-7', C-9'
23'	1.73/15.1		C-10', C-11', C-12'
24'	4.21/67.9	H-14′	C-14', C-15'
	4.39	H-14′	C-14', C-15', C-17'
25'	1.71/15.5		C-18', C-19', C-20'

Table S3. 2D COSY and HMBC NMR data for marinoterpin C (3) (CD₃OD, 500 MHz).

Figure S1. ¹H NMR spectrum of marinoterpin A (1) (500 MHz) in CD₃OD.

Figure S2. ¹³C NMR spectrum of marinoterpin A (1) (125 MHz) in CD₃OD.

Figure S3. ¹H-¹H COSY spectrum of marinoterpin A (1) (500 MHz) in CD₃OD.

Figure S4. HSQC spectrum of marinoterpin A (1) (500 MHz) in CD₃OD.

Figure S5. HMBC spectrum of marinoterpin A (1) (500 MHz) in CD₃OD.

Figure S6. ROESY spectrum of marinoterpin A (1) (500 MHz) in CD₃OD.

Figure S7. Homo 2D *J*-resolved ¹H NMR spectrum of marinoterpin A (1) (500 MHz) in CD₃OD.

Figure S8. HR-ESI-TOFMS spectrum of marinoterpin A (1).

Figure S10. ¹³C NMR spectrum of marinoterpin B (2) (125 MHz) in CD₃OD

Figure S11. ¹H-¹H COSY NMR spectrum of marinoterpin B (2) (500 MHz) in CD₃OD.

Figure S12. HMQC NMR spectrum of marinoterpin B (2) (500 MHz) in CD₃OD.

Figure S13. HMBC NMR spectrum of marinoterpin B (2) (500 MHz) in CD₃OD.

Figure S14. ESI mass spectrum of marinoterpin B (2).

Figure S16. ¹³C NMR spectrum of marinoterpin C (3) (125 MHz) in CD₃OD.

Figure S17. ¹H-¹H COSY NMR spectrum of marinoterpin C (3) (500 MHz) in CD₃OD.

Figure S18. HMQC NMR spectrum of marinoterpin C (3) (500 MHz) in CD₃OD.

Figure S20. Organization of the *mrt* biosynthetic cluster in *Streptomyces* sp. AJS-327. The arrows represent open reading frames and point in the direction of transcription.

Table S4. Annotated functions of the open reading frames in the mrt biosynthetic cluster

Gene	NCBI	Proposed function	Sequence similarity	Similarity	Accession
Product	Reference		(origin)	/ identity	number
	Sequence			(%)	
MrtP	WP_180926943	Polyprenyl synthase	Streptomyces sp. CNZ298	68/78	MBB6534444
MrtA	WP_180926944	UbiA family prenyltrans- ferase	Streptomyces sp. CNZ279	72/79	WP_099885763
MrtB	WP_180926945	Acyl carrier protein	Unclassified Streptomyces sp.	71/86	WP_099885764
MrtC	WP_180926946	Beta-ketoacyl-[acyl-carrier- protein] synthase family protein	Unclassified Streptomyces sp.	67/74	WP_099885765
MrtD	WP_180926947	Beta-ketoacyl-CLF synthase II	Streptomyces vitaminophilus	59/69	WP_058032795
MrtE	WP_180926948	Benzoate-CoA ligase	Streptomyces sp. CNZ279	72/79	WP_099885767
MrtF	WP_180926949	NAD-dependent epimerase / dehydratase	Streptomyces vitaminophilus	79/85	WP_078500755
MrtG	WP_180926950	FAD-dependent mono- oxygenase	Streptomyces vitaminophilus	77/87	WP_018385507
MrtH	WP_180926951	Methyltransferase	Streptomyces armeniacus	71/83	AXK34857
MrtI	WP_180926952	FAD-dependent oxido- reductase	Unclassified Streptomyces sp.	75/84	WP_099885772
MrtJ	WP_180928508	Cytochrome P450	Streptomyces vitaminophilus	76/86	WP_018385504
MrtK	WP_180926953	Cytochrome P450	Streptomyces sp. CNZ298	81/87	MBB6534452
MrtL	WP_180926954	FtsX-like permease family protein	Streptomyces sp. CNZ298	79/80	WP_185018974
MrtM	WP_180926955	ABC transporter ATP- binding protein	Unclassified Streptomyces sp.	82/91	WP_099885768
MrtN	WP_180926956	MFS transporter	Streptomyces sp. Tu 3180	71/78	WP_159533361
MrtO	WP_180926957	LysR family transcriptional regulator	Streptomyces radiopugnans	69/77	WP_093654096

Figure S21. Phylogenetic relatedness of select adenylate forming enzymes. MUSCLE¹ was used to create multiple sequence alignments. A) The neighbor-joining tree was constructed using aryl-CoA ligases involved in enterocin biosynthesis, EncN (accession number AAF81733); aurachin SS biosynthesis, SauE; aurachin RE biosynthesis, RauF; marinoterpin biosynthesis, mrtE; anthranilate CoA ligases (accession number ABE35671, AAL0206, AAL02069); 2,3-dihydroxybenzoate AMP ligase, DhbE (accession number AFV18074); 4-chlorobenzoyl-CoA ligase (accession number AAN10109); benzoate-CoA ligase (accession number ABE31536); aurachin biosynthesis, AuaE and AuaEII; 2,4-dihydroxyquinolone biosynthesis, PqsA (accession number WP_003140754); pyochelin biosynthesis, PchD adenylation domain (accession number AAD55799). The scale bar indicates 0.1 changes per amino acid. B) Alignment of the adenylate-forming A10 core region of adenylate-forming enzymes.² The lysine residue essential for forming the adenylate intermediate is highlighted in red. A)

0.1

B)

PRAIEFRDSLPRTETG K LQRFRLREGKP
PREIVFVDTLPRTETG K LKRFELRTIA
PQTVRVVEELPVTSTG K TARHLIRRREMEKQS
PDICVSVPRIPLTSTG K IDRGACHRLLARRVGSRL
PDRIEFIESFPQTGVG K VSKKELRKVIAEKLITVK
PKRYFILDQLPKNALNKVLRRQLVQQVSS
PRDIVFVDDLPKTATG K IQRFKLREQS
PSKIEVLSGSAS
PRWIEFVTELPKTATG K IQRFKLRSAA
PHLVEFAADLPKTPTG K IQRFALRSQETGKADAPA
PSQLHVLPALPRNDNG K LARAELRHLADTLYHDNL
PDRIELVPAFPQTGIG K ISKKDLRERLRRELEARA
PRVLRVVDDLPRTATG K IARHTLRAEAVAGAAAPT

Figure S22. Phylogenetic relatedness of select polyprenyl synthases. MUSCLE¹ was used to create multiple sequence alignments. The neighbor-joining tree was constructed using the farnesyl diphosphate synthase involved in aurachin RE biosynthesis, RauI (accession number WP 052416887); geranyl/farnesyl diphosphate synthase involved in aurachin SS biosynthesis, SauI (accession number ARM20258); geranyl diphosphate synthase involved in napyradiomycin biosynthesis, NapT7 (accession number ABS50482); geranyl diphosphate synthase involved in furaquinocin biosynthesis (accession number); geranyl diphosphate synthase involved in furaqinocin biosynthesis, Fur19 (accession number BAE78987); geranyl diphosphate synthase involved in furanonaphthoquinone biosynthesis, Fnq23 (accession number CAL34101); Mcl2 and Mcl22 involved in merochlorin biosynthesis (accession numbers AGH68887 and WP 024888525); sesterterpene diphosphate synthase involved in marinoterpin biosynthesis, MrtP (accession number WP 180926943); sesterterpene diphosphate synthase involved in atolypene biosynthesis, AtoC (Accession number WP 063745200); sesterterpene diphosphate synthase involved in sestermobaraene biosynthesis(accession number WP 004941318); StsA involved in somaliensene A and B biosynthesis (accession number WP 078571316); StsB involved in somaliensene A and B biosynthesis (accession number WP 010468026); farnesyl diphosphate synthase involved in BE-40644 biosynthesis, FdpS (accession number BAD07374); solanesyl diphosphate synthase (accession number XP 002879508); undecaprenyl diphosphate synthases (accession numbers WP 003640735 and O82827); geranylgeranyl diphosphate synthases (accession numbers NP 001032354, XP 003308874, XP 003824547, XP 004028673, XP 009249955, CAD6651761, and XP 003267333); farnesyl diphosphate synthases (accession numbers NP 001129293, WP 013069157, WP 000183378, and XP 001160391); and decaprenyl diphosphate synthase (accession number WP 013068881). The scale bar indicates 0.2 changes/amino acid.

Figure S23. Phylogenetic relatedness of selected prenyltransferases. MUSCLE¹ was used to create multiple sequence alignments. The neighbor-joining tree was constructed using prenyltransferases involved in aurachin RE biosynthesis, RauB (accession number WP_080726500); aurachin biosynthesis, AuaA (accession number CAL48953); aurachin SS biosynthesis, SauA (accession number WP_176101155); marinoterpin biosynthesis, MrtA (accession number WP_180926944); napyradiomycin biosynthesis, NapT8 and NapT9 (accession number ABS50489 and ABS50490); 4-hydroxybenzoate octaprenyltransferase, UbiA (accession number WP_160799794); BE-40644 biosynthesis, (accession number BAD07390); furaquinocin biosynthesis, Fur7 (accession number BAE78988); furanonaphthoquinone biosynthesis, Fnq26 and Fnq (accession numbers A2AXG5 and CAL34106); merochlorin biosynthesis, Mcl23 (accession number AGH68908); and novobiocin biosynthesis, NovQ (accession number WP 079127921). The scale bar indicates 0.2 changes per amino acid.

Figure S24. Phylogenetic relatedness of select flavin monooxygenases. MUSCLE¹ was used to create multiple sequence alignments. The neighbor-joining tree was constructed using flavin monooxygenases involved in valanimycin biosynthesis, VlmH (accession number P96072); aurachin biosynthesis, AuaJ and AuaG (accession numbers CCD27752 and H1ZZA4, respectively); marinoterpin biosynthesis, MrtG (accession number WP_0180926950); actinorhodin biosynthesis, ActVA (accession number WP_011030043); rebeccamycin biosynthesis, RebC (PDB 2R0C_A); starosporine biosynthesis, StaC (accession number ABI94390); and dimethylaniline *N*-oxide monooxygenases (accession numbers NP_001452, NP_001451, and NP_002013). The scale bar indicates 0.2 changes per amino acid.

References

- 1. Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC bioinformatics*. 2004, *5*, 113.
- 2. Pistorius, D., Li, Y., Mann, S., Müller, R. Unprecedented anthranilate priming involving two enzymes of the acyl adenylating superfamily in aurachin biosynthesis. *J Am Chem Soc.* 2011, *133*, 12362.