

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Prognostic value of different lymph node staging methods for node positive cardia gastric cancer

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-050378
Article Type:	Original research
Date Submitted by the Author:	22-Feb-2021
Complete List of Authors:	Wang, Xiao-Qing; Anhui Medical College Bao, Min; Anhui Medical College Zhang, Cheng; First Affiliated Hospital of Anhui Medical University
Keywords:	Gastrointestinal tumours < ONCOLOGY, Gastrointestinal tumours < GASTROENTEROLOGY, SURGERY
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Title page

- 2 Article title: Prognostic value of different lymph node staging methods for node positive cardia
- 3 gastric cancer
 - 4 Author information: Xiao-Qing Wang 1, Min Bao 1, Cheng Zhang 2
- 5 1 Anhui Medical College, Hefei, Anhui, China PR
- 6 2 Anhui Provincial Cancer Institute, the First Affiliated Hospital of Anhui Medical University,
- 7 Hefei, Anhui, China PR
 - 8 Corresponding to: Cheng Zhang, <u>ahmuzc@sina.cn</u>
 - **Disclaimer:** The views expressed in the submitted article are our own and not an official position
- 10 of the institution or funder.
 - 11 Word count: 2052 (excluding its abstract, acknowledgments, tables, figure legends, and
 - 12 references) abstract 274.
 - 13 Number of figures and tables: This draft included 4 figures and 2 tables.
 - **Disclosure of relationships and activities:** None.

2	
3	
4	
5	
6	
7	
, 8	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22 72	
23	
24 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
50 27	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

15 Abstract

16 Objective: To investigate the prognostic efficacy of lymph node ratio (LNR) and log odds of 17 positive lymph nodes (LODDS) in node positive cardia gastric adenocarcinoma (CGA).

18 Design: A SEER database review

19 Participants: A total of 1 038 patients with node positive CGA were enrolled from SEER database.

Seventy percent of the entire patients were randomly assigned to training set (N = 723) and the rest was assigned to validating set (N = 315).

Interventions: The major endpoint was cancer specific survival (CSS). Optimal cut-off values
were determined by X-tile software. The prognostic power was evaluated using Akaike
Information Criterion (AIC) and Harrell concordance index (C-index). Cox stepwise regression
analysis was performed to construct nomogram for prediction of 1-, 2-, and 5-year CSS.

Results: The training set and validating set are similar in terms of clinical and demographic
features. The optimal cut-off values for LNR were 0.09 and 0.33, and for LODDS were -2.09 and
-0.65. CSS was significantly different by N, LNR and LODDS categories. The C-index of N stage
was lower than that of LNR or LODDS. The AIC of N stage was higher than that of LNR or
LODDS. Independent predictors included age, race, tumor grade, T stage, M stage and LNR (or
LODDS) and they were incorporated in nomograms for 1-, 2- and 5-year CSS prediction.
Calibration plots showed satisfied results of internal and external validity of the nomogram.

Conclusions: LNR and LODDS staging methods have better prognostic efficacy than traditional N
 staging method in CGA patients with regional node metastasis. Besides, the two values are
 promising substitute for N staging in nomogram development when other independent prognostic
 factors are incorporated.

37

38 Key words: Cardia; Adenocarcinoma; Stomach Neoplasms; Lymph Node Ratio; Neoplasm

39 Staging

3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
.0 ⊿0	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	

1 2

40 Strengths and limitations of this study

- 41 This study used national cancer registry data for cardia gastric adenocarcinoma research;
- 42 Novel staging methods based on the number of positive lymph node was established for 43 prognostic prediction;
 - Nomograms based on the new staging methods were constructed and validated;
 - This study needs to be confirmed by other populations. •
- Patient consent form: The SEER database review is granted exemption from obtaining patients' 46
- 47 consents.

44

- 48 Word count: 2052 (excluding its abstract, acknowledgments, tables, figure legends, and
- 49 references) abstract 274.

50 Introduction

Gastric cancer (GC) generally includes 2 topographical categories: non-cardia GC that arises from more distant sites and cardia GC that arises in gastroesophageal junction (GEJ). In contrast to steady decline of non-cardia GC incidence, cardia GC occurs more frequently, particular in high-income countries (1, 2). This trend is associated with obesity, gastroesophageal reflux disease (GERD), and Barrett esophagus (2). In addition to different incidence trend, clinicalpathological feature and long-term survival vary between the two GC subtypes (3). For accurate prediction of survival, precise staging is required. The Tumor-Node-Metastasis (TNM) classification 7th edition by the American Joint Committee on Cancer (AJCC) recommends at least 15 lymph nodes (LN) collection for N staging (4, 5). However inadequate LN harvest frequently occurs due to many conditions, thus precise staging cannot be obtained sometimes. It has been demonstrated that LN ratio (LNR) could better estimate survival of GC patients after curative gastrectomy, regardless of the number of LN examined (6), and may be promising for aiding TNM staging system (7). Apart from that, log odds of positive LN (LODDS) outperformed N and LNR staging system when predicting survival of GC patients (8-10). Therefore the traditional N staging classification may be substituted with different methods, with even improved performance. Nevertheless little evidence evaluates the performance of the two LN staging systems aforementioned in cardia GC, since it has distinct clinical characteristics and epidemiology from overall GC.

Here we use nationwide cancer registry data to appraise the prognostic value of LNR and LODDS
in patients with node positive cardia gastric adenocarcinoma (CGA), and, if possible, construct
nomogram for survival prediction based on the new LN staging system.

72 Methods

73 Selection and Description of Participants

The inclusion criteria were as follows: 1) the International Classification of Disease for Oncology, Third Edition (ICD-O-3) for primary tumor site was C16.0 (cardia); 2) broad histological recode was 8140-8389: adenomas and adenocarcinomas; 3) diagnostic confirmation was positive histology; 4) surgery was performed; 5) diagnosed during 2010-2015; 6) the definite number of regional positive nodes was clear and not zero. We excluded cases with unknown race, T stage information, tumor size and grade. As shown in Figure 1, the final cohort enrolled 1 038 patients with node positive CGA, of whom 857 were male and 181 were female. Three hundred and thirty eight (32.56%) were over 70 years old. Eight hundred and ninety six (86.32%) were white, 64 were black and 78 were other races. Next 70% of the entire patients were randomly assigned to training set (N = 723) and the rest was assigned to validating set (N = 315).

84 Patient and Public Involvement

This study is a data review based on SEER program, so it was granted exemption from requiring informed consent. All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of the Anhui Medical College. We used SEER*Stat (version 8.3.8) to access to Incidence - SEER Research Data, 18 Registries, Nov 2019 Sub 2000-2017 (SEER 18 database) (11) for collection of node positive CGA patients (username: 21268-Nov2019). Patients were not involved in the recruitment to and conduct of the 91 study. The findings of the study will be disseminated to all study participants by online article.

92 Technical Information

The main outcome was cancer specific survival (CSS), which was referred to as death specifically due to CGA and the period between first diagnosis and death. In addition, we extracted the following variables for analysis: sex, race, age, AJCC 7th TNM stage information, tumor size, grade, number of regional nodes examined and number of regional nodes positive. LNR and LODDS were calculated as previously reported (12). Briefly, LNR was defined as the ratio of the number of positive nodes divided by the total number of examined nodes. LODDS was calculated using the formula: log(NPLN+0.50)/(NDLN-NPLN+0.50), in which 0.50 was added to both the numerator and denominator to avoid an infinite number.

101 The optimal thresholds for cutting LNR and LODDS into trichotomous variables were determined
102 by X-tile software (version 3.6.1) (13), which were based on the maximal log-rank chi-square
103 value that represented the greatest group difference of CSS probability.

104 Statistics

The distributions of baseline features between training set and validating set were described and compared by chi-square test. Survival curves, median survival and CSS rates were generated using the Kaplan-Meier method. Outcome difference between groups was analyzed by the log-rank test. Multivariable Cox regression model was used to establish prognostic model for CSS. The prognostic power was evaluated using Akaike Information Criterion (AIC) and Harrell concordance index (C-index). A predictive model with lower AIC indicated better model fit, while with higher C-index indicated better discriminative ability. A value of C-index of 0.5 indicates no predictive power, and an index of 1.0 indicates complete differentiation. Cox stepwise regression analysis was also performed to construct nomogram for prediction of 1-, 2-, and 5-year CSS. Validation of nomogram was performed by internal and external calibration plots (14). Bootstraps with 1 000 resample were used for validation activities. All statistical analyses were performed using R software (version 3.5.3). A two-tailed P value of less than 0.05 was considered statistically significant.

118 Results

Table 1 summarized the demographic and clinical feature of the participants. Six hundred and twenty eight patients (60.50%) were diagnosed with a tumor less than 5cm. Six hundred and forty patients (61.66%) were with grade III or IV. The numbers of patients with T1, T2, T3 and T4 respectively were 94, 125, 717 and 102. The numbers of patients with N1, N2 and N3 respectively were 488, 331 and 219. Seventy five patients (7.23%) were with distant metastasis at presentation. The median CSS was 27 months. The 1-, 2- and 5-year CSS rates were 76.8%, 53.0% and 29.2%, respectively. There was no statistical difference of baseline characteristics between training set and validating set. The detailed information of the two sets was also presented in Table 1.

Table 1. Baseline information of the included patients with node positive CGA, N(%).

Groups	Training set	Validating set	P-value
	(N = 723)	(N = 315)	

57

58

59 60

1 2					
3					
4		Sex			
5		Male	596 (82.43)	261 (82.86)	0 939
6		Female	127 (17.57)	54 (17.14)	0.909
/		Age			
ð G		<70	490 (67.77)	210 (66.67)	0.501
10		≥ 70	233 (32.23)	105 (33.33)	0.781
11		Race		()	
12		White	678 (86 86)	268 (85 08)	
13			40 (5 52)	208(83.08)	0 427
14		Віаск	40 (5.55)	24 (7.02)	0.457
15 16		Others	55 (7.61)	23 (7.30)	
17		Tumor size			
18		<5cm	442 (61.13)	186 (59.05)	0.572
19		≥5cm	281 (38.87)	129 (40.95)	0.575
20		Grade			
21		I-II	279 (38 59)	119 (37 78)	
22			219 (50.59) 111 (61 11)	106 (62 22)	0.859
25 74			444 (01.41)	190 (02.22)	
25					
26		T1	70 (9.68)	24 (7.62)	
27		T2	83 (11.48)	42 (13.33)	0.600
28		Τ3	501 (69.30)	216 (68.57)	0.000
29		T4	69 (9.54)	33 (10.48)	
30 31		N stage			
32		N1	348 (48 13)	140 (44 44)	
33		N2	225 (31.12)	106 (33 65)	0 545
34		N2	223(31.12)	(0, (21, 01))	0.343
35		IN3	150 (20.75)	69 (21.91)	
36		M stage			
3/		M0	678 (93.78)	285 (90.48)	0 079
30 39		M1	45 (6.22)	30 (9.52)	0.079
40		Median survival (months)	28 (25, 32)	25 (21, 32)	0.361
41		CSS rate (%)			
42		1-vear	77 0 (74 0 80 2)	76 3 (71 6 81 2)	
43		2 _{-vear}	53 7 (50 1 57 5)	51 4 (46 0 57 5)	
44 45		2-year	20.2(26.7, 24.5)	264(200, 27.5)	
45 46			30.3 (20.7, 34.3)	20.4 (20.9, 55.4)	
47		Abbreviation: CGA, cardi	a gastric adenocar	cinoma; CSS, cano	cer-specific
48		survival			
49	127	According to X-tile software	e results the optimal	cut-off values for LN	JR were 0.09 and 0.33 and
50 51	170	for LODDS were 2.00 and	-0.65 Thus nationts	were senarated into	$low (R1)$ medium (R2) \sim
וכ 52	120	high LND (D2)	-0.05. Thus patients	were separated iiilo	$\frac{1}{10} = \frac{1}{10} $
53	129	nign Livk (K3) group, or lov	w (L1), meaium (L2)	or nigh LODDS (L3) group. Next we illustrated
54	130	the survival curves of the pa	atients according to N	N, LNR or LODDS st	taging system. As shown in
55	131	Figure 2 training set section	, CSS was significan	tly different by all th	e three staging systems (al

Figure 2 training set section, CSS was significantly different by all the three staging systems (all
the log-rank P values < 0.0001); however the 95% CIs of N2 and N3 survival curve initially
separated and partly overlapped afterwards. The inferior discriminative ability of N system was
further supported by AIC and C-index. As shown in Table 2, the C-index of N stage was lower
than that of LNR or LODDS. Similarly, the AIC of N stage was higher than that of LNR or

LODDS. The prognostic value of adjusted model was better than crude mode generally. In
addition, the value of LNR system seemed to be worse than LODDS system; however the
difference was not noticeable, so we considered both of the systems into nomogram construction.

Table 2. Prognostic values of variables for patients with node positive CGA (N = 1 038).

Variablas	Crude model			Adjusted model		
variables	HR (95% CI)	C-index	AIC	HR (95% CI)	C-index	AIC
Training s	et (N = 723)					
N stage		0.572	5412		0.633	5379
N1	1 (ref)			1 (ref)		
N2	1.44 (1.17, 1.79)			1.34 (1.07, 1.66)		
N3	1.98 (1.57, 2.51)			1.71 (1.34, 2.19)		
LNR*		0.607	5376		0.655	5343
R1	1 (ref)			1 (ref)		
R2	1.88 (1.44, 2.44)			1.83 (1.40, 2.39)		
R3	3.02 (2.30, 3.97)			2.74 (2.07, 3.63)		
LODDS*		0.609	5373		0.656	5339
L1	1 (ref)			1 (ref)		
L2	1.93 (1.48, 2.51)			1.86 (1.42, 2.44)		
L3	3.13 (2.38, 4.13)			2.87 (2.16, 3.81)		
Validating	g set (N = 315)					
N stage		0.603	1953		0.681	1926
N1	1 (ref)			1 (ref)		
N2	1.89 (1.36, 2.63)			1.88 (1.34, 2.64)		
N3	2.34 (1.62, 3.38)			2.18 (1.47, 3.24)		
LNR*		0.646	1927		0.702	1902
R1	1 (ref)			1 (ref)		
R2	2.20 (1.47, 3.30)			2.14 (1.41, 3.23)		
R3	4.16 (2.76, 6.28)			4.00 (2.59, 6.17)		
LODDS*		0.647	1927		0.703	1901
L1	1 (ref)			1 (ref)		
L2	2.07 (1.39, 3.09)			2.08 (1.38, 3.14)		
L3	4.22 (2.79, 6.39)			4.10 (2.65, 6.34)		
Abbreviati	ons: CGA, cardia g	astric aden	ocarcinon	na; HR, hazard rati	o; CI, conf	idence
interval; A	IC, Akaike informa	tion criteri	on; LNR,	lymph node ratio; I	LODDS, lo	g odds
of positive	lymph nodes.			_		
Adjusted n	nodel considered ag	e, sex, race	. tumor siz	ze, grade, T stage ar	nd M stage.	

* cut-off values for LNR were 0.09 and 0.33, and for LODDS were -2.09 and -0.65.

54139Stepwise Cox regression analysis showed age, race, tumor grade, T stage, M stage and LNR (or55140LODDS) were independent predictors, so these factors were included in nomograms. For both56141LNR and LODDS, the total score was 40, and higher score suggested lower survival (Figure 3A58142and 4A). Next calibration plot was used to assess the internal and external validity of the59143nomogram (Figure 3B, 3C, 4B and 4C). Since the cross-spot line was generally close to the grey

reference line, we concluded the predicted CSS was well correlated with the actual situation.

Discussion

The present study analyzes national cancer registry databases and demonstrates that survival of patients with node-positive CGA is well predicted when the traditional N staging method is substituted with LNR or LODDS system. This finding both exists in training and validating sets. In training set, the survival curves separate clearly when patient grouping is implemented by LNR or LODDS method, which is not achieved by traditional N staging system. Adjusted model that simultaneously considers staging, clinical and demographic features outperforms crude model that only takes staging into account. Therefore multiple independent survival factors are incorporated in nomogram construction, which suggests older age at diagnosis, white, higher grade, greater tumor infiltration, higher proportion of positive LN, and metastasis as risk factors. The nomograms perform steadily in 1-, 2- and 5-year CSS prediction as the validation plots show.

Previous studies have demonstrated the superiority of LNR or LODDS for prognostic prediction in GC after surgical resection (8-10, 15-17). However the GC patients are not further separated and investigated according to primary tumor site, since there is much difference between cardia and non-cardia GC in terms of tumor features, etiological factors, and biological behaviors (3). In AJCC cancer staging 7th edition, tumors involving EGJ was categorized as esophagus cancer (5), which was however argued by the viewpoint that GC staging system has a better ability to predict survival of EGJ tumor (18, 19). In the latest 8th edition (20), a tumor that has its epicenter within 2 cm of EGJ and involves the EGJ (Siewert type I/II) is classified as esophageal cancer. Other situation, including a tumor with epicenter more than 2 cm from EGJ or a tumor located with 2 cm of EGJ but does not involve EGJ, is classified as stomach cancer. The superiority of the new system is confirmed by a retrospective observational study from two high-volume institutions in China, regardless of Siewert type (21). In terms of Siewert type II junctional adenocarcinoma, a marginal advantage of the esophagus cancer system is found in discriminating survival rates after 3 and 5 years, however the advantage of GC system lies in division of the N3 category into N3a and N3b, so the authors concludes neither the esophageal nor the stomach staging system is flawless in predicting survival in Siewert type II junctional cancer (22). Above all, CGA is probably a special entity that has a different biological property compared with genuine gastric and genuine esophageal cancer. To the best of our knowledge, the present study first reveals a superior performance of prognostic prediction based on LNR or LODDS in node positive CGA patients. Unfortunately we are unable to consider Siewert type due to unavailable information from SEER database; therefore we encourage further studies to pay special attention on tumor location.

LNR and LODDS have been proved to be the strongest indictors of survival in gastric adenocarcinoma when LN harvest is inadequate (16, 17). It is demonstrated that in general, more LN resected is associated with better survival, which may be the result of either improved N classification or a therapeutic effect of lymphadenectomy. For esophageal cancer, worldwide data shows that yielding 10 nodes for pT1, 20 for pT2, and 30 or more for pT3/T4 is recommended for maximum 5-year survival (23). For GC, greater LN harvest also shows improved survival (24). It is suggested that at least 16 nodes be assessed pathologically and evaluation of more than 30 nodes is desirable (25). Overall it is encouraged to harvest as many LN as possible, balancing the

extent of LN resection necessary for accurate N staging and maximum survival without unnecessarily increasing the morbidity of radical lymphadenectomy. Nevertheless, many conditions would lead to insufficient LN harvest. It is estimated that only one fifth GC patients have sufficient LN examined in Iran (26), while more than 15 LNs are examined in 64% of patients in the US (25). The LNR and LODDS staging methods do not require adequate number of LN assessment. In fact, the new N category method is stable when nodal assessment is insufficient during surgery not only for GC (8, 15-17) but also for colorectal cancer (27), esophageal cancer (28), oral squamous cell carcinoma (29), gallbladder cancer (30), etc.

One limitation of this study is that the recruited patients were diagnosed during 2010-2015 and staged based on TNM 7th edition that defined 3 N categories. In 8th edition, N category of GC includes N1, N2, N3a and N3b, which improves survival prediction in patients with junctional cancer (22). So whether LNR or LODDS based staging system outperforms TNM 8th edition needs to be further investigated. Another limitation is that our results are based on training set and confirmed by validating set; however the features of the two groups are similar. So this finding needs to be proved among populations with distinct features.

In conclusion, LNR and LODDS staging methods have better prognostic efficacy than traditional
 N staging method in CGA patients with regional node metastasis. Besides, the two values are
 promising substitute for N staging in nomogram development when other independent prognostic
 factors are incorporated.

- a. Contributorship statement: WXQ work conception, data interpretation, critical review for important content, final approval of the manuscript and agreement to be accountable for all aspects of the work; BM administrative work, funding, critical review for important content, final approval of the manuscript and agreement to be accountable for all aspects of the work;
 209 ZC acquisition, analysis of data, drafting the work, final approval of the manuscript and agreement to be accountable for all aspects of the work.
 - 211 b. Competing interests: None.
 - c. Funding: This work was supported by [Major Project of Natural Science of Anhui Provincial
 Department of Education] grant number [KJ2019ZD73].
 - 214 d. Data sharing statement: Dataset available from the SEER website
 215 (<u>https://seer.cancer.gov/data-software/</u>).
 - 217 Acknowledgement: We thank all patient advisers for their special contribution.

References:

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018:
 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA
 Cancer J Clin. [Journal Article]. 2018 2018-11-01;68(6):394-424.
- 223 2. Abdi E, Latifi-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardia
 224 gastric adenocarcinoma: Insights and new perspectives. Cancer Med. [Journal Article; Research
 225 Support, Non-U.S. Gov't; Review]. 2019 2019-10-01;8(13):6114-26.
- 3. Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG
 228 ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92.

Page 11 of 16

BMJ Open

1
ว
2
5
4
5
6
7
, Q
0
9
10
11
12
13
14
14
15
16
17
18
10
20
20
21
22
23
24
25
25
26
27
28
29
30
30
30 31
30 31 32
30 31 32 33
30 31 32 33 34
30 31 32 33 34 35
30 31 32 33 34 35 36
30 31 32 33 34 35 36
 30 31 32 33 34 35 36 37
30 31 32 33 34 35 36 37 38
 30 31 32 33 34 35 36 37 38 39
 30 31 32 33 34 35 36 37 38 39 40
 30 31 32 33 34 35 36 37 38 39 40 41
 30 31 32 33 34 35 36 37 38 39 40 41 42
 30 31 32 33 34 35 36 37 38 39 40 41 42 42
 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 51 52 53 54 55
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 51 52 34 55 56
30 31 32 33 34 35 36 37 38 30 41 42 43 44 45 46 47 48 9 51 52 34 55 56 57

Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.:
 Wiley-Blackwell; 2009.
 Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th
 edition.: Springer; 2009.

6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL.
[Journal Article]. 2018 2018-10-04;16(1):198.

236 7. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role
237 of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article;
238 Meta-Analysis; Review]. 2018 2018-09-01;57:76-83.

8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80.

243 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for
244 gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019
245 2019-12-01;15(36):4207-22.

246 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph nodes (LODDS) for prognostic prediction after gastric cancer surgery: a multi-institutional analysis of 7620 patients in China. SURG TODAY. [Journal Article]. 2021 2021-01-01;51(1):101-10.

249 11. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov)
250 SEER*Stat Database: Incidence - SEER Research Data, 18 Registries, Nov 2019 Sub (2000-2017) 251 Linked To County Attributes - Time Dependent (1990-2017) Income/Rurality, 1969-2018 Counties,
252 National Cancer Institute, DCCPS, Surveillance Research Program, released April 2020, based on the
253 November 2019 submission..

254 12. Yu Y, Zhang P, Yao R, Wang J, Wang P, Xue X, et al. Prognostic value of log odds of positive
255 lymph nodes in node-positive lung squamous cell carcinoma patients after surgery: a SEER
256 population-based study. Transl Lung Cancer Res. [Journal Article]. 2020 2020-08-01;9(4):1285-301.

257 13. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker
258 assessment and outcome-based cut-point optimization. CLIN CANCER RES. [Journal Article;
259 Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, U.S.
260 Gov't, P.H.S.]. 2004 2004-11-01;10(21):7252-9.

261 14. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer
262 prognosis. J CLIN ONCOL. [Journal Article; Review]. 2008 2008-03-10;26(8):1364-70.

263 15. Jian-Hui C, Shi-Rong C, Hui W, Si-le C, Jian-Bo X, Er-Tao Z, et al. Prognostic value of three
264 different lymph node staging systems in the survival of patients with gastric cancer following D2
265 lymphadenectomy. Tumour Biol. [Journal Article]. 2016 2016-08-01;37(8):11105-13.

266 16. Aurello P, Petrucciani N, Nigri GR, La Torre M, Magistri P, Tierno S, et al. Log odds of positive lymph nodes (LODDS): what are their role in the prognostic assessment of gastric adenocarcinoma? J
268 GASTROINTEST SURG. [Comparative Study; Journal Article]. 2014 2014-07-01;18(7):1254-60.

269 17. Kilic MO, Gundogdu SB, Ozden S, Saylam B, Tez M. The prognostic value of different node staging systems in patients with </=15 lymph nodes following surgery for gastric adenocarcinoma.
270 ACTA CHIR BELG. [Journal Article]. 2018 2018-02-01;118(1):1-6.

59 272 18. Suh YS, Han DS, Kong SH, Lee HJ, Kim YT, Kim WH, et al. Should adenocarcinoma of the 60

esophagogastric junction be classified as esophageal cancer? A comparative analysis according to the
seventh AJCC TNM classification. ANN SURG. [Comparative Study; Journal Article; Research
Support, Non-U.S. Gov't]. 2012 2012-05-01;255(5):908-15.

Particle Provide the sophagus are more adequately staged as gastric cancers by the 7th edition of the American Joint Commission on Cancer Staging System. Mod Pathol. [Journal Article; Research Support, Non-U.S.
Convit; Validation Study]. 2011 2011-01-01;24(1):138-46.

280 20. Amin M, Edge S, Greene F, Byrd D, Brookland R. AJCC cancer staging manual. 8th edition.:
281 Springer; 2016.

- 15 282 21. Liu K, Feng F, Chen XZ, Zhou XY, Zhang JY, Chen XL, et al. Comparison between gastric and 16 283 esophageal classification system among adenocarcinomas of esophagogastric junction according to 17 284 AJCC 8th edition: a retrospective observational study from two high-volume institutions in China. 18 19 285 GASTRIC CANCER. [Comparative Study; Journal Article; Observational Study]. 2019 20 286 2019-05-01;22(3):506-17.
- 287
 287
 22. Karstens KF, Ghadban T, Sawez S, Konczalla L, Woestemeier A, Bachmann K, et al. Comparison
 288
 288 of the 8th UICC staging system for esophageal and gastric cancers in Siewert type II junctional
 24
 289 adenocarcinomas. Eur J Surg Oncol. [Comparative Study; Journal Article]. 2020 2020-04-01;46(4 Pt
 25
 26
 290 A):638-43.
- 27 291 23. Rizk NP, Ishwaran H, Rice TW, Chen LQ, Schipper PH, Kesler KA, et al. Optimum
 28 292 lymphadenectomy for esophageal cancer. ANN SURG. [Journal Article; Research Support, Non-U.S.
 293 Gov't]. 2010 2010-01-01;251(1):46-50.
- 294 24. Macalindong SS, Kim KH, Nam BH, Ryu KW, Kubo N, Kim JY, et al. Effect of total number of
 295 harvested lymph nodes on survival outcomes after curative resection for gastric adenocarcinoma:
 296 findings from an eastern high-volume gastric cancer center. BMC CANCER. [Journal Article;
 297 Research Support, Non-U.S. Gov't]. 2018 2018-01-12;18(1):73.
- 298 25. Schoenleber SJ, Schnelldorfer T, Wood CM, Qin R, Sarr MG, Donohue JH. Factors influencing
 299 lymph node recovery from the operative specimen after gastrectomy for gastric adenocarcinoma. J
 300 GASTROINTEST SURG. [Journal Article]. 2009 2009-07-01;13(7):1233-7.
- 301 26. Khanjani N, Mirzaei S, Nasrolahi H, Hamedi SH, Mosalaei A, Omidvari S, et al. Insufficient
 302 lymph node assessment in gastric adenocarcinoma. J Egypt Natl Canc Inst. [Journal Article]. 2019
 303 2019-10-22;31(1):2.
- 304 27. Pei JP, Zhang CD, Fan YC, Dai DQ. Comparison of Different Lymph Node Staging Systems in
 305 Patients With Resectable Colorectal Cancer. FRONT ONCOL. [Journal Article]. 2018
 306 2018-01-20;8:671.
- 47
 48
 49
 308
 309
 309
 28. Cao J, Yuan P, Ma H, Ye P, Wang Y, Yuan X, et al. Log Odds of Positive Lymph Nodes Predicts
 308
 308
 309
 309
 309
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 <l
- 310 29. Jin W, Zhu Z, Wu Y, Ding X, Wu H, Song X, et al. Prognostic value of log odds of positive
 311 lymph nodes in patients with resectable oral squamous cell carcinoma. ORAL ONCOL. [Journal
 312 Article; Research Support, Non-U.S. Gov't]. 2020 2020-09-01;108:104709.
- 313 30. Li J, Sun Y, Zhao B, Tang C, Fan D, Jiang W, et al. Lymph Node Ratio-Based Staging System for
 314 Gallbladder Cancer With Fewer Than Six Lymph Nodes Examined. FRONT ONCOL. [Journal
 315 Article]. 2020 2020-01-20;10:542005.

59 60

316

1 2 3

4

319

320 321

322

323

Illustrations

Figure 1. Flow diagram of patient selection and grouping.

stating system. B) Internal validation; C) External validation.

Figure 3. Construction and validation of nomogram based on Tumor-Lymph node ratio-Metastasis

Figure 4. Construction and validation of nomogram based on Tumor-Log odds of positive lymph

<text>

Figure 2. Survival curves of training and validating sets by different staging systems.

node-Metastasis stating system. B) Internal validation; C) External validation.

1	
2	
3	
4	
5	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
20	
21	
22	
23	
24	
25 26	
27	
28	
29	
30	
31	
33	
34	
35	
36	
37	
38 30	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50 51	
52	
53	
54	
55	
56	
5/ 50	
59	
~ ~ ~	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Prognostic value of different lymph node staging methods for node positive cardia gastric cancer: a register-based retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-050378.R1
Article Type:	Original research
Date Submitted by the Author:	18-Jun-2021
Complete List of Authors:	Wang, Xiao-Qing; Anhui Medical College Bao, Min; Anhui Medical College Zhang, Cheng; First Affiliated Hospital of Anhui Medical University
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Gastroenterology and hepatology
Keywords:	Gastrointestinal tumours < ONCOLOGY, Gastrointestinal tumours < GASTROENTEROLOGY, SURGERY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Title page

- 2 Article title: Prognostic value of different lymph node staging methods for node positive cardia
- 3 gastric cancer: a register-based retrospective cohort study
- 4 Author information: Xiao-Qing Wang 1, Min Bao 1, Cheng Zhang 2
- 5 1 Anhui Medical College, Hefei, Anhui, China PR
- 6 2 Anhui Provincial Cancer Institute, the First Affiliated Hospital of Anhui Medical University,
- 7 Hefei, Anhui, China PR
 - 8 Corresponding to: Cheng Zhang, <u>ahmuzc@sina.cn</u>
 - **Disclaimer:** The views expressed in the submitted article are our own and not an official position
- 10 of the institution or funder.
 - 11 Word count: 3191 (excluding its abstract, acknowledgments, tables, figure legends, and
 - 12 references) abstract 281.
 - 13 Number of figures and tables: This draft included 3 figures and 2 tables.
 - **Disclosure of relationships and activities:** None.

beet teries only

1		
2	45	
4	15	Abstract
5	16	Objective: To investigate the prognostic efficacy of lymph node ratio (LNR) and log odds of
6	17	positive lymph nodes (LODDS) in node positive cardia gastric adenocarcinoma (CGA).
/	18	Design: A register-based retrospective cohort study.
0 9	19	Participants: A total of 1 038 patients with node positive CGA were enrolled from SEER database,
10	20	and randomly assigned (7:3) in training set ($N = 723$) or validating set ($N = 315$).
11	21	Interventions: The major endpoint was cancer specific survival (CSS). Optimal cut-off values
12	22	were determined by X-tile software. The prognostic power was evaluated using Akaike
13		Information Criterion (AIC) and Harrell concordance index (C-index). Cox stepwise regression
14	25	analysis was performed to construct normalizer for medicition of 1 - 2 and 5 year CSS. The
15	24	analysis was performed to construct homogram for prediction of 1-, 2-, and 5-year CSS. The
17	25	prediction model was further evaluated by calibration curve, receiver operator characteristic (ROC)
18	26	curve and decision curve analysis (DCA) plot.
19	27	Results: The training set and validating set are similar in terms of clinical and demographic
20	28	features. The optimal cut-off values for LNR were 0.09 and 0.33, and for LODDS were -2.09 and
21	29	-0.65. CSS was significantly different by N, LNR and LODDS categories. The C-index of N stage
22	30	was lower than that of LNR or LODDS. The AIC of N stage was higher than that of LNR or
24	31	LODDS Independent predictors included race T stage M stage and LNR (or LODDS) and they
25	27	were incorporated in nomograms for 1 2 and 5 year CSS prediction Calibration plots showed
26	32	estimation process prediction. Cambration procession
27	33	satisfied results of internal and external validity of the homogram.
28	34	Conclusions: LNR and LODDS staging methods have better prognostic efficacy than traditional N
30	35	staging method in CGA patients with node metastasis. Besides, the two values are promising
31	36	substitute for N staging in nomogram development when other independent prognostic factors are
32	37	incorporated.
33	38	
34	39	Key words: Cardia: Adenocarcinoma: Stomach Neoplasms: Lymph Node Ratio: Neoplasm
35	40	Staging
37	10	Suging
38		
39		
40		
41		
42 43		
44		
45		
46		
47		
48 70		
51		
52		
53		
54		
56		
57		
58		
59		
60		

3	
4	
5	
د ~	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
<u>4</u> 7	
47	
48	
49	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	

1 2

41 Strengths and limitations of this study

- 42 This study used national cancer registry data for cardia gastric adenocarcinoma research;
- Novel staging methods based on the number of positive lymph node was established for . 44 prognostic prediction;
 - Nomograms based on the new staging methods were constructed and validated;
 - This study needs to be confirmed by other populations. •
- Patient consent form: The SEER database review is granted exemption from obtaining patients' 47
- 48 consents.

43

45

46

- 49 Word count: 3191 (excluding its abstract, acknowledgments, tables, figure legends, and
- 50 references) abstract 281.

51 Introduction

Gastric cancer (GC) generally includes 2 topographical categories: non-cardia GC that arises from more distant sites and cardia GC that arises in gastroesophageal junction (GEJ). In contrast to steady decline of non-cardia GC incidence, cardia GC occurs more frequently, particular in high-income countries (1, 2). This trend is associated with obesity, gastroesophageal reflux disease (GERD), and Barrett esophagus (2). In addition to different incidence trend, clinicalpathological feature and long-term survival vary between the two GC subtypes (3). For accurate prediction of survival, precise staging is required. The Tumor-Node-Metastasis (TNM) classification 7th edition by the American Joint Committee on Cancer (AJCC) recommends at least 15 lymph nodes (LN) collection for N staging (4, 5). However inadequate LN harvest frequently occurs due to many conditions, thus precise staging cannot be obtained sometimes. It has been demonstrated that LN ratio (LNR) could better estimate survival of GC patients after curative gastrectomy, regardless of the number of LN examined (6), and may be promising for aiding TNM staging system (7). Apart from that, log odds of positive LN (LODDS) outperformed N and LNR staging system when predicting survival of GC patients (8-10). Therefore the traditional N staging classification may be substituted with different methods, with even improved performance. Nevertheless little evidence evaluates the performance of the two LN staging systems aforementioned in cardia GC, since it has distinct clinical characteristics and epidemiology from overall GC.

Here we use nationwide cancer registry data to appraise the prognostic value of LNR and LODDS
in patients with node positive cardia gastric adenocarcinoma (CGA), and, if possible, construct
nomogram for survival prediction based on the new LN staging system.

73 Methods

74 Study design and Participants Selection

This study is a SEER register-based retrospective cohort study, which aimed to enroll patients
with node positive cardia gastric adenocarcinoma (CGA), review crucial clinical characteristics
and observe survival of this population. The source of SEER data is registered cancer cases from
various locations throughout the United States. The permission of data access was obtained by
sending application form and receiving confirmation mail with valid username (21268-Nov2019)
and password.

We used SEER*Stat (version 8.3.8) to access to Incidence - SEER Research Data, 18 Registries, Nov 2019 Sub 2000-2017 (SEER 18 database) (11) for collection of node positive CGA patients. The inclusion criteria were as follows: 1) the International Classification of Disease for Oncology, Third Edition (ICD-O-3) for primary tumor site was C16.0 (cardia); 2) broad histological recode was 8140-8389: adenomas and adenocarcinomas; 3) diagnostic confirmation was positive histology; 4) surgery was performed; 5) diagnosed during 2010-2015; 6) the definite number of regional positive nodes was clear and not zero. We excluded cases with unknown race, T stage information, tumor size and grade. As shown in Figure 1, the final cohort enrolled 1 038 patients with node positive CGA, of whom 857 were male and 181 were female. Three hundred and thirty eight (32.56%) were over 70 years old. Eight hundred and ninety six (86.32%) were white, 64 were black and 78 were other races. Next 70% of the entire patients were randomly assigned to

92 training set (N = 723) and the rest was assigned to validating set (N = 315).

93 Technical Information

The main outcome was cancer specific survival (CSS), which was referred to as death specifically due to CGA and the period between first diagnosis and death. In addition, we extracted the following variables for analysis: sex, race, age, AJCC 7th TNM stage information, tumor size, grade, number of regional nodes examined and number of regional nodes positive. The stage information was further corrected according to AJCC 8th criteria. LNR and LODDS were calculated as previously reported (12). Briefly, LNR was defined as the ratio of the number of positive nodes divided by the total number of examined nodes. LODDS was calculated using the formula: log(NPLN+0.50)/(NDLN-NPLN+0.50), in which 0.50 was added to both the numerator and denominator to avoid an infinite number.

The optimal thresholds for cutting LNR and LODDS into trichotomous variables were determined by X-tile software (version 3.6.1) (13), which were based on the maximal log-rank chi-square value that represented the greatest group difference of CSS probability. LNR and LODDS were cut into 3 levels because they are proposed as the alternative indicators for N stage in node positive GC that included N1, N2 and N3.

108 Statistics

The distributions of baseline features between training set and validating set were described and compared by chi-square test. Survival curves, median survival and CSS rates were generated using the Kaplan-Meier method. Outcome difference between groups was analyzed by the log-rank test. After testing proportional hazard assumption, multivariable Cox regression model was used to establish prognostic model for CSS. The prognostic power was evaluated using Akaike Information Criterion (AIC) and Harrell concordance index (C-index). A predictive model with lower AIC indicated better model fit, while with higher C-index indicated better discriminative ability. A value of C-index of 0.5 indicates no predictive power, and an index of 1.0 indicates complete differentiation. Cox stepwise regression analysis was also performed to construct nomogram for prediction of 1-, 2-, and 5-year CSS. Validation of nomogram was performed by internal and external calibration plots (14). Bootstraps with 1 000 resample were used for validation activities. Receiver operator characteristic (ROC) curves and areas under the ROC curves (AUCs) were calculated to evaluate how accurately the CSS was predicted by different models. Decision curve analysis (DCA) was performed to determine the clinical application of different model: the proportion of true positive results minus the proportion of false positive results, and then, the relative risks of false positive and false negative results were weighted to obtain the net benefits of decision-making. All statistical analyses were performed using R software (version 3.5.3). A two-tailed P value of less than 0.05 was considered statistically significant.

128 Patient and Public Involvement

56129The development of the research question and outcome measures were not informed by patients'57130priorities, experience, and preferences. The patients were involved during the retrospective review58131of public database where cases were diagnosed during 2010-2015. Patients were not involved in60132the recruitment to and conduct of the study. The findings of the study will be disseminated by

133 online article to all study participants whose identity kept confidential during the whole research.

Ethics approval statement

The Ethics committee(s) and IRB name: the Ethics Committee of Anhui Medical College; Reasonfor exemption: The observational nature of the study

137 Results

Table 1 summarized the demographic and clinical feature of the participants. Six hundred and twenty eight patients (60.50%) were diagnosed with a tumor less than 5cm. Six hundred and forty patients (61.66%) were with grade III or IV. The numbers of patients with T1, T2, T3 and T4 respectively were 94, 125, 717 and 102. The numbers of patients with N1, N2 and N3 respectively were 479, 330 and 229. Seventy five patients (7.23%) were with distant metastasis at presentation. The median CSS was 27 months. The 1-, 2- and 5-year CSS rates were 76.8%, 53.0% and 29.2%, respectively. There was no statistical difference of baseline characteristics between training set and validating set. The detailed information of the two sets was also presented in Table 1.

Table 1. Baseline information of the included patients with node positive CGA, N(%)

11(70).			
Groups	Training set	Validating set	P-value
	(N = 723)	(N = 315)	
Sex		\$	
Male	596 (82.43)	261 (82.86)	0.020
Female	127 (17.57)	54 (17.14)	0.939
Age			
<70	490 (67.77)	210 (66.67)	0.701
≥ 70	233 (32.23)	105 (33.33)	0.781
Race			
White	628 (86.86)	268 (85.08)	
Black	40 (5.53)	24 (7.62)	0.437
Others	55 (7.61)	23 (7.30)	
Tumor size			
<5cm	442 (61.13)	186 (59.05)	0.572
≥5cm	281 (38.87)	129 (40.95)	0.573
Grade			
I-II	279 (38.59)	119 (37.78)	0.050
III-IV	444 (61.41)	196 (62.22)	0.859
T stage			
T1a	17 (2.35)	4 (1.27)	
T1b	53 (7.33)	20 (6.35)	
T2	83 (11.48)	42 (13.33)	0.224
Т3	501 (69.29)	216 (68.57)	
T4a	49 (6.78)	28 (8.89)	
T4b	20 (2.77)	5 (1.59)	
N stage			
N1	332 (45.92)	147 (46.67)	0.921

N2	229 (31.67)	101 (32.06)	
N3	162 (22.41)	67 (21.27)	
M stage			
M0	678 (93.78)	285 (90.48)	0.070
M1	45 (6.22)	30 (9.52)	0.079
Low nodes yield			
Yes	532 (73.58)	243 (77.14)	0.300
No	191 (26.42)	72 (22.86)	
No. of nodes harvest	17 (12, 25)	16 (11, 24)	0.400
No. of positive nodes	3 (1, 6)	3 (1, 6)	1.000
Median survival (months)	28 (25, 32)	25 (21, 32)	0.361
CSS rate (%)			
1-year	77.0 (74.0, 80.2)	76.3 (71.6, 81.2)	
2-year	53.7 (50.1, 57.5)	51.4 (46.0, 57.5)	
5-year	30.3 (26.7, 34.5)	26.4 (20.9, 33.4)	

Abbreviation: CGA, cardia gastric adenocarcinoma; CSS, cancer-specific survival

According to X-tile software results, the optimal cut-off values for LNR were 0.09 and 0.33, and for LODDS were -2.09 and -0.65. Thus patients were separated into low (R1), medium (R2) or high LNR (R3) group, or low (L1), medium (L2) or high LODDS (L3) group. For model optimization, LNR and LODDS were also categorized into trichotomous factors using cut-off values of P₂₅ and P₇₅. The discrimination ability of the model based on interquartile was lower (Suppl. Table 1), so this model was not further analyzed. Next we illustrated the survival curves of the patients according to N, LNR or LODDS staging system. As shown in Figure 2 training set section, CSS was significantly different by all the three staging systems (all the log-rank P values < 0.0001); however the 95% CIs of N2 and N3 survival curve initially separated and partly overlapped afterwards. The inferior discriminative ability of N system was further supported by AIC and C-index. As shown in Table 2, the C-index of N stage was lower than that of LNR or LODDS. Similarly, the AIC of N stage was higher than that of LNR or LODDS. The clinical characteristics with statistical significance for CSS were further incorporated in the Cox regression model as potential confounders (Suppl. Table 2), and all the variables met proportional hazard assumption (Suppl. Figure 1). The prognostic value of adjusted model was better than crude mode generally. In addition, the value of LNR system seemed to be worse than LODDS system; however the difference was not noticeable, so we considered both of the systems into nomogram construction.

Table 2. Prognostic values of variables for patients with node positive CGA (N = 1 038).

Variables	Crude	ude model		Adjusted model		
	HR (95% CI)	C-index	AIC	HR (95% CI)	C-index	AIC
Training s	set (N = 723)					
N stage		0.582	5403		0.632	5365
N1	1 (ref)			1 (ref)		
N2	1.53 (1.24, 1.91)			1.42 (1.14, 1.77)		

N3	2.15 (1.70, 2.71)			2.03 (1.60, 2.59)		
LNR*		0.607	5376		0.643	5350
R1	1 (ref)			1 (ref)		
R2	1.88 (1.44, 2.44)			1.74 (1.33, 2.29)		
R3	3.02 (2.30, 3.97)			2.63 (1.97, 3.50)		
LODDS*		0.609	5373		0.644	5346
L1	1 (ref)			1 (ref)		
L2	1.93 (1.48, 2.51)			1.80 (1.36, 2.37)		
L3	3.13 (2.38, 4.13)			2.77 (2.07, 3.70)		
Validating	set (N = 315)					
N stage		0.596	1957		0.675	1931
N1	1 (ref)			1 (ref)		
N2	1.81 (1.31, 2.51)			1.75 (1.25, 2.46)		
N3	2.18 (1.51, 3.15)			2.23 (1.50, 3.30)		
LNR*		0.646	1927		0.691	1913
R1	1 (ref)			1 (ref)		
R2	2.20 (1.47, 3.30)			1.91 (1.26, 2.90)		
R3	4.16 (2.76, 6.28)			3.58 (2.30, 5.56)		
LODDS*		0.647	1927		0.789	1914
L1	1 (ref)			1 (ref)		
L2	2.07 (1.39, 3.09)			2.08 (1.38, 3.14)		
L3	4.22 (2.79, 6.39)		5	4.10 (2.65, 6.34)		

Abbreviations: CGA, cardia gastric adenocarcinoma; HR, hazard ratio; CI, confidence interval; AIC, Akaike information criterion; LNR, lymph node ratio; LODDS, log odds of positive lymph nodes.

Adjusted model considered race, tumor size, grade, T stage and M stage.

* cut-off values for LNR were 0.09 and 0.33, and for LODDS were -2.09 and -0.65.

Stepwise Cox regression analysis showed race, tumor grade, low nodes yield, T stage, M stage and LNR (or LODDS) were independent predictors, so these factors were included in nomograms. For both LNR and LODDS, the total score was 40, and higher score suggested lower survival (Figure 3 and Suppl. Figure 2). Next calibration plot was used to assess the internal and external validity of the nomogram (Figure 3 and Suppl. Figure 2). Since the cross-spot line was generally close to the grey reference line, we concluded the predicted CSS was well correlated with the actual situation. In addition, ROC curves indicated that the AUC of the model based on N stage was lower than that of the model based on the nomogram of LNR or LODDS (Suppl. Figure 3). DCA plot also showed that the nomogram model was superior to traditional model (Suppl. Figure 3).

174 Discussion

The present study analyzes national cancer registry databases and demonstrates that survival of patients with node-positive CGA is well predicted when the traditional N staging method is substituted with LNR or LODDS system. This finding both exists in training and validating sets. In training set, the survival curves separate clearly when patient grouping is implemented by LNR or LODDS method, which is not achieved by traditional N staging system. Adjusted model that

simultaneously considers staging, clinical and demographic features outperforms crude model that only takes staging into account. Therefore multiple independent survival factors are incorporated in nomogram construction, which suggests older age at diagnosis, white, higher grade, greater tumor infiltration, higher proportion of positive LN, and metastasis as risk factors. The nomograms perform steadily in 1-, 2- and 5-year CSS prediction as the validation plots show.

Previous studies have demonstrated the superiority of LNR or LODDS for prognostic prediction in GC after surgical resection (8-10, 15-17). However the GC patients are not further separated and investigated according to primary tumor site, since there is much difference between cardia and non-cardia GC in terms of tumor features, etiological factors, and biological behaviors (3). In AJCC cancer staging 7th edition, tumors involving EGJ was categorized as esophagus cancer (5), which was however argued by the viewpoint that GC staging system has a better ability to predict survival of EGJ tumor (18, 19). In the latest 8th edition (20), a tumor that has its epicenter within 2 cm of EGJ and involves the EGJ (Siewert type I/II) is classified as esophageal cancer. Other situation, including a tumor with epicenter more than 2 cm from EGJ or a tumor located with 2 cm of EGJ but does not involve EGJ, is classified as stomach cancer. The superiority of the new system is confirmed by a retrospective observational study from two high-volume institutions in China, regardless of Siewert type (21). In terms of Siewert type II junctional adenocarcinoma, a marginal advantage of the esophagus cancer system is found in discriminating survival rates after 3 and 5 years, however the advantage of GC system lies in division of the N3 category into N3a and N3b, so the authors concludes neither the esophageal nor the stomach staging system is flawless in predicting survival in Siewert type II junctional cancer (22). Above all, CGA is probably a special entity that has a different biological property compared with genuine gastric and genuine esophageal cancer. To the best of our knowledge, the present study first reveals a superior performance of prognostic prediction based on LNR or LODDS in node positive CGA patients. Unfortunately we are unable to consider Siewert type due to unavailable information from SEER database; therefore we encourage further studies to pay special attention on tumor location.

LNR and LODDS have been proved to be the strongest indictors of survival in gastric adenocarcinoma when LN harvest is inadequate (16, 17). It is demonstrated that in general, more LN resection is associated with better survival, which may be the result of either improved N classification or a therapeutic effect of lymphadenectomy. For esophageal cancer, worldwide data shows that yielding 10 nodes for pT1, 20 for pT2, and 30 or more for pT3/T4 is recommended for maximum 5-year survival (23). For GC, greater LN harvest also shows improved survival (24). It is suggested that at least 16 nodes be assessed pathologically and evaluation of more than 30 nodes is desirable (25). Overall it is encouraged to harvest as many LN as possible, balancing the extent of LN resection necessary for accurate N staging and maximum survival without unnecessarily increasing the morbidity of radical lymphadenectomy. Nevertheless, many conditions would lead to insufficient LN harvest. It is estimated that only one fifth GC patients have sufficient LN examined in Iran (26), while more than 15 LNs are examined in 64% of patients in the US (25). The LNR and LODDS staging methods do not require adequate number of LN assessment. In the present study, low nodes yield is a risk factor for poor survival in univariate analysis; however it loses significance in LNR or LODDS based multivariate model, which indicates that it probably exerts little impact with consideration of LNR or LODDS. In fact, the

BMJ Open

new node category method is stable when nodal assessment is insufficient during surgery not only
for GC (8, 15-17) but also for colorectal cancer (27), esophageal cancer (28), oral squamous cell
carcinoma (29), gallbladder cancer (30), etc.

The association between LNR and survival is an exciting aspect of cardia GC that is currently emerging and may be clinically meaningful. The higher ratio of positive LN indicates worse outcome in cardia GC. Patients are at 2-3 folds higher risk of cancer specific death if the ratio is over 33%. The ratio of 9-33% also indicates a double risk. This effect is independent of other crucial clinical characteristics, thus providing a useful tool for surgeons to predict the prognosis, and to be taken as evidence for the surgeon to tend towards truly radical, i.e., complete lymph node clearance rather than limited clearance (31). In addition, LNR minimizes the "stage migration" phenomenon that can be observed using the current N staging system (32).

One limitation of this study is that some important factors that are associated with survival are not considered in the model due to unavailable data source. For example, ECOG/KPS score is commonly taken into account in survival analysis due to its remarkable relationship with general status and prognosis. Unfortunately the SEER 18 database does not record the score at diagnosis, so the impact of it is not considered in this analysis. Treatment mode is also associated with clinical outcome. This study enrolled patients who received gastric resection; however other information about chemo- or radiotherapy is not available in SEER 18 database. Randomized clinical trial demonstrates that compared with surgery alone, preoperative administration of carboplatin and paclitaxel with concurrent radiotherapy significantly improved overall survival among patients with esophageal or GEJ cancer (HR = 0.657) (33). The NCCN clinical practice guidelines for GEJ cancer recommend preoperative chemoradiation or perioperative chemotherapy due to substantial survival benefit compared with surgery alone (34). To overcome this limitation, a database that provides with fully detailed medical records is needed for analysis. In addition, consideration of the potential factors aforementioned would greatly improve prognostic power of survival prediction model. Another limitation is that our results are based on training set and confirmed by validating set; however the features of the two groups are similar. So this finding needs to be proved among populations with distinct features.

In conclusion, LNR and LODDS staging methods have better prognostic efficacy than traditional
 N staging method in CGA patients with regional node metastasis. Besides, the two values are
 promising substitute for N staging in nomogram development when other independent prognostic
 factors are incorporated.

a. Contributorship statement: WXQ work conception, data interpretation, critical review for important content, final approval of the manuscript and agreement to be accountable for all aspects of the work; BM administrative work, funding, critical review for important content, final approval of the manuscript and agreement to be accountable for all aspects of the work;
 258 final approval of the manuscript and agreement to be accountable for all aspects of the work;
 259 ZC acquisition, analysis of data, drafting the work, final approval of the manuscript and agreement to be accountable for all aspects of the work.

b. Competing interests: None.

262 c. Funding: This work was supported by [Major Project of Natural Science of Anhui Provincial
 263 Department of Education] grant number [KJ2019ZD73] and [Domestic Visiting Study Project
 264 for Outstanding Young Talents in Colleges and Universities in Anhui Province] grant number

 265 [2021]. d. Data sharing statement: Dataset available from the SEER website (https://seer.cancer.gov/data-software/). 268 269 Acknowledgement: We thank all patient advisers for their special contribution. 270 271 271 271 271 271 271 272 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, [Journal Article]. 2018 2018-11-01;68(6):394-424. 2. Abdi F, Latifi-Navid S, Zahri S, Vazdanbod A, Pourfarzi F. Risk factors predisposing to cardia gastric adenocarcinoma: Insights and new perspectives. Cancer Med. [Journal Article; Research Support, Non-U.S. Gov't; Review]. 2019 2019-10-01;8(13):6114-26. 3. Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92. 283 5. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th edition:: Springer; 2009. 6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node ratio could be a prognostic infecator for patients with gastric cancer. WORLD J SURG ONCOL. [Journal Article]: 2018 2018-10-01;51:76-83. 291 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Integrated analysis of the prognostic role of the lymph node ratio in inode-positive gastric cancer: A meta-analysis. INT J SURG, Journal Article; Meta-Analysis; Review]. 2018 2018-00-1;57:76-83. 293 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category
265 [2021]. 266 d. Data sharing statement: Dataset available from the SEER website 267 (https://secr.cancer.gov/data-software/). 268 Acknowledgement: We thank all patient advisers for their special contribution. 270 References: 271 References: 272 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: 273 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 274 Cancer J Clin. [Journal Article]. 2018 2018-11-01;68(6):394-424. 275 2. Abdi F, Latifi-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardia 276 gastric adenocarcinoma: Insights and new perspectives. Cancer Med. [Journal Article; Research 277 Support, Non-U.S. Gov't, Review]. 2019 2019-10-01;8(13):6114-26. 278 3. Amini N, Spolverato G, Kim Y, Squires MLH, Poultsides GA, Fields R, et al. Clinicopathological 279 features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG 279 ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92. 281 4. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.: 279 Wiley-Blackwell; 2009.
5 266 d. Data sharing statement: Dataset available from the SEER website 6 267 (https://seer.cancer.gov/data-software/). 7 268 9 269 Acknowledgement: We thank all patient advisers for their special contribution. 10 270 11 References: 12 271 References: 13 272 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: 14 272 271 References: 15 273 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 16 274 Cancer J Clin. [Journal Article]. 2018 2018-11-01;68(6):394-424. 17 2 Abdi E, Latifi-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardia 17 gastric adenocarcinoma: Insights and new perspectives. Cancer Med. [Journal Article; Research 207 Support, Non-U.S. Govt; Review]. 2019 2019-10-01;8(13):6114-26. 218 4. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition: 229 6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node ratio: springer; 2009. 219 5. Edge S, Byr
6 267 (https://seer.cancer.gov/data-software/). 8 269 Acknowledgement: We thank all patient advisers for their special contribution. 10 270 11 271 References: 12 271 References: 13 272 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: 14 272 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: 15 273 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 16 274 Cancer J Clin. [Journal Article]. 2018 2018-11-01/68(6):394-424. 17 2. Abdi E, Latifi-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardia 18 275 2. Abdi E, Latifi-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardia 19 gastric adenocarcinoma: Insights and new perspectives. Cancer Med. [Journal Article; Research 207 Support, Non-U.S. Govt; Review]. 2019 2019-10-01;8(13):6114-26. 218 3. Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological 219 features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG 220
7 268 9 269 9 269 9 269 10 270 11 270 12 271 13 272 14 272 15 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: 16 274 17 Cancer J Clin. [Journal Article]. 2018 2018-11-01;68(6):394-424. 18 275 27 Abdi E, Latifi-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardia 19 276 277 Support, Non-U.S. Gov't, Review]. 2019 2019-10-01;8(13):6114-26. 278 3. Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological 19 Features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG 279 features and prognosis of gastric cardia denocarcinoma: a multi-institutional US study. J SURG 280 ONCOL. [Comparative Study: Journal Article; Multicenter Study]. 2015-03-01;111(3):285-92. 281 4. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition: 282 5. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A
Acknowledgement: We thank all patient advisers for their special contribution. Display References: Image: Stress of the stress
10 270 11 271 References: 12 271 References: 13 272 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: 15 273 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 16 274 Cancer J Clin. [Journal Article]. 2018 2018-11-01;68(6):394-424. 17 2. Abdi E, Latifi-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardia 19 gastric adenocarcinoma: Insights and new perspectives. Cancer Med. [Journal Article; Research 201 3. Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological 10 features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG 202 ONCOL. [Comparative Study: Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92. 21 4. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.: 212 Wiley-Blackwell; 2009. 223 5. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th 224 edition.: Springer; 2009. 31 6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node
Image: Second
Image: Second
 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. [Journal Article]. 2018 2018-11-01;68(6):394-424. Abdi E, Latifi-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardia gastric adenocarcinoma: Insights and new perspectives. Cancer Med. [Journal Article; Research Support, Non-U.S. Gov't, Review]. 2019 2019-10-01;8(13):6114-26. Sa Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.: Wiley-Blackwell; 2009. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th edition: Springer; 2009. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. [Journal Article]. 2018 2018-10-04;16(1):198. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journ
15273GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA16274Cancer J Clin. [Journal Article]. 2018 2018-11-01;68(6):394-424.172.Abdi E, Latifi-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardia19276gastric adenocarcinoma: Insights and new perspectives. Cancer Med. [Journal Article; Research20277Support, Non-U.S. Gov't; Review]. 2019 2019-10-01;8(13):6114-26.212783. Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological23797features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG24280ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92.252814. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.:27282Wiley-Blackwell; 2009.2835. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th290edition: Springer; 2009.2856. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node286ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL.287290Neta-Analysis; Review]. 2018-01-04;16(1):198.397. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role36289of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article];382918. Sun Z
 Cancer J Clin. [Journal Article]. 2018 2018-11-01;68(6):394-424. C. Abdi E, Latifi-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardia gastric adenocarcinoma: Insights and new perspectives. Cancer Med. [Journal Article; Research Support, Non-U.S. Gov't, Review]. 2019 2019-10-01;8(13):6114-26. Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92. K. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.: Wiley-Blackwell; 2009. S. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th edition.: Springer; 2009. G. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. [Journal Article]. 2018 2018-10-04;16(1):198. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article]. 2018 2018-09-01;57:76-83. S. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with Ro resection. CANCER-AM CANCER SOC. [Journal Article]: Research Support, Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 Abdi E, Latifi-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardia gastric adenocarcinoma: Insights and new perspectives. Cancer Med. [Journal Article; Research Support, Non-U.S. Govt; Review]. 2019 2019-10-01;8(13):6114-26. Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.: Wiley-Blackwell; 2009. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th edition: Springer; 2009. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th edition: Springer; 2009. Iournal Article]. 2018 2018-10-04;16(1):198. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, Non-U.S. Gov'l]. 2010 2010-06-01;116(11):2571-80. Zhao E, Zhou C, Chen S. Prognostic nonogram based on log odds of positive lymph nodes for gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 gastric adenocarcinoma: Insights and new perspectives. Cancer Med. [Journal Article; Research Support, Non-U.S. Govt; Review]. 2019 2019-10-01;8(13):6114-26. 3. Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92. 4. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.: Wiley-Blackwell; 2009. 5. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th edition.: Springer; 2009. 6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. [Journal Article]. 2018 2018-10-04;16(1):198. 7. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, 9. Zhao E, Zhou C, Chen S. Prognostic nonogram based on log odds of positive lymph nodes for gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 Support, Non-U.S. Gov't; Review]. 2019 2019-10-01;8(13):6114-26. Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.: Wiley-Blackwell; 2009. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th edition.: Springer; 2009. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. [Journal Article]. 2018 2018-10-04;16(1):198. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.: Wiley-Blackwell; 2009. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th edition.: Springer; 2009. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. [Journal Article]. 2018 2018-10-04;16(1):198. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92. 4. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.: Wiley-Blackwell; 2009. 5. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th edition.: Springer; 2009. 6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. [Journal Article]. 2018 2018-10-04;16(1):198. 7. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article]; Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 280 ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92. 281 4. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.: 282 Wiley-Blackwell; 2009. 283 5. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th 284 edition.: Springer; 2009. 285 6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node 286 ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. 287 [Journal Article]. 2018 2018-10-04;16(1):198. 7. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role 289 of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article]; 290 Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. 291 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a an ovel prognostic indicator superior to the number-based and the ratio-based N category for gastric 293 cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, 294 Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 295 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for 296 gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. 2010. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 281 4. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.: 282 Wiley-Blackwell; 2009. 283 5. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th 284 edition.: Springer; 2009. 285 6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node 286 ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. 287 [Journal Article]. 2018 2018-10-04;16(1):198. 288 7. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role 290 of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; 290 Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. 291 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a 292 novel prognostic indicator superior to the number-based and the ratio-based N category for gastric 293 cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, 294 Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 295 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for 295 2019-12-01;15(36):4207-22. 2019-12-01;15(36):4207-22. 2019-12-01;15(36):42
 Wiley-Blackwell; 2009. S. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th edition.: Springer; 2009. 6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. [Journal Article]. 2018 2018-10-04;16(1):198. 7. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article] 2018 2018-09-01;57:76-83. 291 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article]: Research Support, Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 27 100 100 100 100 100 100 100 100 100 10
 284 edition.: Springer; 2009. 285 6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node 286 ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. 287 [Journal Article]. 2018 2018-10-04;16(1):198. 288 7. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role 290 of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; 290 Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. 291 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a 292 novel prognostic indicator superior to the number-based and the ratio-based N category for gastric 293 cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, 294 Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 295 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for 296 gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. 208 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 264 Culton. Springer, 2009. 285 6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node 286 ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. 287 [Journal Article]. 2018 2018-10-04;16(1):198. 288 7. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role 289 of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; 290 Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. 291 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a 291 novel prognostic indicator superior to the number-based and the ratio-based N category for gastric 293 cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, 294 Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 39 39 39 30 31 31 32 33 34 35 35 36 37 38 39 39 30 30 31 31 32 33 34 35 35 36 37 38 39 39 30 31 31 32 33 34 35 35 36 37 38 39 39 30 30 31 31 32 32 33 34 35 35 36 37 37 38 39 39 30 30 31 31 31 32 32 33 34 35 35 36 37 38 39 39 30 30 31 31 32 32 33 34 35 35 36 37 38
 285 0. Hou T, wang X, ench J. Hoghostic significance of inclastate lymph node ratio. the lymph node 286 ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL. 287 [Journal Article]. 2018 2018-10-04;16(1):198. 7. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; 290 Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. 291 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a an ovel prognostic indicator superior to the number-based and the ratio-based N category for gastric 293 cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, 294 Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 39 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for 296 gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. 208 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 Iaub could be a phoghostic indicator for patients with gastric carter. WORED J SORG ORCOL. [Journal Article]. 2018 2018-10-04;16(1):198. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 Journal Afficiel. 2018 2016-10-04, 10(1):190. 288 7. Zhu J, Xue Z, Zhang S, Guo X, Zhai L, Shang S, et al. Integrated analysis of the prognostic role of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. 290 Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. 291 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric 293 294 novel prognostic indicator superior. CANCER-AM CANCER SOC. [Journal Article; Research Support, 294 Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 295 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for 296 297 2019-12-01;15(36):4207-22. 298 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 288 7. Zhu J, Xue Z, Zhang S, Guo X, Zhan L, Shang S, et al. Integrated analysis of the prognostic fole 289 of the lymph node ratio in node-positive gastric cancer: A meta-analysis. INT J SURG. [Journal Article; 290 Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. 291 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a 292 novel prognostic indicator superior to the number-based and the ratio-based N category for gastric 293 cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, 294 Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 295 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for 296 gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. 47 48
 36 289 of the fymph node ratio in node-positive gastric cancer. A meta-analysis. INTJ SORG. [Journal Article, 37 290 Meta-Analysis; Review]. 2018 2018-09-01;57:76-83. 38 291 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a 40 292 novel prognostic indicator superior to the number-based and the ratio-based N category for gastric 41 293 cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, 42 294 Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 43 295 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for 45 296 gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 46 297 2019-12-01;15(36):4207-22. 47 298 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 Meta-Analysis, Review]. 2018 2018-09-01;57:76-83. 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 8. Sun Z, Xu Y, Li DM, Wang ZN, Zhu GL, Huang BJ, et al. Log odds of positive lymph nodes: a novel prognostic indicator superior to the number-based and the ratio-based N category for gastric cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 2019-12-01;15(36):4207-22. 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 40 292 novel prognostic indicator superior to the number-based and the ratio-based N category for gastric 41 293 cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, 42 294 Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 43 295 9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for 45 296 gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 46 297 2019-12-01;15(36):4207-22. 47 298 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 293 cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support, 42 43 44 45 46 47 48 298 40. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 294 Non-U.S. Gov't]. 2010 2010-06-01;116(11):2571-80. 43 44 45 45 46 47 48 48 498 40 410 410
 295 44 295 45 296 45 296 46 297 2019-12-01;15(36):4207-22. 47 48 298 40. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 45 296 gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019 46 297 2019-12-01;15(36):4207-22. 47 298 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
 297 2019-12-01;15(36):4207-22. 47 298 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
298 10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph
49 299 nodes (LODDS) for prognostic prediction after gastric cancer surgery: a multi-institutional analysis of
50 300 7620 patients in China. SURG TODAY. [Journal Article]. 2021 2021-01-01;51(1):101-10.
301 11. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov)
53 302 SEER*Stat Database: Incidence - SEER Research Data, 18 Registries, Nov 2019 Sub (2000-2017) -
54 303 Linked To County Attributes - Time Dependent (1990-2017) Income/Rurality, 1969-2018 Counties,
⁵⁵ 304 National Cancer Institute, DCCPS, Surveillance Research Program, released April 2020, based on the
57305November 2019 submission
5830612.Yu Y, Zhang P, Yao R, Wang J, Wang P, Xue X, et al. Prognostic value of log odds of positive
59 307 lymph nodes in node-positive lung squamous cell carcinoma patients after surgery: a SEER

1 2		
2 3	208	population based study. Transl Lung Cancer Res. [Journal Article], 2020, 2020, 08, 01:0(4):1285, 201
4	300	13 Camp RI Dolled Filhart M Rimm DI X-tile: a new bio informatics tool for biomarker
5	305	assessment and outcome-based cut-point optimization CLIN CANCER RES [Journal Article:
0 7	211	Assessment and outcome-based cut-point optimization. CEIN CANCER RES. Journal Attice,
8	212	Research Support, Non-U.S. Gov I, Research Support, U.S. Gov I, Non-F.H.S., Research Support, U.S. Covit, P_{11} , P_{12} ,
9	312	Govi, P.H.S.J. 2004 2004-11-01;10(21):7252-9.
10 11	313	14. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer
12	314	prognosis. J CLIN ONCOL. [Journal Article; Review]. 2008 2008-03-10;26(8):1364-70.
13	315	15. Jian-Hui C, Shi-Rong C, Hui W, Si-le C, Jian-Bo X, Er-Tao Z, et al. Prognostic value of three
14	316	different lymph node staging systems in the survival of patients with gastric cancer following D2
15 16	317	lymphadenectomy. Tumour Biol. [Journal Article]. 2016 2016-08-01;37(8):11105-13.
10	318	16. Aurello P, Petrucciani N, Nigri GR, La Torre M, Magistri P, Tierno S, et al. Log odds of positive
18	319	lymph nodes (LODDS): what are their role in the prognostic assessment of gastric adenocarcinoma? J
19	320	GASTROINTEST SURG. [Comparative Study; Journal Article]. 2014 2014-07-01;18(7):1254-60.
20 21	321	17. Kilic MO, Gundogdu SB, Ozden S, Saylam B, Tez M. The prognostic value of different node
21	322	staging systems in patients with =15 lymph nodes following surgery for gastric adenocarcinoma.</td
23	323	ACTA CHIR BELG. [Journal Article]. 2018 2018-02-01;118(1):1-6.
24	324	18. Suh YS, Han DS, Kong SH, Lee HJ, Kim YT, Kim WH, et al. Should adenocarcinoma of the
25	325	esophagogastric junction be classified as esophageal cancer? A comparative analysis according to the
20	326	seventh AJCC TNM classification. ANN SURG. [Comparative Study; Journal Article; Research
28	327	Support, Non-U.S. Gov't]. 2012 2012-05-01;255(5):908-15.
29	328	19. Huang Q, Shi J, Feng A, Fan X, Zhang L, Mashimo H, et al. Gastric cardiac carcinomas involving
30 31	329	the esophagus are more adequately staged as gastric cancers by the 7th edition of the American Joint
32	330	Commission on Cancer Staging System. Mod Pathol. [Journal Article; Research Support, Non-U.S.
33	331	Gov't; Validation Study]. 2011 2011-01-01;24(1):138-46.
34	332	20. Amin M, Edge S, Greene F, Byrd D, Brookland R. AJCC cancer staging manual. 8th edition.:
35 36	333	Springer; 2016.
37	334	21. Liu K, Feng F, Chen XZ, Zhou XY, Zhang JY, Chen XL, et al. Comparison between gastric and
38	335	esophageal classification system among adenocarcinomas of esophagogastric junction according to
39	336	AICC 8th edition: a retrospective observational study from two high-volume institutions in China
40 41	337	GASTRIC CANCER [Comparative Study: Journal Article: Observational Study] 2019
42	338	2019-05-01·22(3)·506-17
43	330	22 Karstens KF Ghadhan T Sawez S Konczalla I. Woestemeier A. Bachmann K. et al. Comparison
44 45	340	of the 8th UICC staging system for esophageal and gastric cancers in Siewert type II junctional
46	3/1	adenocarcinomas Eur I Surg Oncol [Comparative Study: Journal Article] 2020 2020.04.01:46(4 Pt
47	341	A)-638-43
48	242	A).050-45.
49 50	242	25. KIZK NF, ISIWaran H, KICE TW, Chen LQ, Schipper FH, Kesler KA, et al. Optimum
51	344 245	control 2010 2010 01 01-251(1):46 50
52	345	$G(v_1) = 2010 = 2010 - 01 - 01; 251(1):46 - 30.$
53	346	24. Macalindong SS, Kim KH, Nam BH, Kyu KW, Kubo N, Kim JY, et al. Effect of total number of
54 55	347	harvested lymph nodes on survival outcomes after curative resection for gastric adenocarcinoma:
56	348	tindings from an eastern high-volume gastric cancer center. BMC CANCER. [Journal Article;
57	349	Research Support, Non-U.S. Gov'tJ. 2018 2018-01-12;18(1):73.
58 50	350	25. Schoenleber SJ, Schnelldorfer T, Wood CM, Qin R, Sarr MG, Donohue JH. Factors influencing
60	351	lymph node recovery from the operative specimen after gastrectomy for gastric adenocarcinoma. J

352 GASTROINTEST SURG. [Journal Article]. 2009 2009-07-01;13(7):1233-7.

- 26. Khanjani N, Mirzaei S, Nasrolahi H, Hamedi SH, Mosalaei A, Omidvari S, et al. Insufficient
 lymph node assessment in gastric adenocarcinoma. J Egypt Natl Canc Inst. [Journal Article]. 2019
 2019-10-22;31(1):2.
- 356 27. Pei JP, Zhang CD, Fan YC, Dai DQ. Comparison of Different Lymph Node Staging Systems in
 357 Patients With Resectable Colorectal Cancer. FRONT ONCOL. [Journal Article]. 2018
 358 2018-01-20;8:671.
- 12
 13
 13
 14
 15
 14
 15
 14
 15
 14
 15
 16
 16
 17
 18
 18
 19
 19
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 <
- 362 29. Jin W, Zhu Z, Wu Y, Ding X, Wu H, Song X, et al. Prognostic value of log odds of positive
 363 lymph nodes in patients with resectable oral squamous cell carcinoma. ORAL ONCOL. [Journal
 364 Article; Research Support, Non-U.S. Gov't]. 2020 2020-09-01;108:104709.
- 365 30. Li J, Sun Y, Zhao B, Tang C, Fan D, Jiang W, et al. Lymph Node Ratio-Based Staging System for
 366 Gallbladder Cancer With Fewer Than Six Lymph Nodes Examined. FRONT ONCOL. [Journal
 367 Article]. 2020 2020-01-20;10:542005.
- 368 31. Spillane AJ, Cheung BL, Winstanley J, Thompson JF. Lymph node ratio provides prognostic information in addition to american joint committee on cancer N stage in patients with melanoma, even if quality of surgery is standardized. ANN SURG. [Journal Article]. 2011 2011-01;253(1):109-15.
- 371 32. Rosa F, Tortorelli AP, Alfieri S, Doglietto GB. Lymph node ratio for gastric cancer: useful instrument or just an expedient to retrieve fewer lymph nodes? ANN SURG. [Letter; Comment]. 2014
 373 373 2014-04-01;259(4):e65.
- 32 374 33. van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge HM, Wijnhoven BP, et al.
 33 375 Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. [Journal Article;
 34 376 Multicenter Study; Randomized Controlled Trial; Research Support, Non-U.S. Gov't]. 2012
 36 377 2012-05-31;366(22):2074-84.
- 37 378 34. Ajani JA, D'Amico TA, Bentrem DJ, Chao J, Corvera C, Das P, et al. Esophageal and
 38 379 Esophagogastric Junction Cancers, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J
 40 380 Natl Compr Canc Netw. [Journal Article]. 2019 2019-07-01;17(7):855-83.
 - 382 Illustrations

381

- 383 Figure 1. Flow diagram of patient selection and grouping.
- 45 384 Figure 2. Survival curves of training and validating sets by different staging systems.
- 46 385 Figure 3. Construction of nomogram based on Tumor-Lymph node ratio-Metastasis stating system
 47 386 and calibration plots for the nomogram.
- 386 and calibration plots for t
 387
- Suppl. Figure 1. Plots of Schoenfeld, Martingale, and Deviance residuals for proportional hazard
 assumption test in models that incorporate N stage, lymph node ratio and log odds of positive
 lymph nodes.
- Suppl. Figure 2. Construction of nomogram based on Tumor-Log odds of positive lymph nodes
 -Metastasis stating system and calibration plots for the nomogram.
- Suppl. Figure 3. Receiver operator characteristic (ROC) curves and decision curve analysis (DCA)
- 58 394 plots for comparison of the prediction powers of the different models.
- 59 60

41

42

43

44

1 2 3

4

5 6

1
2
2
1
4
2
6
7
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
37
38
39
10
40
41
42
43
44
45
46
47
48
49
50
51
52
52
22
54
55
56
57
58
59

60

Supplementary	Table	1.	Comparison	of	the	discrimination	ability	of	different	models	based	on
different cutoff	values.											

	Crude	model		Adjusted model				
	HR (95% CI)	C-index	AIC		HR (95% CI)	C-index		
LNR								
Cutoff_1		0.607	5376		0.643	5350		
< 0.09	1 (ref)			1 (ref)				
0.09~0.33	1.88 (1.44, 2.44)			1.74 (1.33, 2.29)				
>0.33	3.02 (2.30, 3.97)			2.63 (1.97, 3.50)				
Cutoff_2		0.605	5378		0.641	5355		
< 0.09	1 (ref)			1 (ref)				
0.09~0.40	1.97 (1.52, 2.54)			1.85 (1.38, 2.54)				
>0.40	3.16 (2.38, 4.21)			2.72 (2.02, 3.67)				
LODDS								
Cutoff_1		0.609	5373		0.644	5346		
<-2.09	1 (ref)			1 (ref)				
-2.09~-0.65	1.93 (1.48, 2.51)			1.80 (1.36, 2.37)				
>-0.65	3.13 (2.38, 4.13)			2.77 (2.07, 3.70)				
Cutoff_2		0.605	5378		0.640	5352		
<-2.10	1 (ref)			1 (ref)				
-2.09~-0.37	2.00 (1.54, 2.59)			1.86 (1.42, 2.44)				
>-0.37	3.26 (2.45, 4.33)			2.83 (2.10, 3.81)				

Cutoff_1 was generated by minimal p-value method via X-tile software, cutoff_2 was generated using P25 and P75.

Supplementary rable 2. Onivariate analysis of the potential confounders.
--

arables $HK (95\% C1)$ $P-Value$ ge (increased by 10ys) $1.06 (0.98 - 1.14)$ 0.065 umor size (increased by 1cm) $1.13 (1.06 - 1.19)$ <0.001 exMale1Female $1.09 (0.89 - 1.34)$ 0.386 ace0Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 rade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 I1 $N1$ $2.61 (2.00 - 3.39)$ ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	anables $HR (95\% C1)$ $P-Value$ $ge (increased by 10ys)$ $1.06 (0.98 - 1.14)$ 0.065 $vimor size (increased by 1cm)$ $1.13 (1.06 - 1.19)$ <0.001 ex $Male$ 1Female $1.09 (0.89 - 1.34)$ 0.386 $lace$ 0 0 Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 $irade$ 0 G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 $rade$ 0 0 $rade$ 0 0.009 $rade$ 0.001 </th <th>Supplementary Table 2. Univaria</th> <th>LUD (05% CI)</th> <th>tial confounders.</th>	Supplementary Table 2. Univaria	LUD (05% CI)	tial confounders.
$\begin{array}{c} 1.00 \ (0.96 - 1.14) & 0.003 \\ 0.001 \\ $	loge (increased by roys)1.00 $(0.95 - 1.14)$ 0.003'umor size (increased by 1cm)1.13 $(1.06 - 1.19)$ <0.001exMale1Female1.09 $(0.89 - 1.34)$ 0.386tace0Others1Black1.42 $(0.91 - 2.21)$ 0.118White1.57 $(1.13 - 2.19)$ 0.007Gl1G2-32.08 $(1.20 - 3.60)$ 0.009G43.08 $(1.32 - 7.22)$ 0.009G43.08 $(1.32 - 7.22)$ 0.001N1NN11N21.61 $(1.34 - 1.93)$ <0.001N32.15 $(1.77 - 2.62)$ <0.001M1M12.61 $(2.00 - 3.39)$ <0.001own nodes yieldNo1Yes1.64 $(1.35 - 1.99)$ <0.001	variables	$\frac{\text{HR}(95\% \text{CI})}{1.06(0.08 - 1.14)}$	P-value
$\begin{array}{c} \text{Male} & 1 \\ \text{Female} & 1.09 (0.89 - 1.34) & 0.386 \\ \text{ace} \\ \text{Others} & 1 \\ \text{Black} & 1.42 (0.91 - 2.21) & 0.118 \\ \text{White} & 1.57 (1.13 - 2.19) & 0.007 \\ \text{rade} \\ \text{G1} & 1 \\ \text{G2-3} & 2.08 (1.20 - 3.60) & 0.009 \\ \text{G4} & 3.08 (1.32 - 7.22) & 0.009 \\ \text{T1-2} & 1 \\ \text{T3-4} & 1.70 (1.38 - 2.10) & <0.001 \\ \text{N1} & 1 \\ \text{N2} & 1.61 (1.34 - 1.93) & <0.001 \\ \text{N3} & 2.15 (1.77 - 2.62) & <0.001 \\ \text{I} \\ \text{M0} & 1 \\ \text{M1} & 2.61 (2.00 - 3.39) & <0.001 \\ \text{ow nodes yield} \\ \text{No} & 1 \\ \text{Yes} & 1.64 (1.35 - 1.99) & <0.001 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Age (increased by 10ys)	1.00(0.98 - 1.14) 1.12(1.06 - 1.10)	0.065
Ax1Male1Female $1.09 (0.89 - 1.34)$ 0.386 ace0Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 rade0G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	$\begin{array}{cccccccc} Male & 1 \\ Female & 1.09 (0.89 - 1.34) & 0.386 \\ tace \\ Others & 1 \\ Black & 1.42 (0.91 - 2.21) & 0.118 \\ White & 1.57 (1.13 - 2.19) & 0.007 \\ trade \\ G1 & 1 \\ G2 - 3 & 2.08 (1.20 - 3.60) & 0.009 \\ G4 & 3.08 (1.32 - 7.22) & 0.009 \\ T1 - 2 & 1 \\ T3 - 4 & 1.70 (1.38 - 2.10) & <0.001 \\ N \\ N1 & 1 \\ N2 & 1.61 (1.34 - 1.93) & <0.001 \\ N3 & 2.15 (1.77 - 2.62) & <0.001 \\ N3 & 2.15 (1.77 - 2.62) & <0.001 \\ M0 & 1 \\ M1 & 2.61 (2.00 - 3.39) & <0.001 \\ town odes yield \\ No & 1 \\ Yes & 1.64 (1.35 - 1.99) & <0.001 \\ \end{array}$	Tumor size (increased by Tcm)	1.13 (1.00 – 1.19)	<0.001
Female $1.09 (0.89 - 1.34)$ 0.386 ace Others 1 Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 rade G1 1 1 G2-3 2.08 (1.20 - 3.60) 0.009 G4 3.08 (1.32 - 7.22) 0.009 T1-2 1 T3-4 1.70 (1.38 - 2.10) <0.001 N1 1 1 N2 1.61 (1.34 - 1.93) <0.001 N3 2.15 (1.77 - 2.62) <0.001 M0 1 M1 2.61 (2.00 - 3.39) <0.001 ow nodes yield No 1 Yes 1.64 (1.35 - 1.99) <0.001	Formula 1 Female $1.09 (0.89 - 1.34)$ 0.386 face 0 Others 1 Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Finale 0 G1 1 G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-2 1 T3-4 $1.70 (1.38 - 2.10)$ < 0.001 N 1 N1 1 N2 $1.61 (1.34 - 1.93)$ < 0.001 N3 $2.15 (1.77 - 2.62)$ < 0.001 M0 1 M1 $2.61 (2.00 - 3.39)$ < 0.001 No 1 Yes $1.64 (1.35 - 1.99)$ < 0.001	Mala	1	
Female $1.09 (0.89 - 1.34)$ 0.386 ace0Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 rade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	Female $1.09 (0.89 - 1.34)$ 0.386 Cace01Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade1G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2N11N2 $1.61 (1.34 - 1.93)$ <0.001 M1 $M1$ M01M1 $2.61 (2.00 - 3.39)$ <0.001 cow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	Male E-male		0.296
ace1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 rade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 UM01M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	acc1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade1 (32.3) G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G51 $(1.38 - 2.10)$ <0.001 G4 $1.70 (1.38 - 2.10)$ <0.001 G4 $1.70 (1.38 - 2.10)$ <0.001 G5 $1.61 (1.34 - 1.93)$ <0.001 G6 $1.61 (1.34 - 1.93)$ <0.001 G7 $1.61 (1.34 - 1.93)$ <0.001 G8 $2.15 (1.77 - 2.62)$ <0.001 G9 $1.93 (2.00 - 3.39)$ <0.001 G9 $1.93 (2.00 - 3.39)$ <0.001 G9 $1.93 (2.00 - 3.39)$ <0.001 G9 $1.99 (2.00 - 3.99)$ <0.001	Female	1.09 (0.89 – 1.34)	0.380
Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 rade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 I1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade1 0.007 G11 0.009 G4 $3.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G71 $0.001 - 0.001$ T1-21 $0.001 - 0.001$ T1-21 $0.001 - 0.001$ N11 $0.001 - 0.001$ N11 $0.001 - 0.001$ N3 $0.15 (1.77 - 2.62) - 0.001$ M01M1 $0.001 - 0.001$ $0.00 - 0.001 - 0.001$ $0.001 - 0.001$ $0.00 - 0.001 - 0.001$ $0.001 - 0.001$ $0.00 - 0.001 - 0.001 - 0.001$ $0.00 - 0.001 - 0.001 - 0.001$ $0.00 - 0.001 - 0.001 - 0.001$ $0.00 - 0.001 - 0.001 - 0.001 - 0.001$ $0.00 - 0.001$	Others	1	
Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 rade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 IM01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	Black $1.42(0.91 - 2.21)$ 0.118 White $1.57(1.13 - 2.19)$ 0.007 Grade1G11G2-3 $2.08(1.20 - 3.60)$ 0.009 G4 $3.08(1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70(1.38 - 2.10)$ <0.001 N1N2 $1.61(1.34 - 1.93)$ <0.001 N3 $2.15(1.77 - 2.62)$ <0.001 M1M01M1 $2.61(2.00 - 3.39)$ <0.001 No1Yes $1.64(1.35 - 1.99)$ <0.001	Others D11-		0.110
white $1.57 (1.13 - 2.19)$ 0.007 rade G1 1 1 G2-3 2.08 $(1.20 - 3.60)$ 0.009 G4 3.08 $(1.32 - 7.22)$ 0.009 T1-2 1 T3-4 1.70 $(1.38 - 2.10)$ <0.001 N1 1 (1.34 - 1.93) <0.001 N3 2.15 $(1.77 - 2.62)$ <0.001 M0 1 (1.34 - 1.93) <0.001 M0 1 (1.35 - 1.99) <0.001 ow nodes yield No 1 (1.35 - 1.99) <0.001	white $1.57 (1.13 - 2.19) = 0.007$ irrade G1 1 G2-3 2.08 (1.20 - 3.60) 0.009 G4 3.08 (1.32 - 7.22) 0.009 T1-2 1 T3-4 1.70 (1.38 - 2.10) <0.001 N1 1 N2 1.61 (1.34 - 1.93) <0.001 N3 2.15 (1.77 - 2.62) <0.001 M 0 1 M1 2.61 (2.00 - 3.39) <0.001 ow nodes yield No 1 Yes 1.64 (1.35 - 1.99) <0.001	Black	1.42(0.91 - 2.21)	0.118
rade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N1N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M1M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1No1Yes $1.64 (1.35 - 1.99)$ <0.001		1.57 (1.15 – 2.19)	0.007
G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 IM01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	
G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-2 1 1 T3-4 $1.70 (1.38 - 2.10)$ <0.001 N1 1 1 N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M 1 $2.61 (2.00 - 3.39)$ <0.001 w nodes yield 1 $4 (1.35 - 1.99)$ <0.001	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G2-3	2.08(1.20 - 3.60)	0.009
T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001	T1-2 1 T3-4 $1.70 (1.38 - 2.10)$ <0.001 N1 1 N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M 1 M0 1 M1 $2.61 (2.00 - 3.39)$ <0.001 cow nodes yield No 1 Yes $1.64 (1.35 - 1.99)$ <0.001	G4	3.08 (1.32 – 7.22)	0.009
$\begin{array}{ccccccc} 11-2 & 1 \\ T3-4 & 1.70 & (1.38 - 2.10) & <0.001 \\ N1 & 1 \\ N2 & 1.61 & (1.34 - 1.93) & <0.001 \\ N3 & 2.15 & (1.77 - 2.62) & <0.001 \\ I & & & & & \\ M0 & 1 \\ M1 & 2.61 & (2.00 - 3.39) & <0.001 \\ ow nodes yield \\ No & 1 \\ Yes & 1.64 & (1.35 - 1.99) & <0.001 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T1 0		
13-4 $1.70 (1.38 - 2.10)$ <0.001N11N2 $1.61 (1.34 - 1.93)$ <0.001	13-4 $1.70 (1.38 - 2.10)$ <0.001N11N2 $1.61 (1.34 - 1.93)$ <0.001	11-2		<0.001
N1 1 N2 $1.61 (1.34 - 1.93) < 0.001$ N3 $2.15 (1.77 - 2.62) < 0.001$ M0 1 M1 $2.61 (2.00 - 3.39) < 0.001$ ow nodes yield No 1 Yes $1.64 (1.35 - 1.99) < 0.001$	$\begin{array}{ccccccc} N1 & 1 \\ N2 & 1.61 (1.34 - 1.93) & <0.001 \\ N3 & 2.15 (1.77 - 2.62) & <0.001 \\ A & & & \\ M0 & 1 \\ M1 & 2.61 (2.00 - 3.39) & <0.001 \\ cow nodes yield \\ No & 1 \\ Yes & 1.64 (1.35 - 1.99) & <0.001 \\ \end{array}$	13-4	1.70 (1.38 – 2.10)	<0.001
$\begin{array}{ccccccc} N1 & & & 1 \\ N2 & & 1.61 & (1.34 - 1.93) & <0.001 \\ N3 & & 2.15 & (1.77 - 2.62) & <0.001 \\ I & & & & \\ M0 & & 1 \\ M1 & & 2.61 & (2.00 - 3.39) & <0.001 \\ ow nodes yield & & & \\ No & & 1 \\ Yes & & 1.64 & (1.35 - 1.99) & <0.001 \end{array}$	$\begin{array}{ccccccc} N1 & & 1 \\ N2 & & 1.61 & (1.34 - 1.93) & <0.001 \\ N3 & & 2.15 & (1.77 - 2.62) & <0.001 \\ \hline M & & & & \\ M0 & & 1 \\ M1 & & 2.61 & (2.00 - 3.39) & <0.001 \\ \hline cow nodes yield \\ No & & 1 \\ Yes & & 1.64 & (1.35 - 1.99) & <0.001 \end{array}$	N 1		
N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 I M0 1 M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yield No 1 Yes $1.64 (1.35 - 1.99)$ <0.001	N2 $1.61(1.34 - 1.93)$ <0.001	N1 N2	1	<0.001
$\begin{array}{cccc} \text{NS} & 2.13 (1.77 - 2.62) & <0.001 \\ \text{MO} & 1 \\ \text{MI} & 2.61 (2.00 - 3.39) & <0.001 \\ \text{ow nodes yield} \\ \text{No} & 1 \\ \text{Yes} & 1.64 (1.35 - 1.99) & <0.001 \\ \end{array}$	NS $2.13 (1.77 - 2.62)$ <0.001	N2	1.01(1.34 - 1.93)	< 0.001
$\begin{array}{cccc} M0 & 1 \\ M1 & 2.61 (2.00 - 3.39) < 0.001 \\ \text{ow nodes yield} \\ No & 1 \\ Yes & 1.64 (1.35 - 1.99) < 0.001 \end{array}$	$\begin{array}{cccc} M & & & & & \\ M0 & & & & & \\ M1 & & & 2.61 (2.00 - 3.39) & <0.001 \\ \text{ow nodes yield} & & & \\ No & & 1 \\ Yes & & 1.64 (1.35 - 1.99) & <0.001 \\ \end{array}$	IN 3	2.13 (1.77 – 2.02)	<0.001
$\begin{array}{cccccccc} M0 & 1 \\ M1 & 2.61 (2.00 - 3.39) & <0.001 \\ \\ \text{ow nodes yield} \\ No & 1 \\ \\ \underline{\text{Yes}} & 1.64 (1.35 - 1.99) & <0.001 \end{array}$	$\begin{array}{cccc} M0 & 1 \\ M1 & 2.61 (2.00 - 3.39) & <0.001 \\ \text{ow nodes yield} \\ No & 1 \\ \text{Yes} & 1.64 (1.35 - 1.99) & <0.001 \end{array}$	MO		
$\begin{array}{c} \text{M1} & 2.01 (2.00 - 3.39) \\ \text{ow nodes yield} \\ \text{No} & 1 \\ \text{Yes} & 1.64 (1.35 - 1.99) \\ \end{array} < 0.001 \end{array}$	M1 2.01 (2.00 - 3.39) <0.001 .ow nodes yield No 1 Yes 1.64 (1.35 - 1.99) <0.001	MU M1	1	<0.001
No 1 Yes 1.64 (1.35 - 1.99) <0.001	No 1 Yes 1.64 (1.35 - 1.99) <0.001		2.01 (2.00 - 3.39)	<0.001
Yes 1.64 (1.35 – 1.99) <0.001	No 1 Yes 1.64 (1.35 - 1.99) <0.001	Low nodes yield	1	
<u>Yes 1.04 (1.35 – 1.99) <0.001</u>	<u>Yes</u> 1.04 (1.35 – 1.99) <0.001	NO Var	1	-0.001
		Yes	1.64 (1.35 – 1.99)	<0.001

BMJ Open

Editor's Comments to Author (if any):

- Please revise your title so that it includes your study design. This is the preferred format for the journal.

Response: The study design is included in the title. It is a register-based retrospective cohort study.

- Please revise the abstract >> design section. A "database review" is not an appropriate description of your study.

Response: This section has been revised as "a register-based retrospective cohort study".

- Please revise the Patient and Public Involvement statement. This section should be included as a sub-heading in the methods section of all manuscripts. It should provide a brief description of any patient involvement in study design or conduct of the study, as well as any plans to disseminate the results to study participants. If patients and or public were not involved please state this.

The Patient and Public Involvement statement should NOT contain details of participant recruitment, patient consent or ethics approval. This information should be included elsewhere in your methods section. Please see our blog for further information regarding PPI: http://blogs.bmj.com/bmjopen/2018/03/23/new-requirements-for-patient-and-public-involvement-statements-in-bmj-open/

Response: The PPI statement has been revised according to the information from blog.

"The development of the research question and outcome measures were not informed by patients' priorities, experience, and preferences. The patients were involved during the retrospective review of public database where cases were diagnosed during 2010-2015. Patients were not involved in the recruitment to and conduct of the study. The findings of the study will be disseminated by online article to all study participants whose identity kept confidential during the whole research."

- Please work on improving the reporting of the methods. For example, what was the study's design? What are the settings? More information is needed on the data source used. Was it an anonymised dataset? What permissions were obtained? Did this study require approval from your ethics committee? If not then please explain why not.

Response: The reporting of the methods has been revised at the beginning of the Methods section. "This study is a SEER register-based retrospective cohort study, which aimed to enroll patients with node positive cardia gastric adenocarcinoma (CGA), review crucial clinical characteristics and observe survival of this population. The source of SEER data is registered cancer cases from various locations throughout the United States. The permission of data access was obtained by sending application form and receiving confirmation mail with valid username (21268-Nov2019) and password. This study was granted exemption from requiring informed consent. All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of the Anhui Medical College."

- Along with your revised manuscript, please provide a completed copy of the STROBE checklist (<u>http://www.strobe-statement.org/</u>).

Response: We provide a STROBE checklist and each item is linked to the line number of the revised manuscript.

##Reviewer: 1 Dr. Rui Zhong, Southwest Medical University

Comments to the Author:

1.The continuous factors evaluated, LNR, age, tumour size, LODDS were all categorized and then included in the model. Categorization results in substantial loss of statistical power and reduced interpretability. For instance, by selecting the cutoff of age at 65, the interpretation is that a 64 year old is the same as a 30 year old, but the 64 year old is different than a 65 year old. This makes no biological sense. Further, although the authors state that the 'best optimal cutoff' was selected (which is a form of data dredging), it is questioned that the best optimal cutoff would result in cutoffs as they did (i.e. age=65, tumour size=25, etc). The best option would be to leave the continuous variables as continuous for modeling purposes.

Response: Thank you for your suggestion. According to the coding rule of SEER database, age and tumor size are not always in numeric format (e.g. year of 85+, or tumor size of >990 mm), nevertheless you kindly remind us that stratification by cutoff values will result in substantial loss of statistical power. Therefore the revised manuscript transforms age and tumor size into categorized variables that contain much more strata. Age is transformed as a variable of 9 levels, with the lowest of 0-10 and the highest of 80+ (interval of 10 years). However univariate analysis shows that age is not associated with survival (see Suppl. Table 1.), so it is not included in the final model. Likewise tumor size is transformed as a variable of 6 levels, with the lowest of less than 1cm and the highest of over 5cm (interval of 1cm).

LNR and LODDS are still kept as trichotomous factors because they are used as alternative indicators for AJCC N stage.

2.What selection process was used to select factors for inclusion in the multivariable model? Please explain whether a single factor regression analysis was performed before the variables entered the multivariate COX regression. In addition, please explain how this process addresses the potential effects of confounding or collinearity.

Response: In previous manuscript, we selected factors due to clinical significance (for example, higher stage or large tumor size indicates unfavorable outcome). Inspired by your question, we consider both univariate model results and clinical significance in the revised manuscript, and finally include tumor size, race, grade, T stage, M stage and low nodes yield as adjusted variables for stepwise Cox regression model. The results of univariate analyses are listed in the supplementary table 1. So the confounding effect is addressed by multivariable analysis that incorporates with potential confounders.

3.Please consider augmenting the discussion of the findings concerning LNR. LNR association with survival is an exciting aspect of cardia gastric cancer that is currently emerging and may be clinically meaningful.

Response: Thank you for your suggestion. In the previous paper, we focused on the advantage of LNR when LN harvest is inadequate. In the revised paper, we further discuss the clinical meaning of LNR. We are very grateful for the comment that helps us improve this study.

4.Why did the author use the x-titile software for the cutoff value to choose the third quartile

instead of the binary or interquartile range?

Response: We transformed LNR and LODDS into trichotomous variables and selected two cut-off points that represented the greatest group difference of CSS probability according to the minimum p-value method. Thus LNR was re-coded as R1, R2 and R3; LODDS was re-coded as L1, L2 and L3, which was similar with the trichotomous AJCC N staging (N1, N2 and N3). Since only node-positive patients were enrolled, no N0 patients existed here. We address this issue in the revised manuscript in order to make it clear and understandable for readers. Thank you for your question.

5.As the author said whether LNR or LODDS based staging system outperforms TNM 8th edition needs to be further investigated. We want to know whether all the stagings can be corrected to the eighth edition based on the existing fields of the seer databases.

Response: Inspired by your suggestion, all the stagings are now corrected to the 8th edition. Accordingly, the results have been modified. Thank you.

6.Given the importance of the Cox PH model for the development of the nomogram, it would appropriate to include validation that the assumptions of a Cox PH model are met. Please include plots (in the main text or a supplemental figure) of the Schoenfeld, Martingale, and Deviance residuals.

Response: The plots for PH model validation are included in the supplementary figure 1. Plots of Schoenfeld, Martingale, and Deviance residuals for models that incorporate N stage, LNR and LODDS are all presented. The tests show that PH assumption is met in all models (P>0.05). Thank you for the advice.

7.ECOG/Karnofsky performance scores not utilized. Please comment on why these were not utilized as they serve as significant reference points for PC treatment. If possible, this would be a great thing to include in this analysis or the analyses suggested above.

Response: Unfortunately, variables that reflect general status are not available in SEER database, so ECOG or KPS was not utilized. We address this issue as a limitation in the Discussion Section of the revised paper. Thank you for the comment.

"...One limitation of this study is that some important factors that are associated with survival are not considered in the model due to unavailable data source. For example, ECOG/KPS score is commonly taken into account in survival analysis due to its remarkable relationship with general status and prognosis. Unfortunately the SEER 18 database does not record the score at diagnosis, so the impact of it is not considered in this analysis......To overcome this limitation, a database that provides with fully detailed medical records is needed for analysis."

8.altered cutoff values would be an essential factor to analyze during the further optimization of this model. This needs to be further explained in the discussion.

Response: Thank you for your suggestion. In order to cut LNR and LODDS into trichotomous factor, the previous study selected two points by using the minimal p-value method via X-tile software. Unlike one cutoff point selection, ROC and maximally selected rank statistics cannot be applied in two-point selection. Therefore the revised manuscript attempts to generate trichotomous factors using P25/P75, construct regression model and compare discrimination ability with X-tile

based cutoff values. As a result, the X-tile based values have higher power and are finally included in further analysis. We address this issue in the revised paper and present the process in Suppl. Table 2. Although the previous results remain, this step is very crucial for optimizing the models and improving the study reliability. We deeply appreciate this comment.

"...For model optimization, LNR and LODDS were also categorized into trichotomous factors using cut-off values of P25 and P75. The discrimination ability of the model based on interquartile was lower (Suppl. Table 2), so this model was not further analyzed...."

9.Please explain why the N stages do not appear in this nomogram. For example, they do not show significance in the multivariate COX regression?

Response: In the present study, we attempt to construct a new alternative indicator for N stage, because the current N stage classification may not perform well in cardia gastric cancer, so we presented the nomograms that cooperated with LNR or LODDS, other than N staging. In other words, N stages DO appear in the nomogram, but in the form of LNR or LODDS. In addition, the other reviewer suggested us to pick one plot to avoid confusion and unclear message; we only show one nomogram that cooperates with LNR in the main text, and show the other plot in the supplementary file. We hope the revision is acceptable.

10.We believe that the nomogram established by the author should be compared with traditional models, such as ROC curve and Decision Curve Analysis.

Response: In the revised paper, ROC and DCA curve are made to compare the prognostic powers between the new nomogram models based on LNR and LODDS and the traditional model based on N stage. The results indicate that the new nomogram models are better. For details, please see the supplementary figure 3. We really thank you for the suggestion that further confirms our results.

##Reviewer: 2 Dr. Rasa Zarnegar , Weill Cornell Medical College

Comments to the Author: I think this is a nice paper with 2 nomograms for the determination for CGA.

I think there are some revisions that would make this paper better. The SEER DB has access to total number of nodes analyzed and the number of positive nodes. It is important to use the current guidelines 8th Edition for this analysis even though the data was from prior to implementation of the 8th. The concept should still hold and validate the rigor of the study based on current guidelines.

Response: All the 7th stagings are now corrected to the 8th edition. Thank you for your brilliant suggestion.

2. Raw data on the patient population No of nodes harvested and total positive is required to determine the frequency of low yield in the study design.

Response: In the revised paper, we describe the number of nodes harvested and total positive, and the frequency of low nodes yield (please see Table 1). The frequency of low yield is also in the multivariable model because it is associated with survival in univariate analysis (Suppl. Table 2).

3. There should be discussion and data on neoadjuvant therapy as this likely impact survival and the number of patient that received therapy.

Response: Neoadjuvant therapy is likely to influence survival; unfortunately the database, Incidence - SEER Research Data, 18 Registries, Nov 2019 Sub 2000-2017 (SEER 18 database), does not provides with information about chemotherapy, therefore it is unavailable for this study. We treat it as a limitation and discuss the impact of neoadjuvant therapy in the Discussion Section. "…Treatment mode is also associated with clinical outcome. This study enrolled patients who received gastric resection; however other information about chemo- or radiotherapy is not available in SEER 18 database. Randomized clinical trial demonstrates that compared with surgery alone, preoperative administration of carboplatin and paclitaxel with concurrent radiotherapy significantly improved overall survival among patients with esophageal or GEJ cancer (HR = 0.657) (31). The NCCN clinical practice guidelines for GEJ cancer recommend preoperative chemoradiation or perioperative chemotherapy due to substantial survival benefit compared with surgery alone (32). To overcome this limitation, a database that provides with fully detailed medical records is needed for analysis...."

4. I suggest picking one nomogram. I think its important to send a clear message and by presenting 2 nomograms the authors are creating confusion and an unclear message. I think by being more focused on one approach would allow for improved implementation. The authors may want to compare whichever they select with conventional lymphadenectomy is so desired.

Response: Thanks for the advice. We pick the nomogram that incorporates with LNR because the calculation of LNR is easier than LODDS, which is more convenient in clinical practice. The nomogram and calibration curves based on LODDS are shown in supplementary figure 2. In addition, for more clear presentation, we put the calibration curves of training (red) and validating

set (blue) into one plot.

For peer teriew only

STROBE Statement—checklist of items that should be included in reports of observational studies **All line numbers are based on <u>the manuscript with tracked change.</u>**

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the
		abstract title page
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found page2
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
C		page 4
Objectives	3	State specific objectives, including any prespecified hypotheses page 4
Methods		
Study design	4	Present key elements of study design early in the paper page 4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
0		exposure, follow-up, and data collection page 4-5
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
1		selection of participants. Describe methods of follow-up page 4
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls NA
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of
		selection of participants NA
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed NA
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of
		controls per case NA
Variables	7	Clearly define all outcomes exposures predictors potential confounders and effect
	,	modifiers. Give diagnostic criteria, if applicable page 5
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement	0	assessment (measurement). Describe comparability of assessment methods if there
		is more than one grouppage 5
Bias	9	Describe any efforts to address potential sources of bias page 5
Study size	10	Explain how the study size was arrived at NA
Ouantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable
		describe which groupings were chosen and why page 5-6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
Statistical methods	12	nage 5-6
		(b) Describe any methods used to examine subgroups and interactions page 4-6
		(c) Explain how missing data were addressed nage 4
		(d) Cohort study. If applicable, explain how loss to follow, up was addressed NA
		<i>Case_control study</i> —If applicable, explain how matching of cases and controls was
		addressed NA
		auticsscu IVA Cross sactional study. If applicable describe applytical methods taking account of
		cross-sectional strategy NA
		samping strategy IVA (a) Describe any consistivity analysis
		(e) Describe any sensitivity analyses NA

Results

Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed page 4
		(b) Give reasons for non-participation at each stage page 4
		(c) Consider use of a flow diagram figure 1, page 4
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders page 6
		(b) Indicate number of participants with missing data for each variable of interest figure 1,
		page 4
		(c) Cohort study—Summarise follow-up time (eg, average and total amount) Table 1 page
		6-7
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time page 6
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure NA
		Cross-sectional study—Report numbers of outcome events or summary measures NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for
		and why they were included table 1, page 7-9
		(b) Report category boundaries when continuous variables were categorized page 7
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period NA
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses NA
Discussion		
Key results	18	Summarise key results with reference to study objectives page 9
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias page 10-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence page 9-11
Generalisability	21	Discuss the generalisability (external validity) of the study results page 11
Other informatio	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
-		for the original study on which the present article is based page 11

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Prognostic value of different lymph node staging methods for node-positive cardia gastric cancer: a register-based retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-050378.R2
Article Type:	Original research
Date Submitted by the Author:	29-Jul-2021
Complete List of Authors:	Wang, Xiao-Qing; Anhui Medical College Bao, Min; Anhui Medical College Zhang, Cheng; First Affiliated Hospital of Anhui Medical University
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Gastroenterology and hepatology
Keywords:	Gastrointestinal tumours < ONCOLOGY, Gastrointestinal tumours < GASTROENTEROLOGY, SURGERY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Title page

- 2 Article title: Prognostic value of different lymph node staging methods for node-positive cardia
- 3 gastric cancer: a register-based retrospective cohort study
- 4 Author information: Xiao-Qing Wang 1, Min Bao 1, Cheng Zhang 2
- 5 1 Anhui Medical College, Hefei, Anhui, China PR
- 6 2 Anhui Provincial Cancer Institute, the First Affiliated Hospital of Anhui Medical University,
- 7 Hefei, Anhui, China PR
 - 8 Corresponding to: Cheng Zhang, <u>ahmuzc@sina.cn</u>
 - 9 Disclaimer: The views expressed in the submitted article are our own and not an official position
 - 10 of the institution or funder.
 - 11 Word count: 2962 (excluding its abstract, acknowledgments, tables, figure legends, and
 - 12 references)
 - 13 Number of figures and tables: This draft included 3 figures and 2 tables.
 - **Disclosure of relationships and activities:** None.

beet teries only

2		
3	15	ABSTRACT
4 5	16	Objective : To investigate the prognostic efficacy of lymph node ratio (LNR) and log odds of
5	17	positive lymph nodes (LODDS) in node-positive cardia gastric adenocarcinoma (CGA).
7	18	Design : A registry-based retrospective cohort study
8	10	Setting: Patients diagnosed with node-positive CGA in the Surveillance. Enidemiology and End
9	19	Desults (SEED) detabase from 2010 to 2015
10	20	Results (SEER) database from 2010 to 2015.
12	21	Participants : A total of 1038 patients were enrolled and randomly assigned (7:3) to the training
13	22	set $(N = 723)$ or validating set $(N = 315)$.
14	23	Primary outcome measure: Cancer-specific survival (CSS).
15	24	Results: The baseline characteristics of the training and validation sets were similar. Based on the
16 17	25	optimal cut-off values, LNR was classified into low (<0.09), medium (0.09~0.33), and high (>0.33)
17	26	groups; LODDS was also classified into low (<-2.09), medium (-2.09~-0.65), and high (>-0.65)
19	27	groups. CSS was significantly different across LNR and LODDS subgroups. The Harrell
20	28	concordance index of the N stage was lower than that of the LNR or LODDS. The Akaike
21	29	information criterion of the N stage was higher than that of the LNR or LODDS. Independent
22	30	predictors included race. T stage M stage and LNR (or LODDS) and they were incorporated into
23 24	21	predictors included race, 1 stage, in stage, and ENK (or EODDS), and they were incorporated into
25	31	nonograms for 1-, 2-, and 3-year CSS prediction. Canoration piots showed satisfactory results for
26	32	internal and external validity of the nomogram.
27	33	Conclusions: LNR and LODDS staging methods have better prognostic efficacy than the
28	34	traditional N staging method in CGA with node metastasis. Moreover, the two values are
29 30	35	promising substitutes for N staging in nomogram development when other independent prognostic
31	36	factors are incorporated.
32	27	
33	37	KEY WORDS
34 25	38	Cardia; Adenocarcinoma; Stomach Neoplasms; Lymph Node Ratio; Neoplasm Staging
35 36	39	STRENGTHS AND LIMITATIONS OF THIS STUDY
37	40	• This study used the national cancer registry data for cardia gastric adenocarcinoma research:
38	/1	 Novel staging methods based on the number of positive lymph nodes have been established
39	41	for prograstic prediction
40	42	
41 42	43	• Nomograms based on the new staging methods were constructed and validated;
43	44	• The validity of the outcomes of the study needs to be confirmed in other populations.
44	45	Patient consent form: The SEER database review is granted exemption from obtaining patients'
45	46	consents
46 47	10	Word count: 2062 (excluding its abstract acknowledgments tables figure legends and
47 48	47	reforences)
49	48	Telefences)
50		
51		
52 52		
55 54		
55		
56		
57		
58 50		
59 60		

49 INTRODUCTION

Gastric cancer (GC) generally includes two topographical categories: non-cardia GC that occurs at a more distal part of the stomach and GC of the cardia that occurs at the gastroesophageal junction (GEJ). In contrast to the steady decline in the incidence of non-cardia GC, GC of the cardia occurs more frequently, particularly in high-income countries (1, 2). This trend is associated with obesity, gastroesophageal reflux disease, and Barrett esophagus (2). In addition to the difference in the incidence trend, the clinic pathological features and long-term survival vary between the two GC subtypes (3). Precise staging is necessary for the accurate prediction of survival. The Tumor-Node-Metastasis (TNM) classification 7th edition of the American Joint Committee on Cancer (AJCC) recommends harvesting of at least 15 lymph nodes (LN) for N staging (4, 5). However, inadequate LN harvest is frequent because of various reasons; thus, precise staging is difficult. It has been demonstrated that the LN ratio (LNR) could provide a better estimate of the survival of patients with GC after curative gastrectomy, regardless of the number of LNs examined (6), and might be a promising aid along with the TNM staging system (7). Furthermore, in previous reports, the log odds of positive LN (LODDS) outperformed the N and LNR staging systems in predicting the survival of patients with GC (8-10). Therefore, the traditional N staging classification might be substituted with different methods with improved performance. Nevertheless, few studies have evaluated the performance of the two LN staging systems in GC of the cardia, which has distinct clinical characteristics and epidemiology than other types of GC.

Here, we used the data of a nationwide cancer registry to evaluate the prognostic value of LNR
and LODDS in patients with node-positive cardia gastric adenocarcinoma (CGA), and, if possible,
construct a nomogram for the prediction of survival based on the new LN staging system.

71 METHODS

72 Study design and Participant Selection

This study was a Surveillance, Epidemiology, and End Results (SEER) registry-based retrospective cohort study, which aimed to enroll patients with node-positive CGA, review their critical clinical characteristics, and observe the survival of this population. The source of the SEER data is registered cases of cancer from various locations throughout the United States. Permission for data access was obtained by sending an application form and receiving confirmation mail with a valid username (21268-Nov2019) and password.

A SEER*Stat (version 8.3.8) was used to access the Incidence-SEER Research Data, 18 Registries, Nov 2019 Sub 2000-2017 (SEER 18 database) (11) and to obtain data of node-positive patients with CGA. The inclusion criteria were as follows: 1) the International Classification of Disease for Oncology, Third Edition (ICD-O-3) code for the primary tumor site was C16.0 (cardia); 2) broad histological recode was 8140-8389 adenomas and adenocarcinomas; 3) diagnostic confirmation was by positive histology; 4) surgery was performed; 5) diagnosis was during 2010-2015; and 6) the definite number of positive regional nodes was known and was not zero. Cases with unknown race, T stage information, tumor size, or tumor grade were excluded. As shown in Figure 1, the final cohort comprised 1038 patients with node-positive CGA, of whom 857 were male, and 181 were female. A total of 338 (32.56%) patients were above 70 years of age. Eight hundred and ninety-six (86.32%) patients were White, 64 were Black, and 78 were of other races. Of the total

cohort, 70% of the patients were randomly assigned to the training set (N = 723), and the remaining were assigned to the validation set (N = 315).

Technical Information

The main outcome was cancer-specific survival (CSS), which was defined as the period between the first diagnosis and death specifically due to CGA. In addition, we extracted the following variables for analysis; sex, race, age, AJCC 7th TNM stage information, tumor size, tumor grade, number of regional nodes examined, and number of regional nodes that were positive. The information about the stage of cancer was further corrected according to the AJCC 8th criteria. LNR and LODDS were calculated as previously reported (12). Briefly, LNR was defined as the ratio of the number of positive nodes divided by the total number of examined nodes. LODDS was calculated using the formula: log(NPLN+0.50)/(NDLN-NPLN+0.50), in which 0.50 was added to both the numerator and denominator to avoid an infinite number.

The optimal thresholds for dividing LNR and LODDS into trichotomous variables were determined using the X-tile software (version 3.6.1) (13), which were based on the maximal log-rank chi-square value that represented the greatest group difference in CSS probability. LNR and LODDS were classified into three levels because they are proposed as alternative indicators for N stage in node-positive GC, including N1, N2, and N3.

Statistics

The distributions of baseline characteristics between the training and validation sets were described and compared using chi-square test. Survival curves, median survival, and CSS rates were generated using Kaplan-Meier method. Outcome differences between the groups were analyzed using log-rank test. After testing proportional hazard assumption, a multivariable Cox regression model was used to establish a CSS prognostic model. The prognostic power was evaluated using Akaike information criterion (AIC) and Harrell concordance index (C-index). A predictive model with a lower AIC indicated a better model fit, while a higher C-index indicated a better discriminative ability. A C-index value of 0.5 indicated no predictive power, and an index of 1.0 indicated complete differentiation. Cox stepwise regression analysis was also performed to construct a nomogram for the prediction of 1-, 2-, and 5-year CSS. Validation of the nomogram was performed using internal and external calibration plots (14). Bootstraps with 1000 resamples were used for the validation activities. Receiver operator characteristic (ROC) curves and areas under the ROC curves (AUCs) were calculated to evaluate the accuracy of CSS prediction using different models. Decision curve analysis (DCA) was performed to determine the clinical application of different models: the proportion of true positive results minus the proportion of false positive results, and the relative risks of false-positive and false-negative results were weighted to obtain the net benefits of decision-making. All statistical analyses were performed using R software (version 3.5.3). A two-tailed P value of less than 0.05 was considered statistically significant.

Patient and Public Involvement

Due to the retrospective and observational nature of the study, the research question and outcome measures were not developed and influenced by patients' priorities, experiences, and preferences. Patients were not involved in the design, recruitment, and conduct of this study. Patients were not

asked to assess the burden of the intervention and time required to participate in the research. Thefindings of the study will be disseminated online and are freely available for public.

133 Ethics approval statement

134 The Ethics Committee of Anhui Medical College exempted the requirement for ethics approval135 because of the observational nature of the study.

136 RESULTS

Table 1 summarizes the demographic and clinical features of the participants. In all, 628 patients (60.50%) were diagnosed with a tumor less than 5cm. Six hundred and forty patients (61.66%) were diagnosed with grade III or IV cancer. The number of patients with T1, T2, T3, and T4 stage was 94, 125, 717, and 102, respectively. The number of patients with N1, N2, and N3 stage was 479, 330, and 229, respectively. Seventy-five patients (7.23%) had distant metastasis at presentation. The median CSS was 27 months. The rate of 1, 2, and 5-year CSS was 76.8%, 53.0%, and 29.2%, respectively. There was no statistical difference in the baseline characteristics between the training and validating set. The detailed information about the two sets is also presented in Table 1.

Table 1. Baseline information of the included patients with node positive CGA, N(%)

IN(/0).			
Groups	Training set	Validating set	P-value
	(N = 723)	(N = 315)	
Sex	(V,	
Male	596 (82.43)	261 (82.86)	0.020
Female	127 (17.57)	54 (17.14)	0.939
Age			
<70	490 (67.77)	210 (66.67)	0 791
≥ 70	233 (32.23)	105 (33.33)	0.781
Race			
White	628 (86.86)	268 (85.08)	
Black	40 (5.53)	24 (7.62)	0.437
Others	55 (7.61)	23 (7.30)	
Tumor size			
<5cm	442 (61.13)	186 (59.05)	0 573
≥5cm	281 (38.87)	129 (40.95)	0.373
Grade			
I-II	279 (38.59)	119 (37.78)	0.850
III-IV	444 (61.41)	196 (62.22)	0.839
T stage			
T1a	17 (2.35)	4 (1.27)	
T1b	53 (7.33)	20 (6.35)	
T2	83 (11.48)	42 (13.33)	0.224
Т3	501 (69.29)	216 (68.57)	
T4a	49 (6.78)	28 (8.89)	
T4b	20 (2.77)	5 (1.59)	

1 2					
3		N stage			
4		N stage	222 (45.02)	1 47 (46 (7)	
5		NI	332 (45.92)	14/(46.6/)	0.001
6 7		N2	229 (31.67)	101 (32.06)	0.921
7 8		N3	162 (22.41)	67 (21.27)	
9		M stage			
10		M0	678 (93.78)	285 (90.48)	0.079
11		M1	45 (6.22)	30 (9.52)	0.079
12		Low nodes yield			
13		Yes	532 (73.58)	243 (77.14)	0.300
15		No	191 (26.42)	72 (22.86)	
16		No of nodes harvest	17 (12, 25)	16 (11 24)	0 400
17		No. of positive nodes	3(1.6)	3(1.6)	1 000
18 10		Median survival (months)	3(1, 0) 28 (25, 32)	5(1,0) 25(21-32)	0.361
20		CSS rate $(0/)$	28 (23, 32)	25 (21, 52)	0.301
21		CSS rate (%)			
22		I-year	77.0 (74.0, 80.2)	/6.3 (/1.6, 81.2)	
23		2-year	53.7 (50.1, 57.5)	51.4 (46.0, 57.5)	
24 25		5-year	30.3 (26.7, 34.5)	26.4 (20.9, 33.4)	
25 26		Abbreviation: CGA, cardia	gastric adenocarc	inoma; CSS, cance	er-specific
27		survival			
28	4.4.5				D 0.00 1.0.22 1
29	146	According to X-tile software	results, the optimal c	ut-off values for LN	R were 0.09 and 0.33, and
30 31	147	for LODDS were -2.09 and -0	0.65. Thus, patients w	ere classified into the	e low (<0.09 , R1), medium
32	148	(0.09~0.33, R2), or high LNR	(>0.33, R3) groups;	or low (<-2.09, L1), 1	medium (-2.09~-0.65, L2),
33	149	or high LODDS (>-0.65, L3	3) groups. For mode	el optimization, LNI	R and LODDS were also
34	150	categorized into trichotomous	factors using the cu	t-off values of P_{25} at	nd P ₇₅ . The discrimination
35	151	ability of the model based on	the interquartiles wa	s poor (Suppl. Table	1); hence, this model was
30 27	152	not analyzed further. Next, v	we created the survi	val curves of the pa	tients according to the N
38	153	staging, LNR, or LODDS sta	aging system. As sh	own in Figure 2 in	the training set, CSS was
39	154	significantly different between	n all the three staging	g systems (all the log	p-rank P values < 0.0001):
40	155	however the 95% confidence	intervals (CIs) of N2	and N3 survival cur	ve were initially divergent
41	156	and partly overlapped afterwa	and The inferior disc	riminative ability of	the N system was further
42 43	150	rainforced by the AIC and C	index As shown in	Table 2 the C index	of the N stage was lower
43	157	Tennorced by the AIC and C-		Table 2, the C-index	of the N stage was lower
45	158	than that of LNR of LODDS.	Similarly, the AIC of	the N stage was high	her than that of the LNR or
46	159	LODDS. The clinical char	acteristics with sta	itistical significance	for CSS were further
47	160	incorporated in the Cox regre	ession model as pote	ntial confounders (Si	uppl. Table 2), and all the
48 40	161	variables met the proportiona	l hazard assumption	(Suppl. Figure 1, all	I the P values > 0.05). The
49 50	162	prognostic value of the adju-	sted model was gene	erally better than the	at of the crude model. In
51	163	addition, the prognostic value	e of the LNR system	seemed to be poore	r than that of the LODDS
52	164	system; however, the differen	ce was not significar	nt; hence, we incorpo	orated both the systems for
53 54	165	nomogram construction.		-	
55		Table 2. Prognostic values o	f variables for patien	nts with node positiv	we CGA (N = 1

038).

56

57

58 59 60

030).								
Variables	Crude	model		Adjusted model				
variables	HR (95% CI)	C-index	AIC	HR (95% CI)	C-index	AIC		

2	
3 ⊿	
4 5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
20	
20	
22	
23	
24	
25	
26 27	
27	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40 41	
41	
43	16
44	16
45	16
46	10
47 48	16
40	17
50	17
51	17
52	17
53	17
54 55	_,
55 56	17
57	4 7
58	17
59	17

Training so	et (N = 723)					
N stage		0.582	5403		0.632	5365
N1	1 (ref)			1 (ref)		
N2	1.53(1.24, 1.91)			1.42(1.14, 1.77)		
N3	2.15 (1.70, 2.71)			2.03(1.60, 2.59)		
LNR		0.607	5376		0.643	5350
R1	1 (ref)			1 (ref)		
R2	1.88 (1.44, 2.44)			1.74 (1.33, 2.29)		
R3	3.02 (2.30, 3.97)			2.63 (1.97, 3.50)		
LODDS		0.609	5373		0.644	5346
L1	1 (ref)			1 (ref)		
L2	1.93 (1.48, 2.51)			1.80 (1.36, 2.37)		
L3	3.13 (2.38, 4.13)			2.77 (2.07, 3.70)		
Validating	set (N = 315)					
N stage		0.596	1957		0.675	1931
N1	1 (ref)			1 (ref)		
N2	1.81 (1.31, 2.51)			1.75 (1.25, 2.46)		
N3	2.18 (1.51, 3.15)			2.23 (1.50, 3.30)		
LNR		0.646	1927		0.691	1913
R1	1 (ref)			1 (ref)		
R2	2.20 (1.47, 3.30)			1.91(1.26, 2.90)		
R3	4.16 (2.76, 6.28)			3.58 (2.30, 5.56)		
LODDS		0.647	1927		0.789	1914
L1	1 (ref)			1 (ref)		
L2	2.07 (1.39, 3.09)			2.08 (1.38, 3.14)		
L3	4.22 (2.79, 6.39)			4.10 (2.65, 6.34)		

Abbreviations: CGA, cardia gastric adenocarcinoma; HR, hazard ratio; CI, confidence interval; AIC, Akaike information criterion; LNR, lymph node ratio; LODDS, log odds of positive lymph nodes.

Adjusted model considered race, tumor size, grade, T stage and M stage.

Stepwise Cox regression analysis showed race, T stage, M stage, and LNR (or LODDS) were 6 7 independent predictors; hence, these factors were included in the nomograms. For both LNR and 8 LODDS, the total score was 40, and a higher score suggested lower survival (Figure 3 and Suppl. 9 Figure 2). Next, the calibration plot was used to assess the internal and external validity of the 0 nomogram (Figure 3 and Suppl. Figure 2). Since the cross-spot line was generally close to the grey reference line, we concluded that the predicted CSS was well correlated with the actual state. 1 2 In addition, ROC curves indicated that the AUC of the model based on N stage was lower than 3 that of the model based on the nomogram of LNR or LODDS (Suppl. Figure 3). However the 4 DCA plot does not show advantage of the nomogram (Suppl. Figure 3).

175 DISCUSSION

The present study analyzed the databases of the national cancer registry and demonstrated that
trop to the present study analyzed the databases of the national cancer registry and demonstrated that
survival of patients with node-positive CGA could be well predicted when the traditional N
staging method is substituted with an LNR or LODDS system. This outcome was seen both in

training and validation set. In the training set, the survival curves clearly separated when the patient grouping was implemented following the LNR or LODDS method, which was not achieved by the traditional N staging system. An adjusted model that simultaneously considered the staging, clinical, and demographic features, outperformed the crude model that only considers staging. Therefore, multiple independent survival factors were incorporated in the nomogram construction, which suggested White, deeper infiltration of the tumor, higher proportion of positive LN, and metastasis as risk factors. The nomograms performed consistently across the 1, 2, and 5-year prediction of the CSS as seen in the validation plots.

Previous studies have demonstrated the superiority of LNR or LODDS for prognostic prediction in GC after surgical resection (8-10, 15-17). However, the patients were not further classified according to the primary tumor site; this is a critical limitation since there is a significant difference between cardia and non-cardia GC in terms of tumor features, etiological factors, and biological behaviors (3). In the AJCC cancer staging 7th edition, tumors involving GEJ were categorized as esophageal cancer (5). This was debatable because the GC staging system has a better ability to predict survival of a GEJ tumor (18, 19). In the latest 8th edition (20), a tumor that has its epicenter within 2 cm of the GEJ and involves the GEJ (Siewert type I/II) is classified as esophageal cancer. Other types of GCs, including a tumor with an epicenter more than 2 cm from the GEJ or a tumor located with 2 cm of the GEJ but not involving the GEJ, are classified as GC. The superiority of the new system was confirmed by a retrospective observational study from two institutions in China that have a high volume of cases of GC, regardless of the Siewert type (21). In terms of the Siewert type II junctional adenocarcinoma, a marginal superiority of the esophageal cancer was found in discriminating survival rates after three and five years. However the advantage of the GC system lies in the division of the N3 category into N3a and N3b. Hence, the authors concluded that neither the esophageal nor the stomach staging system is accurate in predicting survival in Siewert type II junctional cancer (22). Moreover, CGA is probably a special entity that has different biological characteristics compared to distinct gastric or esophageal cancer. To the best of our knowledge, the present study is the first to demonstrate a superior prognostic prediction based on LNR or LODDS in patients with node-positive CGA. Unfortunately, we were unable to consider the Siewert type due to a lack of information in the SEER database; hence, further studies are necessary with a special focus on tumor location.

LNR and LODDS have been proven to be the strongest indicators of survival in gastric adenocarcinoma when LN harvest is inadequate (16, 17). It has been demonstrated that, in general, more extensive LN resection is associated with better survival, which might be due to either improved N classification or a therapeutic effect of lymphadenectomy. For esophageal cancer, the worldwide data shows that harvesting 10 nodes for pT1, 20 for pT2, and 30 or more for pT3/T4 is desirable for reaching maximum 5-year survival (23). For GC, a higher LN harvest also shows improved survival (24). It is suggested that at least 16 nodes be evaluated pathologically and evaluation of more than 30 nodes is desirable (25). Overall, it is encouraged to harvest as many LNs as possible; balancing the extent of LN resection necessary for accurate N staging and maximum survival without unnecessarily increasing the morbidity caused by radical lymphadenectomy. Nevertheless, many conditions can lead to inadequate LN harvest. It is estimated that only one-fifth of the patients with GC have an adequate number of LN examined in Iran (26), while more than 15 LNs are examined in 64% of the patients in the US (25). The LNR

and LODDS staging methods do not require an adequate number of LNs to be evaluated. In the
present study, a low LN yield was found to be a risk factor for poor survival in univariate analysis;
however, it was not significant in the LNR or LODDS based multivariate model, which indicates
that LN harvest has little impact on prediction of survival based on LNR or LODDS. In fact, the
new node category method is consistent when nodal assessment is inadequate during surgery not
only for GC (8, 15-17) but also for colorectal cancer (27), esophageal cancer (28), oral squamous
cell carcinoma (29), gallbladder cancer (30), and others.

The association between LNR and survival is a promising aspect of cardia GC that is currently emerging and might be clinically relevant. A higher ratio of positive LN indicates a worse outcome in cardia GC. Patients are at 2-3 times higher risk of cancer-specific death if the ratio is over 33%. The ratio of 9-33% also indicates a twofold risk. This effect is independent of other crucial clinical characteristics; thus, it is a useful tool for surgeons to predict the prognosis. This is also evidence supporting truly radical surgery, i.e., complete lymph node resection rather than limited resection (31). In addition, LNR minimizes the "stage migration" phenomenon that occurs with the current N staging system (32).

One limitation of this study is that some important factors associated with survival have not been considered in the model due to unavailable data. For example, the Eastern Cooperative Oncology Group or Karnofsky Performance Status score is commonly considered in the survival analysis due to its remarkable relationship with the general status and prognosis. Unfortunately, the SEER 18 database does not record the score at diagnosis; hence, its impact is not considered in this analysis. The treatment modality is also associated with clinical outcomes. This study enrolled patients who underwent gastric resection; however other information about chemo- or radiotherapy is not available in the SEER 18 database. A previous randomized clinical trial demonstrated that compared with surgery alone, preoperative administration of carboplatin and paclitaxel with concurrent radiotherapy significantly improved the overall survival among patients with esophageal or GEJ cancer (HR = 0.657) (33). The National Comprehensive Cancer Network clinical practice guidelines for GEJ cancer recommend preoperative chemoradiation or perioperative chemotherapy due to substantial survival benefits compared with surgery alone (34). To overcome this limitation, a database that provides fully detailed medical records is necessary for analysis. Moreover, the inclusion of these factors would greatly improve the prognostic power of the survival prediction model. Another limitation is that our results are based on the training set and confirmed by the validation set; however, the baseline characteristics of the two groups are similar. Hence, these results need to be validated among populations with different characteristics. The third limitation is clinical usability. The DCA result is proposed for assessing the potential clinical impact of risk models for recommending treatment or intervention, and the suggested clinical usability of the nomogram may be poorer than that of other models. In this regard, although this model may have some merits regarding outcome prediction, its use for guiding clinical decisions should be further studied.

In conclusion, staging methods based on LNR and LODDS have better prognostic ability than the
traditional N staging method in patients of CGA with regional lymph node metastasis. Moreover,
the two values are promising substitutes for N staging in nomogram development when other
independent prognostic factors are incorporated.

BMJ Open

3	264	Contributorship statement: WXQ work conception, data interpretation, critical review for						
4 5	265	important content, final approval of the manuscript and agreement to be accountable for all						
6	266	aspects of the work; BM administrative work, funding, critical review for important content, final						
7	267	approval of the manuscript and agreement to be accountable for all aspects of the work. ZC						
8	268	acquisition analysis of data drafting the work final approval of the manuscript and agreement to						
9	200	be accountable for all acroacts of the work.						
10	269	be accountable for all aspects of the work.						
12	270	Competing interests: None.						
13	271	Funding: This work was supported by [Domestic Visiting Study Project for Outstanding Young						
14	272	Talents in Colleges and Universities in Anhui Province] grant number [gxgnfx2021183] and						
15	273	[Major Project of Natural Science of Anhui Provincial Department of Education] grant number						
16 17	274	[KJ2019ZD73].						
18	275	Data sharing statement: Dataset available from the SEER website						
19	276	(https://seer.cancer.gov/data-software/).						
20	277	Acknowledgement: We thank all patient advisers for their special contribution.						
21	278							
22								
24	279	References:						
25	280	1 Bray F Ferlay J Soeriomataram J Siegel RL Torre LA Jemal A Global cancer statistics 2018						
26 27	281	GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA						
27	282	Cancer I Clin [Journal Article] 2018 2018-11-01:68(6):394-424						
29	283	2 Abdi E. Latifi-Navid S. Zahri S. Vazdanbod A. Pourfarzi E. Risk factors predisposing to cardia						
30	205	2. Add E, Latin-Navid S, Zahli S, Fazdanood A, Fouriaizi F. Risk factors predisposing to cardia						
31	204	Summert Ner U.S. Carlt Daviewi 2010 2010 10 01:0(12):(114.2)						
32 33	285	Support, Non-U.S. Govit, Review J. 2019 2019-10-01,8(13):0114-20.						
34	286	3. Amini N, Spolverato G, Kim Y, Squires MH, Poultsides GA, Fields R, et al. Clinicopathological						
35	287	features and prognosis of gastric cardia adenocarcinoma: a multi-institutional US study. J SURG						
36	288	ONCOL. [Comparative Study; Journal Article; Multicenter Study]. 2015 2015-03-01;111(3):285-92.						
3/	289	4. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th edition.:						
30	290	Wiley-Blackwell; 2009.						
40	291	5. Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A. AJCC cancer staging manual. 7th						
41	292	edition.: Springer; 2009.						
42	293	6. Hou Y, Wang X, Chen J. Prognostic significance of metastatic lymph node ratio: the lymph node						
43 44	294	ratio could be a prognostic indicator for patients with gastric cancer. WORLD J SURG ONCOL.						
45	295	[Journal Article]. 2018 2018-10-04;16(1):198.						
46	296	7 Zhu J Xue Z Zhang S Guo X Zhai L Shang S et al Integrated analysis of the prognostic role						
47	297	of the lymph node ratio in node-positive gastric cancer: A meta-analysis, INT J SURG, [Journal Article:						
48 40	298	Meta-Analysis: Review] 2018 2018-09-01:57:76-83						
49 50	200	8 Sun 7 Xu X Li DM Wang 7N Zhu GI Huang BL et al Log odds of positive lymph nodes: a						
51	299	8. Sun Z, Xu T, El Divi, wang Ziv, Zhu GL, Huang BJ, et al. Log ouds of positive lymph nodes: a						
52	300	nover prognostic indicator superior to the number-based and the ratio-based is category for gastric						
53	301	cancer patients with R0 resection. CANCER-AM CANCER SOC. [Journal Article; Research Support,						
54 55	302	Non-U.S. Gov'tJ. 2010 2010-06-01;116(11):2571-80.						
56	303	9. Zhao E, Zhou C, Chen S. Prognostic nomogram based on log odds of positive lymph nodes for						
57	304	gastric carcinoma patients after surgical resection. FUTURE ONCOL. [Journal Article]. 2019						
58	305	2019-12-01;15(36):4207-22.						
59 60	306	10. Gu P, Deng J, Sun Z, Wang Z, Wang W, Liang H, et al. Superiority of log odds of positive lymph						
00								

1 2

3	307	nodes (LODDS) for prognostic prediction after gastric cancer surgery: a multi-institutional analysis of
4	308	7620 patients in China SURG TODAY [Journal Article] 2021 2021-01-01:51(1):101-10
5	200	11 Surveillance Enidemiology and End Decults (SEEP) Program (www.seer.cancer.gov)
7	210	SEEP*Stat Database: Incidence SEEP Desearch Data 18 Degistries Nov 2010 Sub (2000 2017)
8	210	SEEK Stat Database. Incluence - SEEK Research Data, 18 Registines, Nov 2019 Stat (2000-2017) -
9	311	Linked To County Attributes - Time Dependent (1990-2017) Income/Rurality, 1969-2018 Counties,
10	312	National Cancer Institute, DCCPS, Surveillance Research Program, released April 2020, based on the
11	313	November 2019 submission
12	314	12. Yu Y, Zhang P, Yao R, Wang J, Wang P, Xue X, et al. Prognostic value of log odds of positive
14	315	lymph nodes in node-positive lung squamous cell carcinoma patients after surgery: a SEER
15	316	population-based study. Transl Lung Cancer Res. [Journal Article]. 2020 2020-08-01;9(4):1285-301.
16	317	13. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker
1/	318	assessment and outcome-based cut-point optimization. CLIN CANCER RES. [Journal Article;
10	319	Research Support, Non-U.S. Gov't: Research Support, U.S. Gov't, Non-P.H.S.: Research Support, U.S.
20	320	Gov't P H S 1 2004 2004-11-01:10(21):7252-9
21	221	14 Jasonas A. Schrag D. Pai GV. Panagaas KS. How to build and interpret a nomogram for concer-
22	221	14. Tasonos A, Seniag D, Kaj OV, Fanageas KS. How to build and interpret a nonogram for cancer
23	322	prognosis. J CLIN ONCOL. [Journal Article; Review]. 2008 2008-03-10;26(8):1364-70.
24 25	323	15. Jian-Hui C, Shi-Rong C, Hui W, Si-le C, Jian-Bo X, Er-Tao Z, et al. Prognostic value of three
26	324	different lymph node staging systems in the survival of patients with gastric cancer following D2
27	325	lymphadenectomy. Tumour Biol. [Journal Article]. 2016 2016-08-01;37(8):11105-13.
28	326	16. Aurello P, Petrucciani N, Nigri GR, La Torre M, Magistri P, Tierno S, et al. Log odds of positive
29	327	lymph nodes (LODDS): what are their role in the prognostic assessment of gastric adenocarcinoma? J
31	328	GASTROINTEST SURG. [Comparative Study; Journal Article]. 2014 2014-07-01;18(7):1254-60.
32	329	17. Kilic MO, Gundogdu SB, Ozden S, Saylam B, Tez M. The prognostic value of different node
33	330	staging systems in patients with =15 lymph nodes following surgery for gastric adenocarcinoma.</td
34	331	ACTA CHIR BELG [Journal Article] 2018 2018-02-01:118(1):1-6
35 36	332	18 Sub VS Han DS Kong SH Lee HI Kim YT Kim WH et al Should adenocarcinoma of the
37	222	econhagogastric junction be classified as econhageal cancer? A comparative analysis according to the
38	224	counth AICC TNM eleccification ANN SUBC [Comparative Study: Journal Article: Research
39	554 225	Seventi AJCC TNM classification. ANN SOKO. [Comparative Study, Journal Africie, Research
40	335	Support, Non-U.S. Gov'tJ. 2012 2012-05-01;255(5):908-15.
41	336	19. Huang Q, Shi J, Feng A, Fan X, Zhang L, Mashimo H, et al. Gastric cardiac carcinomas involving
43	337	the esophagus are more adequately staged as gastric cancers by the 7th edition of the American Joint
44	338	Commission on Cancer Staging System. Mod Pathol. [Journal Article; Research Support, Non-U.S.
45	339	Gov't; Validation Study]. 2011 2011-01-01;24(1):138-46.
46	340	20. Amin M, Edge S, Greene F, Byrd D, Brookland R. AJCC cancer staging manual. 8th edition .:
47 48	341	Springer; 2016.
49	342	21. Liu K, Feng F, Chen XZ, Zhou XY, Zhang JY, Chen XL, et al. Comparison between gastric and
50	343	esophageal classification system among adenocarcinomas of esophagogastric junction according to
51	344	AJCC 8th edition: a retrospective observational study from two high-volume institutions in China
52	3/15	GASTRIC CANCER [Comparative Study: Journal Article: Observational Study] 2019
53 54	246	2010 05 01.22(2).506 17
55	240	2019-05-01,22(5).500-17.
56	547	22. Kaistells KF, Glauball I, Sawez S, Konczalla L, woestemeler A, Bachmann K, et al. Comparison
57	348	of the 8th UICC staging system for esophageal and gastric cancers in Siewert type II junctional
58	349	adenocarcinomas. Eur J Surg Oncol. [Comparative Study; Journal Article]. 2020 2020-04-01;46(4 Pt
60 60	350	A):638-43.

BMJ Open

3	351	23. Rizk NP, Ishwaran H, Rice TW, Chen LQ, Schipper PH, Kesler KA, et al. Optimum
4	352	lymphadenectomy for esophageal cancer ANN SURG [Journal Article: Research Support Non-U.S.
5	252	G_{OV}
7	222	24 Macalindara SS Kim KII Nam DIL Dan KW Kuha N Kim W at al. Effect of total number of
8	354	24. Macannuong SS, Kim KH, Nam BH, Kyu KW, Kubo N, Kim JF, et al. Effect of total number of
9	355	harvested lymph nodes on survival outcomes after curative resection for gastric adenocarcinoma:
10	356	findings from an eastern high-volume gastric cancer center. BMC CANCER. [Journal Article;
11	357	Research Support, Non-U.S. Gov't]. 2018 2018-01-12;18(1):73.
12	358	25. Schoenleber SJ, Schnelldorfer T, Wood CM, Qin R, Sarr MG, Donohue JH. Factors influencing
14	359	lymph node recovery from the operative specimen after gastrectomy for gastric adenocarcinoma. J
15	360	GASTROINTEST SURG. [Journal Article]. 2009 2009-07-01;13(7):1233-7.
16	361	26. Khanjani N, Mirzaei S, Nasrolahi H, Hamedi SH, Mosalaei A, Omidvari S, et al. Insufficient
17	362	lymph node assessment in gastric adenocarcinoma. J Egypt Natl Canc Inst. [Journal Article], 2019
18	363	2019_10_22:31(1):2
20	264	27 Pai IB Zhang CD Fan VC Dai DO Comparison of Different Lymph Node Staging Systems in
21	304	27. Tet Jr, Zhang CD, Pail TC, Dai DQ. Comparison of Different Lymph Node Staging Systems in
22	365	Patients with Resectable Colorectal Cancer. FRONI ONCOL. [Journal Article]. 2018
23	366	2018-01-20;8:671.
24 25	367	28. Cao J, Yuan P, Ma H, Ye P, Wang Y, Yuan X, et al. Log Odds of Positive Lymph Nodes Predicts
26	368	Survival in Patients After Resection for Esophageal Cancer. ANN THORAC SURG. [Journal Article;
27	369	Multicenter Study]. 2016 2016-08-01;102(2):424-32.
28	370	29. Jin W, Zhu Z, Wu Y, Ding X, Wu H, Song X, et al. Prognostic value of log odds of positive
29	371	lymph nodes in patients with resectable oral squamous cell carcinoma. ORAL ONCOL. [Journal
30 31	372	Article; Research Support, Non-U.S. Gov't]. 2020 2020-09-01;108:104709.
32	373	30. Li J. Sun Y. Zhao B. Tang C. Fan D. Jiang W. et al. Lymph Node Ratio-Based Staging System for
33	374	Gallbladder Cancer With Fewer Than Six Lymph Nodes Examined FRONT ONCOL [Journal
34	375	Article] 2020 2020-01-20:10:542005
35	276	21 Spillene AI Choung DI Winstenley I Thempson IE Lymph node ratio provides prognostic
30 37	370	51. Spinane AJ, Cheung BE, whistaney J, Thompson JT. Lymph hode ratio provides prognostic
38	3//	information in addition to american joint committee on cancer N stage in patients with melanoma, even
39	378	if quality of surgery is standardized. ANN SURG. [Journal Article]. 2011 2011-01-01;253(1):109-15.
40	379	32. Rosa F, Tortorelli AP, Alfieri S, Doglietto GB. Lymph node ratio for gastric cancer: useful
41	380	instrument or just an expedient to retrieve fewer lymph nodes? ANN SURG. [Letter; Comment]. 2014
42 43	381	2014-04-01;259(4):e65.
44	382	33. van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge HM, Wijnhoven BP, et al.
45	383	Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. [Journal Article;
46	384	Multicenter Study; Randomized Controlled Trial; Research Support, Non-U.S. Gov't]. 2012
47	385	2012-05-31:366(22):2074-84.
48 49	386	34 Aiani JA D'Amico TA Bentrem DJ Chao J Corvera C Das P et al Esophageal and
49 50	387	Esophagogastric Junction Cancers Version 2 2019 NCCN Clinical Practice Guidelines in Oncology J
51	200	Net! Compr Cana Nature [Journal Articla] 2010 2010 07 01:17(7):955-92
52	200	Nati Compi Cane Netw. [Journal Article]. 2019 2019-07-01,17(7).855-85.
53	389	
54 55	390	FIGURE LEGENDS
56	391	Figure 1. Flow diagram of the patient selection and grouping.
57	392	Figure 2. Survival curves of the training and validating sets by different staging systems.
58	393	Figure 3. Construction of nomogram based on Tumor-Lymph node ratio-Metastasis stating system
59	394	and calibration plots for the nomogram.
00		

395 Suppl. Figure 1.Kaplan Meier plots for proportional hazard assumption test in models that were

based on N stage, lymph node ratio, and log odds of positive lymph nodes.

397 Suppl. Figure 2. Construction of nomogram based on Tumor-Log odds of positive lymph nodes

398 -Metastasis stating system and calibration plots for the nomogram.

399 Suppl. Figure 3. Receiver operator characteristic curves and decision curve analysis plots for

400 comparison of the prediction powers of the different models.

to peer terien ony

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
10	
20	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42 42	
43 11	
44 15	
45 ⊿6	
-+0 ⊿7	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

different cutoff values.						
	Crude model			Adjusted model		
	HR (95% CI)	C-index	AIC		HR (95% CI)	C-index
LNR						
Cutoff_1		0.607	5376		0.643	5350
< 0.09	1 (ref)			1 (ref)		
0.09~0.33	1.88 (1.44, 2.44)			1.74 (1.33, 2.29)		
>0.33	3.02 (2.30, 3.97)			2.63 (1.97, 3.50)		
Cutoff_2		0.605	5378		0.641	5355
< 0.09	1 (ref)			1 (ref)		
0.09~0.40	1.97 (1.52, 2.54)			1.85 (1.38, 2.54)		
>0.40	3.16 (2.38, 4.21)			2.72 (2.02, 3.67)		
LODDS						
Cutoff_1		0.609	5373		0.644	5346
<-2.09	1 (ref)			1 (ref)		
-2.09~-0.65	1.93 (1.48, 2.51)			1.80 (1.36, 2.37)		
>-0.65	3.13 (2.38, 4.13)			2.77 (2.07, 3.70)		
Cutoff_2		0.605	5378		0.640	5352
<-2.10	1 (ref)			1 (ref)		
-2.09~-0.37	2.00 (1.54, 2.59)			1.86 (1.42, 2.44)		
>-0.37	3.26 (2.45, 4.33)			2.83 (2.10, 3.81)		

Supplementary Table 1. Comparison of the discrimination ability of different models based on different cutoff values.

Cutoff_1 was generated by minimal p-value method via X-tile software, cutoff_2 was generated using P25 and P75.
Supplementary Table 2. Univariate ana	lysis of the potential co	onfounders.

arrables $HK (95\% C1)$ $P-value$ ge (increased by 10ys) $1.06 (0.98 - 1.14)$ 0.065 umor size (increased by 1cm) $1.13 (1.06 - 1.19)$ <0.001 exMale1Female $1.09 (0.89 - 1.34)$ 0.386 ace0Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 irade0G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	Arranges $HK (95\% C1)$ $P-Value$ Age (increased by 10ys) $1.06 (0.98 - 1.14)$ 0.065 'umor size (increased by 1cm) $1.13 (1.06 - 1.19)$ <0.001 SexMale1Female $1.09 (0.89 - 1.34)$ 0.386 Race0 $1.42 (0.91 - 2.21)$ 0.118 Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.001 NN1N11N2 $1.61 (1.34 - 1.93)$ <0.001 N1 $2.15 (1.77 - 2.62)$ <0.001 M1 $2.61 (2.00 - 3.39)$ <0.001 .cow nodes yieldNo1No1 Yes $1.64 (1.35 - 1.99)$.com nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	arradiesHK (95% CI)P-Valueage (increased by 10ys) $1.06 (0.98 - 1.14)$ 0.065 umor size (increased by 1cm) $1.13 (1.06 - 1.19)$ <0.001 exMale1Female $1.09 (0.89 - 1.34)$ 0.386 acce01Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade1G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 C711T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 AN11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 AN01M1 $2.61 (2.00 - 3.39)$ <0.001 No1Yes $1.64 (1.35 - 1.99)$ Ves $1.64 (1.35 - 1.99)$ <0.001	Variablas	JID (050/ C		D value
ge (increased by 10ys) $1.00 (0.98 - 1.14)$ 0.003 umor size (increased by 1cm) $1.13 (1.06 - 1.19)$ <0.001 exMale1Female $1.09 (0.89 - 1.34)$ 0.386 ace0Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 irade0G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	upper (increased by 10ys) 1.00 (0.98 - 1.14) 0.063 umor size (increased by 1cm) 1.13 (1.06 - 1.19) <0.001 iex Male 1 Female 1.09 (0.89 - 1.34) 0.386 acce 0 0 Others 1 1 Black 1.42 (0.91 - 2.21) 0.118 White 1.57 (1.13 - 2.19) 0.007 Grade 1 1 G2-3 2.08 (1.20 - 3.60) 0.009 G4 3.08 (1.32 - 7.22) 0.009 Y 1 1 N1 1 N N1 1 N N2 1.61 (1.34 - 1.93) <0.001 N 1 N M0 1 M M1 2.61 (2.00 - 3.39) <0.001 .ow nodes yield No 1 No 1 Yes 1.64 (1.35 - 1.99) <0.001	upper (increased by 10ys) 1.00 $(0.39 - 1.14)$ 0.003 vumor size (increased by 1cm) 1.13 $(1.06 - 1.19)$ <0.001 ex Male 1 Female 1.09 $(0.89 - 1.34)$ 0.386 face 0 0 Others 1 1 Black 1.42 $(0.91 - 2.21)$ 0.118 White 1.57 $(1.13 - 2.19)$ 0.007 irade 1 1 G2-3 2.08 $(1.20 - 3.60)$ 0.009 G4 3.08 $(1.32 - 7.22)$ 0.001 V 1 1 N2 1.61 $(1.34 - 1.93)$ <0.001 A N0 1 M0 1 1 M0 1 1 M0 1 1 Yes 1.64 $(1.35 - 1.99)$ <0.001	A age (improved by 10mg)	HR (95% C	1) 1 1 4)	P-value
unfor size (increased by fem) $1.13 (1.06 - 1.19)$ <0.001exMale1Female $1.09 (0.89 - 1.34)$ 0.386 ace0Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 irade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1No1Yes $1.64 (1.35 - 1.99)$ <0.001	(Increased by Tem)1.13 (1.06 - 1.19)<0.001Male1Female1.09 (0.89 - 1.34)0.386Sace011Others11Black1.42 (0.91 - 2.21)0.118White1.57 (1.13 - 2.19)0.007Gl11G2-32.08 (1.20 - 3.60)0.009G43.08 (1.32 - 7.22)0.001M1NN11N21.61 (1.34 - 1.93)<0.001N32.15 (1.77 - 2.62)<0.001M1M01M12.61 (2.00 - 3.39)<0.001M12.61 (2.00 - 3.39)<0.001	under size (nereased by tem) $1.13 (1.06 - 1.19)$ <0.001fex1Male1Female $1.09 (0.89 - 1.34)$ 0.386 face0Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 firade0G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.001 M11N2 $1.61 (1.34 - 1.93)$ <0.001 M11N2 $1.61 (1.34 - 1.93)$ <0.001 M2.15 (1.77 - 2.62) <0.001 M 11M011M1 $2.61 (2.00 - 3.39)$ <0.001 .ow nodes yieldNo1No11Yes $1.64 (1.35 - 1.99)$ <0.001	Age (increased by 10ys)	1.06 (0.98 -	- 1.14)	0.065
ex Male 1 Female $1.09 (0.89 - 1.34)$ 0.386 ace Others 1 Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 irade G1 1 G2-3 2.08 ($1.20 - 3.60$) 0.009 G4 3.08 ($1.32 - 7.22$) 0.009 T1-2 1 T3-4 1.70 ($1.38 - 2.10$) <0.001 M1 1 N2 1.61 ($1.34 - 1.93$) <0.001 N3 2.15 ($1.77 - 2.62$) <0.001 M1 2.61 ($2.00 - 3.39$) <0.001 ow nodes yield No 1 Yes 1.64 ($1.35 - 1.99$) <0.001	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{ccccccc} Male & 1 \\ Female & 1.09 (0.89 - 1.34) & 0.386 \\ tace \\ Others & 1 \\ Black & 1.42 (0.91 - 2.21) & 0.118 \\ White & 1.57 (1.13 - 2.19) & 0.007 \\ Jack & $	Tumor size (increased by Tcm)	1.13 (1.06 -	- 1.19)	<0.001
Male1Female $1.09 (0.89 - 1.34)$ 0.386 ace0Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 irade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	Mate1Female $1.09 (0.89 - 1.34)$ 0.386 Bace0Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G71T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N1N2 $1.61 (1.34 - 1.93)$ <0.001 N11N11N2 $0.11 (1.34 - 1.93)$ <0.001 N1 0.001 N1M01M1 $2.61 (2.00 - 3.39)$ <0.001 .ow nodes yieldNNo1Yes $1.64 (1.35 - 1.99)$ <0.001	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sex M-1-	1		
remare $1.09 (0.89 - 1.34)$ 0.386 ace0Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 irade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	remain $1.09 (0.89 - 1.34)$ 0.386 Race Others 1 Black 1.42 (0.91 - 2.21) 0.118 White 1.57 (1.13 - 2.19) 0.007 Grade G1 1 G2-3 2.08 (1.20 - 3.60) 0.009 G4 3.08 (1.32 - 7.22) 0.009 G4 3.08 (1.32 - 7.22) 0.009 T1-2 1 T3-4 1.70 (1.38 - 2.10) <0.001 N N1 1 N2 1.61 (1.34 - 1.93) <0.001 N3 2.15 (1.77 - 2.62) <0.001 A M0 1 M1 2.61 (2.00 - 3.39) <0.001 .cow nodes yield No 1 Yes 1.64 (1.35 - 1.99) <0.001	Permate $1.09 (0.89 - 1.34)$ 0.386 Cohers1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade1G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G711T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N1N2 $1.61 (1.34 - 1.93)$ <0.001 N2 0.001 M1M01M1 $2.61 (2.00 - 3.39)$ <0.001 No1Yes $1.64 (1.35 - 1.99)$ <0.001		I 1 00 (0 80	1 2 4)	0.296
acc1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade1G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	CateOthers1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G511T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N1N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 AM01M1 $2.61 (2.00 - 3.39)$ <0.001 .ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	Cohers1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 irradeIG11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G7IT1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 NN1N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M1M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNoNo1Yes $1.64 (1.35 - 1.99)$ <0.001		1.09 (0.89 -	- 1.34)	0.386
Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 irrade $G1$ 1 $G2-3$ $2.08 (1.20 - 3.60)$ 0.009 $G4$ $3.08 (1.32 - 7.22)$ 0.009 $T1-2$ 1 $T3-4$ $1.70 (1.38 - 2.10)$ <0.001 $N1$ 1 $N2$ $1.61 (1.34 - 1.93)$ <0.001 $N3$ $2.15 (1.77 - 2.62)$ <0.001 $M0$ 1 $M1$ $2.61 (2.00 - 3.39)$ <0.001 ow nodes yield No 1 Yes $1.64 (1.35 - 1.99)$ <0.001	Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-211T3-4 $1.70 (1.38 - 2.10)$ <0.001 NNNN11N2 $1.61 (1.34 - 1.93)$ <0.001 N2.15 (1.77 - 2.62) <0.001 MN1M1 $2.61 (2.00 - 3.39)$ <0.001 .ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	Others1Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G511T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N1N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M1M1 $2.61 (2.00 - 3.39)$ <0.001 .ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	Others	1		
Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 irade1G11G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-21T3-4 $1.70 (1.38 - 2.10)$ <0.001 N11N2 $1.61 (1.34 - 1.93)$ <0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yieldNo1Yes $1.64 (1.35 - 1.99)$ <0.001	Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade 1 1 G2-3 $2.08 (1.20 - 3.60)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 G4 $3.08 (1.32 - 7.22)$ 0.009 T1-2 1 T3-4 $1.70 (1.38 - 2.10)$ <0.001 N N 1 N2 $1.61 (1.34 - 1.93)$ <0.001 N N 1 N2 $1.61 (1.34 - 1.93)$ <0.001 N N 2.15 (1.77 - 2.62) <0.001 M0 1 M1 $2.61 (2.00 - 3.39)$ <0.001 .ow nodes yield No 1 Yes $1.64 (1.35 - 1.99)$ <0.001	Black $1.42 (0.91 - 2.21)$ 0.118 White $1.57 (1.13 - 2.19)$ 0.007 Grade G1 1 1 G2-3 2.08 (1.20 - 3.60) 0.009 G4 3.08 (1.32 - 7.22) 0.009 T1-2 1 T3-4 1.70 (1.38 - 2.10) <0.001 N N1 1 1 N2 1.61 (1.34 - 1.93) <0.001 N3 2.15 (1.77 - 2.62) <0.001 M M0 1 M1 2.61 (2.00 - 3.39) <0.001 .000 nodes yield No 1 Yes 1.64 (1.35 - 1.99) <0.001	Diagh	I 1 42 (0.01	2 21)	0.119
white $1.37(1.13 - 2.19)$ 0.007 brade G1 1 G2-3 2.08 $(1.20 - 3.60)$ 0.009 G4 3.08 $(1.32 - 7.22)$ 0.009 T1-2 1 T3-4 1.70 $(1.38 - 2.10)$ <0.001 N1 1 N2 1.61 $(1.34 - 1.93)$ <0.001 N3 2.15 $(1.77 - 2.62)$ <0.001 M 1 M0 1 M1 2.61 $(2.00 - 3.39)$ <0.001 ow nodes yield No 1 Yes 1.64 $(1.35 - 1.99)$ <0.001	while $1.37 (1.13 - 2.19)$ 0.007 Grade G1 1 G2-3 2.08 (1.20 - 3.60) 0.009 G4 3.08 (1.32 - 7.22) 0.009 T1-2 1 T3-4 1.70 (1.38 - 2.10) <0.001 N N1 1 N2 1.61 (1.34 - 1.93) <0.001 N3 2.15 (1.77 - 2.62) <0.001 M M0 1 M1 2.61 (2.00 - 3.39) <0.001 	white $1.37 (1.13 - 2.19)$ 0.007 Grade G1 1 G2-3 2.08 (1.20 - 3.60) 0.009 G4 3.08 (1.32 - 7.22) 0.009 T1-2 1 T3-4 1.70 (1.38 - 2.10) <0.001 N N1 1 N2 1.61 (1.34 - 1.93) <0.001 N3 2.15 (1.77 - 2.62) <0.001 M M0 1 M1 2.61 (2.00 - 3.39) <0.001 .ow nodes yield No 1 Yes 1.64 (1.35 - 1.99) <0.001		1.42 (0.91 -	-2.21)	0.118
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} G1 & 1 \\ G2.3 & 2.08 (1.20 - 3.60) & 0.009 \\ G4 & 3.08 (1.32 - 7.22) & 0.009 \\ T1.2 & 1 \\ T3.4 & 1.70 (1.38 - 2.10) & <0.001 \\ N & & & \\ N1 & 1 \\ N2 & 1.61 (1.34 - 1.93) & <0.001 \\ N3 & 2.15 (1.77 - 2.62) & <0.001 \\ M & & & \\ M0 & 1 \\ M1 & 2.61 (2.00 - 3.39) & <0.001 \\ ow nodes yield \\ No & 1 \\ Yes & 1.64 (1.35 - 1.99) & <0.001 \\ \end{array}$	w nite Grada	1.37 (1.13 -	- 2.19)	0.007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gl	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	2 60)	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G2-5	2.08(1.20 - 2.08(1.20))	- 5.00)	0.009
T1-2 1 T3-4 $1.70 (1.38 - 2.10) < 0.001$ N1 1 1 N2 $1.61 (1.34 - 1.93) < 0.001$ N3 $2.15 (1.77 - 2.62) < 0.001$ M0 1 M1 $2.61 (2.00 - 3.39) < 0.001$ ow nodes yield No 1 Yes $1.64 (1.35 - 1.99) < 0.001$	T1-2 1 T3-4 $1.70 (1.38 - 2.10) < 0.001$ N1 1 N2 $1.61 (1.34 - 1.93) < 0.001$ N3 $2.15 (1.77 - 2.62) < 0.001$ M 1 M0 1 M1 $2.61 (2.00 - 3.39) < 0.001$.ow nodes yield No 1 Yes $1.64 (1.35 - 1.99) < 0.001$	T1-2 1 T3-4 1.70 $(1.38 - 2.10)$ <0.001 N 1 1 N2 1.61 $(1.34 - 1.93)$ <0.001 N3 2.15 $(1.77 - 2.62)$ <0.001 M 1 2.61 $(2.00 - 3.39)$ <0.001 .ow nodes yield No 1 Yes 1.64 $(1.35 - 1.99)$ <0.001		5.08 (1.52 -	- 1.22)	0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 11-2 & 1 \\ T3-4 & 1.70 & (1.38 - 2.10) & <0.001 \\ N \\ N1 & 1 \\ N2 & 1.61 & (1.34 - 1.93) & <0.001 \\ N3 & 2.15 & (1.77 - 2.62) & <0.001 \\ A \\ M0 & 1 \\ M1 & 2.61 & (2.00 - 3.39) & <0.001 \\ .ow nodes yield \\ No & 1 \\ Yes & 1.64 & (1.35 - 1.99) & <0.001 \\ \end{array}$	$\begin{array}{cccccccc} 1122 & 1 \\ T3-4 & 1.70 (1.38 - 2.10) & <0.001 \\ N & 1 \\ N2 & 1.61 (1.34 - 1.93) & <0.001 \\ N3 & 2.15 (1.77 - 2.62) & <0.001 \\ A & M0 & 1 \\ M1 & 2.61 (2.00 - 3.39) & <0.001 \\ .ow nodes yield \\ No & 1 \\ Yes & 1.64 (1.35 - 1.99) & <0.001 \\ \end{array}$	T1 2	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} 1.100 & (1.36 - 2.10) & (3.001) \\ \hline N & 1 \\ N2 & 1.61 & (1.34 - 1.93) & <0.001 \\ N3 & 2.15 & (1.77 - 2.62) & <0.001 \\ \hline M & 1 \\ M1 & 2.61 & (2.00 - 3.39) & <0.001 \\ \hline low nodes yield \\ No & 1 \\ \hline Yes & 1.64 & (1.35 - 1.99) & <0.001 \\ \hline \end{array}$	$\begin{array}{ccccccc} 1.50 & (1.50 - 2.10) & (0.001) \\ 1 & 1 \\ $	T1-2 T3_/	1 70 (1 38	2 10)	<0.001
$\begin{array}{cccccc} N1 & 1 \\ N2 & 1.61 (1.34 - 1.93) & <0.001 \\ N3 & 2.15 (1.77 - 2.62) & <0.001 \\ 1 \\ M0 & 1 \\ M1 & 2.61 (2.00 - 3.39) & <0.001 \\ 0w nodes yield \\ No & 1 \\ Yes & 1.64 (1.35 - 1.99) & <0.001 \\ \end{array}$	NI 1 N2 $1.61(1.34 - 1.93) <0.001$ N3 $2.15(1.77 - 2.62) <0.001$ M 1 M0 1 M1 2.61(2.00 - 3.39) <0.001 .ow nodes yield No 1 Yes $1.64(1.35 - 1.99) <0.001$	NI 1 N2 1.61 $(1.34 - 1.93) < 0.001$ N3 2.15 $(1.77 - 2.62) < 0.001$ M 1 M1 2.61 $(2.00 - 3.39) < 0.001$.ow nodes yield No 1 Yes 1.64 $(1.35 - 1.99) < 0.001$	N	1.70 (1.50	2.10)	\$0.001
$\begin{array}{cccccccc} N1 & 1 & 1 \\ N2 & 1.61 & (1.34 - 1.93) & <0.001 \\ N3 & 2.15 & (1.77 - 2.62) & <0.001 \\ 1 & & & \\ M0 & 1 & & \\ M1 & 2.61 & (2.00 - 3.39) & <0.001 \\ 0w nodes yield & & & \\ No & 1 & & \\ Yes & 1.64 & (1.35 - 1.99) & <0.001 \end{array}$	N2 1.61 $(1.34 - 1.93)$ <0.001 N3 2.15 $(1.77 - 2.62)$ <0.001 A M0 1 M1 2.61 $(2.00 - 3.39)$ <0.001 .ow nodes yield No 1 Yes 1.64 $(1.35 - 1.99)$ <0.001	$\begin{array}{cccccc} N2 & 1.61 & (1.34 - 1.93) & <0.001 \\ N3 & 2.15 & (1.77 - 2.62) & <0.001 \\ M & & & & \\ M0 & 1 & & \\ M1 & 2.61 & (2.00 - 3.39) & <0.001 \\$	N1			
N2 $1.01 (1.51, 1.55)$ 0.001 N3 $2.15 (1.77 - 2.62)$ <0.001 M01M1 $2.61 (2.00 - 3.39)$ <0.001 ow nodes yield1No1Yes $1.64 (1.35 - 1.99)$ <0.001	N3 $2.15 (1.57 - 2.62) < 0.001$ M0 1 M1 2.61 (2.00 - 3.39) <0.001 .ow nodes yield No 1 Yes 1.64 (1.35 - 1.99) <0.001	N3 $2.15 (1.77 - 2.62) < 0.001$ M0 1 M1 2.61 (2.00 - 3.39) <0.001 	N2	1 61 (1 34 -	1 93)	<0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A 1 M0 1 M1 2.61 (2.00 - 3.39) <0.001	$\begin{array}{cccccccc} \text{MO} & 1 & & & & \\ \text{MO} & 1 & & & \\ \text{MI} & 2.61 (2.00 - 3.39) & <0.001 \\ \text{ow nodes yield} & & & \\ \text{No} & 1 & & \\ \text{Yes} & 1.64 (1.35 - 1.99) & <0.001 \end{array}$	N3	2.15 (1.77 -	-2.62)	< 0.001
$\begin{array}{cccc} M0 & 1 \\ M1 & 2.61 (2.00 - 3.39) < 0.001 \\ \text{ow nodes yield} \\ No & 1 \\ Yes & 1.64 (1.35 - 1.99) < 0.001 \\ \end{array}$	M0 1 M1 2.61 (2.00 – 3.39) <0.001 .ow nodes yield No 1 Yes 1.64 (1.35 – 1.99) <0.001	M0 1 M1 2.61 (2.00 – 3.39) <0.001 .ow nodes yield No 1 Yes 1.64 (1.35 – 1.99) <0.001	M	2.110 (11,77	2.02)	0.001
$\begin{array}{cccc} \text{M1} & 2.61 (2.00 - 3.39) & <0.001 \\ \text{ow nodes yield} & 1 \\ \text{Yes} & 1.64 (1.35 - 1.99) & <0.001 \end{array}$	M1 2.61 (2.00 – 3.39) <0.001 .ow nodes yield No 1 Yes 1.64 (1.35 – 1.99) <0.001	M1 2.61 (2.00 – 3.39) <0.001 cow nodes yield No 1 Yes 1.64 (1.35 – 1.99) <0.001	MO	1		
ow nodes yield 1 Yes 1.64 (1.35 - 1.99)	Joor (2007 2007) 0001 Jow nodes yield 1 Yes 1.64 (1.35 - 1.99) <0.001		M1	2.61 (2.00 -	- 3,39)	< 0.001
No 1 Yes 1.64 (1.35 - 1.99)	No 1 Yes 1.64 (1.35 – 1.99) <0.001	No 1 Yes 1.64 (1.35 – 1.99) <0.001	Low nodes vield	2.01 (2.00		
Yes 1.64 (1.35 – 1.99) <0.001	Yes 1.64 (1.35 – 1.99) <0.001	Yes 1.64 (1.35 – 1.99) <0.001	No	1		
			Yes	1.64 (1.35 -	- 1.99)	< 0.001
			105	1.01 (1.55	1.77)	.0.001

	Item No	Decommondation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the
The and abstract	1	(a) indicate the study's design with a commonly used term in the title of the
		(b) Provide in the obstract on informative and belanced summary of what was d
		(b) Frovide in the abstract an informative and balanced summary of what was u
		and what was found page2
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being repor page 3
Objectives	3	State specific objectives, including any prespecified hypotheses page3
Methods		
Study design	4	Present key elements of study design early in the paper page 3
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitm
C		exposure, follow-up, and data collection page 3-4
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up page 4
		Case-control study—Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of ca
		and controls NA
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and method
		selection of participants NA
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed NA
		<i>Case-control study</i> —For matched studies, give matching criteria and the number
		controls per case NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and e
		modifiers. Give diagnostic criteria, if applicable page 4
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if th
		is more than one group page 3-4
Bias	9	Describe any efforts to address potential sources of bias page 4
Study size	10	Explain how the study size was arrived at NA
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why page 4
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confound
		page 4
		(b) Describe any methods used to examine subgroups and interactions page 4
		(c) Explain how missing data were addressed nage 4
		(d) Cohort study—If applicable explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls
		addressed NA
		Cross-sectional study—If applicable, describe analytical methods taking account
		c_{ross} sectional strategy NA
		(a) Describe any sensitivity analyses NA
		(e) Describe any sensitivity analyses MA

3
4
5
6
-
/
8
9
10
11
11
12
13
14
15
16
17
17
18
19
20
21
22
22 22
23
24
25
26
27
20
20
29
30
31
32
22
22
34
35
36
37
38
20
39
40
41
42
43
11
44 45
45
46
47
48
49
50
50
51
52
53
54
55
22
56
57
58
50

60

1 2

		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed page 5
		(b) Give reasons for non-participation at each stage page 5
		(c) Consider use of a flow diagram figure 1, page 3
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders page 5-6
		(b) Indicate number of participants with missing data for each variable of interest figure 1,
		page 3
		(c) Cohort study—Summarise follow-up time (eg, average and total amount) Table 1 page
		5-6
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time page 5
		Case-control study—Report numbers in each exposure category, or summary measures of
		exposure NA
		Cross-sectional study—Report numbers of outcome events or summary measures NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for
		and why they were included table 1, page 5-6
		(b) Report category boundaries when continuous variables were categorized page 6
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period NA
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses NA
Discussion		
Key results	18	Summarise key results with reference to study objectives page 7-8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias page 9
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence page 8-9
Generalisability	21	Discuss the generalisability (external validity) of the study results page 9
Other informatio	n	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
		for the original study on which the present article is based page 10

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.