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Abbreviations

1000 Genomes Project (1000GP)

Structural variant (SV)

Mobile Element Locator Tool (MELT)

discordant read pairs (DPs)

split reads (SRs)

read-depth (RD)

paired-end (PE)

target site duplications (TSDs)

aCGH array comparative genomic hybridization

intensity rank sum (IRS)

median absolute deviation (MAD)

microhomology (MH)

nonhomology-based SV formation mechanism, such as nonhomologous end-joining or
microhomology-mediated break-induced replication (NH)

digital comparative genomic hybridization (dCGH)

false discovery rate (FDR)

single nucleotide polymorphism (SNP)

insertions/deletions (indels)

copy number variant (CNV)

genome-wide association studies (GWAS)

linkage disequilibrium (LD)

logarithm of odds (LOD)

whole-genome sequencing (WGS)

circular consensus sequences (CCS) reads

continuous long reads (CLR)

copy number variable regions (CNVRs)

variant allele frequency (VAF)

principal component analysis (PCA)

reciprocal overlap (RO)

residual variation intolerance score (RVIS)

untranslated region (UTR)

Hardy-Weinberg equilibrium (HDW)

Coding sequence (CDS)

Intensity rank sum test (IRS test)

long runs of homozygosity (LROH)

Types of Structural Variation:

DEL Deletion

DUP Duplication

mCNV Multi-allelic Copy Number Variant
INV Inversion

MEI Mobile Element Insertion

NUMT Nuclear Mitochondrial Insertion
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1. Supplementary Text

1.1.DNA Samples

Structural variant (SV) discovery and genotyping was performed using 7.4-fold coverage
[llumina paired-end population-scale sequencing data available at 1000genomes.org.
Unless indicated otherwise, all SV discovery and genotyping algorithms were executed on
the set of Ninitiw=2,535 individual samples initially designated for inclusion in phase3
(1000genomes.org). The final set of Nfna=2,504 phase 3 samples, including lymphoblastoid
cell line (N=2,400) as well as blood (N=104) DNA based samples, was obtained after
removal of data from N=31 samples thereby avoiding inclusion of individuals exhibiting
cryptic relationship patterns (1000genomes.org). Somatic SVs common to lymphoblast cell
lines (ie. regions undergoing site-specific somatic structural variation in B cells) were
removed from the final callset (by removing all SVs from the chromosome regions shown
below in Table 1.1.1). Within individual populations, we noticed only few differences in SV
counts between sequenced DNA samples prepared from cell-line versus blood-derived
DNAs. Cell lines/DNA for all samples (IDs provided in ED Table 1) are available from Coriell.

Chromosome Start End ‘ ID
2 | 89156874 | 90471176 | IGVDJ
7 | 38292981 | 38407770 | TRVDJ
7 | 141999017 | 142511084 | TRVDJ
9| 33618463 | 33662656 | TRVDJ
14 | 22089991 | 23014042 | TRVDJ
14 | 105994256 | 107283085 | IGVDJ
22 | 22385572 | 23265082 | IGVDJ

Table 1.1.1. Regions of somatic rearrangement in lymphoblast removed from our SV map.
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2. SV discovery & genotyping

2.1.BreakDancer
SV Type(s): DEL
Contributed by: Wanding Zhou, Zechen Chong, Xian Fan, Klaudia Walter, Ken Chen

Deletion callset generation: BreakDancer (BD, v1.1.2)! was run on all whole genome
sequenced samples following BWA alignment. Deletion calls were made by chromosome
and separately for each population using reads with mapping quality greater or equal to 20.
Insert size distributions were analyzed for each library separately using a 1Mb region on
chr20 (chr20:10000000-11000000) to determine thresholds which replaced the upper
cutoffs (=upper) in the BD config files. The upper cutoff represents the upper boundary of
the expected insert size distribution. To obtain a conservative estimate of the upper-cutoff,
three different types of thresholds were calculated, (1) the drop in the density function of
each insert size distribution, (2) the median plus four times the standard deviation, (3) the
median plus five times the median absolute deviation (MAD); the maximum of those three
estimates was chosen. About 1% of the libraries showed an extreme insert size distribution,
whereby either the median insert size or the third quantile of the insert size distribution
was zero (only insert sizes 20 were extracted from the bam files), in those cases the cutoffs
1,000 and 10,000 respectively were chosen.

The raw BD calls were filtered for deletion size (< 50 bp and >1 Mbp), for estimated read-
depth ratio (< 0.75), for number of spanning read pairs (=20), for regions around
centromeres (+/- 1 kbp), for regions around assembly gaps (+/- 50 bp) and for alpha
satellite regions. The read-depth (RD) ratio was calculated as the average RD of the
samples that supported the deletion divided by the average RD of the samples that did not
support the deletion.

Deletions were then merged across all samples using 50% reciprocal overlaps and
connected components. The merging process generated confidence intervals for the start
and for the end position of each deletion that were used for further filtering, i.e, if the
upper confidence limit for the end position was lower than the lower confidence limit for
the start position, or the outer confidence limits were smaller than the largest estimated
deletion size in that region.

To filter the calls additionally after merging, a median threshold based on the sample
libraries was computed for each sample, which in turn was used to calculate a combined
threshold for each site depending on the samples that supported the deletion site. This
combined site dependent threshold represents the minimum deletion size that is
detectable by the samples that support this deletion. For convenience this threshold was
used for further site filtering: (i) if the estimated deletion size was less than this threshold;
(ii) if the discrepancy between the largest and the smallest deletion estimates from
different samples was greater than twice the threshold; (iii) if the absolute difference
between the deletion size estimate and the inner confidence interval was greater than
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twice the threshold; (iv) if the inner confidence interval of the breakpoints was less than
the threshold; (v) if the confidence limits of the deletion breakpoints were larger than
twice the estimated deletion length. Additionally, sites were filtered out if the average RD
ratio of the merged calls was greater than 0.75.

The confidence intervals for the breakpoint positions were determined by using the outer
confidence limits as anchors. The uncertainty around those breakpoints was computed by
using the discrepancy of the distance between the outer confidence limits and the deletion
size estimates.

The false discovery rate (FDR) was estimated using SNP array probe intensities from the
Omni 2.5 chip, which was run on samples from the 1000GP, together with the Genome
STRIP Intensity rank sum (IRS) test?. To reduce the FDR of the callset, the results of the IRS
test were used as training set. A likelihood ratio was computed for each deletion by fitting
density curves for the attributes deletion size, BD score, number of supporting samples and
estimated RD ratio. The curves were fitted separately for deletion calls that pass the IRS
test and deletions calls that do not pass.

Deletion callset genotyping: Given the set of BreakDancer deletion sites initially inferred,
we re-investigated all samples and independently generated the genotype likelihoods with
congruent genotypes for each deletion in each sample. The genotype likelihoods were
computed based on two major signals: 1) the number of discordant read pairs; and 2) the
reduction of read-depth in the deletion compared to the flanking regions.

The discordant read pairs were identified by searching area left and right of the deletion
breakpoints and seeking read pairs with insert sizes at the large extremes of the library’s
insert size distribution (z-score >3). If the SV size was small (<3000 bp), the searching area
was chosen to be 500 bp long. Otherwise, the searching of the left end of a discordant pair
was extended to 1500 bp upstream the first breakpoint in order to account for imprecision
in breakpoints. We then summed for each deletion the number of read pairs sandwiching
the deletion. That is, we counted inserts only if the right end of the discordant pair was
within 500 bp downstream the second putative breakpoint.

To measure the read-depth reduction, we evenly sampled 20 positions in the deletion
region and in each of the two flanking regions. The length of the flanking region was chosen
to be the same as the length of the deletion unless the deletion was too close to the ends of
the chromosome to accommodate such length. This allowed the comparison to be limited
to a local context and robust to greater-scale copy number alterations. For smaller
deletions (length <1000), we sampled fewer positions requiring that adjacent positions
were 50 bp apart. This was to reduce the depth correlation between sampled positions.
From the sampled positions, we compared read-depths computed in the deletion region
and in each of the two flanking regions based on the Mann-Whitney U statistics. The
likelihood contribution from read-depth reduction was based on the stratification of P-
values of calculated statistics and median of read-depths in the three regions.
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The integration of the two signals into genotype likelihoods comprised of three sources of
evidence, 1) the relative scale of reduction in read-depth in the deletion; 2) the number of
discordant read pairs; and 3) whether the reduction was statistically significant. Or
formally,

L = P(my|G)P(narp|G)P(PIG),

where G € {0,1,2} corresponds to the three genotypes: (i) homozygous reference (no
deletion), (ii) heterozygous variant, and (iii) homozygous variant. P(im,|G) denotes the
probability of seeing the median of the read-depth in the deletion (m,) given the median of
read-depth in the flanking regions (my). This was modeled in a Gaussian density with mean
at max(mg, mg), msg, ms/3 and 0 in case G = 0,1,2 and standard deviation m /2. P(ndrp|G)
denotes the probability of observing ng,,, discordant read pairs given the genotype and the
read-depths at the flanking region. The probability was calculated using a Gaussian density
with mean at m;/3 and standard deviation 1. The choice of m/3 instead of the ideal m /2
was to account for attrition of reads owning to the difficulty in mapping the discordant
read pair and insert sampling in the deletion region. P(p|G) denotes the probability of
finding the reduction of read-depth in the deleted region statistically significant. p =
max(pq, p,) where p; and p, denote the p-value of Mann-Whitney U test conducted
between the deleted region and the two flanking regions. In other words, we required the
reduction of the read-depth compared to both flanking regions to be indicative of true
variants. This probability was obtained based on stratification described in the Table 2.1.1.

o . . Table 2.1.1

Based on the raw genotype likelihood (uniform prior), we P P(p|G)

generated genotype for all the deletions in all the samples. We [0,0.05) 1.0

assessed our genotypes in sites contributed to the phase 3 [0.05,0.1) | 0.9

release against microarray intensities using the IRS Annotator | [0.1,0.2) 0.1

implemented in GenomeSTRIiP. [0.2,0.3) 0.01
[0.3,0.5) le-4
[0.5,0.8) 1e-8
[0.8,1.0] 1e-50

2.2.Delly
SV Type(s): DEL, DUP, INV
Contributed by: Tobias Rausch, Markus Fritz, Jan Korbel

Deletion callset generation: Delly3 was run separately per population on all phase 3 low-
coverage WGS samples. This tool uses paired-end mapping and split-read refinement to
discover deletion sites in the genome. Delly first computes the insert size distribution of all
input libraries and then uses an insert size cutoff of five times the median absolute
deviation to classify deletion-supporting paired-ends. Paired-ends indicative of a deletion
are then clustered together and refined using split-reads. All precise and imprecise Delly
deletion predictions from the 26 populations were merged into a single structural variant
site list using a 70% reciprocal overlap (RO) threshold and a maximum breakpoint offset of
250 bp. In each cluster, the paired-end call with the highest support was selected for the
Delly’s final candidate deletion site list.
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Read-depth (RD) of all candidate deletions was annotated using ‘cov’, an auxiliary tool from
the Delly package. The raw read-depth values were normalized for GC content, mappability
and median total coverage across samples. For each candidate deletion, a Gaussian Mixture
Model was applied to model the read-depth distribution and assign copy number states.
Samples were genotyped using the posterior probabilities of the Gaussian Mixture Model,
where samples with a posterior probability <0.9 were left ungenotyped. Filtering of
candidate deletion sites was dependent on the quality of the Gaussian Mixture fit and the
cluster separation. Using the copy number state assignments, a silhouette score was
calculated and required to be >0.6 for a final deletion call. In addition, a minimum required
ratio of genotyped compared to ungenotyped samples was set to 0.4 for each site. The read-
depth modeling and filtering scripts used are both part of the current Delly distribution.

Tandem-duplication callset generation: Paired-end mapping and split-read refinement
was used to discover tandem duplication sites in the genome with Delly. The tool was run
separately by population on the phase 3 samples. Signal indicative of a tandem-duplication
is a paired-end where the first and second read change their relative ordering compared to
the expected Illumina paired-end library layout. These abnormal paired-ends are clustered
together and refined using split-reads. All precise and imprecise Delly tandem duplication
predictions were merged into a single SV sites list using a 70% RO threshold and a
maximum breakpoint offset of 250 bp. In each cluster, the paired-end call with the highest
support was selected for the final candidate tandem-duplication site list.

RD of all candidate duplications was annotated using ‘cov’. The raw read-depth values were
normalized for GC-content, mappability and median total coverage across samples. For
each candidate tandem-duplication, a Gaussian Mixture Model was applied to model the
read-depth distribution and assign copy number states. Samples were genotyped using the
posterior probabilities of the Gaussian Mixture Model, where samples with a posterior
probability <0.9 were left ungenotyped. Filtering of candidate tandem duplications was
dependent on the quality of the Gaussian Mixture fit and the cluster separation. Using the
copy number state assignments, a silhouette score was calculated and required to be >0.85
for making it into Delly’s final tandem duplication sites list. Non-biallelic duplications with
more than two read-depth components were filtered out as well as mixed sites.

Inversion callset generation: Inversions were identified by clustering all read-pairs of
abnormal orientation compared to the standard Illumina paired-end layout. The left and
right breakpoint of an inversion give rise to two different classes of inversion-supporting
paired-ends that are clustered separately by Delly. Delly was used separately for each
population of the 1000GP sample panel. Discovered population-specific inversions sites
were subsequently integrated into a merged inversion site list using a strict 90% RO
criterion and a breakpoint offset smaller than 50 bp. Left- and right- breakpoint spanning
read pairs were initially merged independently (and, if feasible, subsequently joined into
“two-sided inversions”; see below).
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Inversion callset genotyping: The merged inversion site list was genotyped across the
entire 1000GP phase 3 cohort. Counts of inversion-supporting and reference-supporting
read pairs were used to derive genotype likelihoods and phred-scaled genotype qualities.

Filtering of candidate inversion sites: All genotyped inversions were further filtered
according to the below set of genotype quality metrics: (1) The minimum genotype ratio of
genotyped to ungenotyped samples was greater or equal 0.4. (2) The fraction of inversion
supporting pairs in carriers was greater or equal to 0.3. (3) The median carrier genotype
quality (phred scaled) was =30. (4) The median non-carrier genotype quality (phred
scaled) was 215. (5) All non-carriers were required to show zero inversion supporting
paired-ends to filter inverted repeat induced false positive inversion calls. (5) The
inversion size was greater than 250 bp and <50 kbp. Two-sided inversion sites exhibited
confident support from both inversion breakpoints, and one-sided inversions showed
support for one breakpoint only.

One-sided inversion sites were further filtered for split-read support by remapping reads
around the predicted breakpoints (1 kb window) using bwa-mem*. For each site the
median of the split read fraction across all carriers was determined. Using PacBio amplicon
validation data an empirical fraction threshold was chosen (0.011), which minimized the
FDR. Applying this threshold yielded Delly’s final inversion call set.

2.3.VariationHunter

SV Type(s): DEL

Contributed by: Fereydoun Hormozdiari, Can Alkan, Evan Eichler

Deletion callset methods: VariationHunter> deletion discovery considered all discordant
mapping locations (paired-end reads exhibiting mapping spans more than 4 standard
deviations above the inferred mean insert size) from mrFAST and BWA read alignments. To
generate an initial callset we considered only those candidate sites with support of at least
two read pairs, whereby we required an average edit distance of maximum 3 per read. We
then applied several filters to reduce false positives: 1) we scaled the minimum read pair
threshold for each sample according to the depth of coverage; 2) removed deletion calls
overlapping segmental duplications >30% (RO criterion); 3) removed deletion calls that
also show inverted duplication or inverted repeat insertion signals; and 4) required the
read-depth within the deletion interval to drop, consistent with the deletion event.
Notwithstanding these filters, we considered a deletion call to be correct if it indicates an
AluY or L1HS deletion, or it was also predicted as part of 1000 Genomes Phase 1 deletion
callset. We further objectively filtered the callset based on total read support to reduce the
FDR.

2.4.CNVnator
SV Type(s): DEL
Contributed By: Alexej Abyzov
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CNV callset generation: SV calls with CNVnator® were made with standard parameters.
Read-depth (RD) signals were corrected for GC bias. For each sample we aimed at using the
smallest bin size out of the following three bin size values: 500, 1,000, or 1,500 bp, in such a
way that the average RD would be at least 4 standard deviations away from zero. RD signal
in 94 samples did not satisfy the criterion of 4 standard deviations for neither of the bins
sizes, and thus these samples were not used for deletion discovery with CNVnator.

We then searched for read pairs showing abnormal read mapping with a mapping quality
of at least 10, in support of the CNVnator calls, considering read pairs to be in support of a
deletion if their mapping was consistent with a deletion and the span between reads
showed an 80% RO with the CNVnator (read-depth based) SV call. Call bounds were
readjusted to reflect the more precise breakpoint inference of paired-end mapping when
compared to read-depth analysis.

For each sample we subsequently selected confident CNVnator calls as follows: 1) calls
having paired-end support; 2) calls with p-values less than 10-> (to accounts for multiple
hypothesis testing, i.e, calling in ~2,500 samples), and with q0 < 0.5; 3) deletion calls with
p-values less than 10-> and rd*(1 + q0) < 0.75 — whereby rd is the read-depth normalized
to genome average, and g0 is fraction of reads mapped with 0 (zero) mapping quality. We
merged CNV calls for individuals within each population. For CNVnator site merging we
initially clustered confident overlapping calls and averaged coordinates of each bound,
pursuing the merging initially by population and then across the entire sample set.

2.5.Read-Depth (SSF)
SV Type(s): DEL, DUP, mCNV
Contributed by: Peter Sudmant, John Huddleston, Brad Nelson, Evan Eichler

CNV callset generation: The University of Washington (UW) read-depth based callset was
generated subsequent to mapping all individual phase 3 short DNA-read genomic datasets
with the mrsFAST read aligner’ (using default parameters). Reads were first subdivided
into their 36-bp non-overlapping constituents to normalize among the different read
lengths represented in the 1000GP dataset. After mapping, read-depths were quantified for
each genome and recalibrated to take into account GC-associated coverage biases
introduced by library construction® and copy number was estimated in adjacent windows
of 500 bp of unmasked sequence using a calibration curve based on regions of known copy
number. Genomes were then assessed for overall quality using a number of QC metrics®
with a total of 2169 samples passing all filters for analysis.

Calls were generated using digital comparative genomic hybridization (dCGH)? where the

estimated copy numbers of each ‘test’ individual are compared against an ensemble of
‘reference’ individuals. In this case we used a set of 25 high-coverage, high-quality
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reference genomes sequenced as part of the Denisova sequencing project!l. The dCGH
signal was segmented as described previously!? using scale space filtering!2. Briefly, the
dCGH signal f = <log2

enome . . . .
u) was transformed to its Gaussian smoothed derivative
genomeyef

g’ (o) and second derivative g” 7 (o) for a range of values of o thus constructing a
surface parameterized by the scale parameter o . This surface is then traversed for local
minima traversing from large o to smaller o thus indicating putative change-points of
relative changes between the test and reference individuals. Change-points identified
among each test (phase 3) sample and all 25 reference individuals were merged and a
callset was generated for each individual genome. Finally, calls amongst all 2,169 test
samples were simultaneously merged and genotyped to construct a callset. Genotypes were
assigned using a Gaussian Mixture Model fit using expectation maximization. From the
genotypes an assessment of the quality of each call was generated which we call the L-score,
which is the sum of the log-probabilities of each samples genotype given the assumed
genotype model.

The initially resulting UW read-depth sites list consisted of 24,655 sites overall, including
11,124 duplications, 7,019 deletions and 6,512 mCNVs. The FDR of these calls was
estimated using the IRS method!3 and Affymetrix SNP chip data, and found to be higher
than the initial inclusion threshold of 10%. We thus assessed the FDR for varying L-score
cutoffs to generate the final SSF callset.

L-score cutoffs were set at 280, -180 and 880 for mCNVs, deletions and duplications
respectively resulting in FDR <10%.

2.6.Genome STRiP
SV Type(s): DEL, DUP, mCNV
Contributed by: Bob Handsaker, Steve McCarroll

Deletion callset generation: The deletion discovery pipeline in Genome STRiP# version
1.04.1225 was used to discover and genotype large deletions in 2535 samples sequenced at
low coverage (these initially included 31 samples from the 1000GP not used in the final
phase 3 release, since they exhibited patterns of cryptic relatedness).

Deletion discovery was performed grouping the samples in five separate batches of 500
samples each (the last batch had 535 samples), with a target deletion size range of 100 bp
to 100 kbp. After discovery, the union of the discovered deletion sites was genotyped in all
samples simultaneously. Standard Genome STRIiP genotyping filters were applied to select
passing sites and to remove duplicate calls and then a more stringent duplicate removal
protocol was applied.

For deletions larger than 100 kb, we applied the same method described above using a
target deletion size range of 100 kb to 1 Mb. For these larger sites, we used a more
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stringent site selection threshold post-genotyping, requiring a read-depth -cluster
separation >6 standard deviation. In addition, three large deletion sites >100 kb that
appeared to overlap a true deletion but had incorrect boundaries were removed during
manual review.

Genome STRiP employs a genotype-likelihood-based method for detection and removal of
duplicate calls. All pairs of calls are evaluated based on the degree of overlap and the
degree of genotype concordance as represented by the genotype likelihoods. When calls
are deemed to be duplicates, the preferred call is chosen to maximize the posterior
probabilities of the genotypes.

The default protocol for duplicate call detection requires site overlap greater than 50% and
duplicate score (logarithm of odds (LOD) score of genotype concordance at most
discordant sample) greater than zero. This is a conservative threshold intended for input
site lists with a low level of duplicate calls. In conjunction with performing deletion
discovery in batches, we applied a more stringent protocol for duplicate detection:

a) Remove all duplicate calls using standard settings (50% site overlap and most-
discordant LOD score greater than zero).

b) Perform a second pass removing duplicate calls using criteria of site overlap greater
than 50% and no discordant genotypes at a 95% confidence threshold.

c) Perform a third pass removing duplicate calls using criteria of 80% site overlap only.

In addition to the deletions ascertained and genotyped using the Genome STRiP deletion
discovery pipeline, we included in the deletion discovery set bi-allelic deletion sites on the
autosome ascertained through the Genome STRiP copy number variant (CNV) discovery
pipeline when these deletion sites had less than 50% overlap with deletions already
ascertained by Genome STRiP.

mCNV callset generation: A pre-release version of Genome STRiP CNV discovery pipeline
(version 1.04.1375) was used to discover and genotype large copy number polymorphisms,
including deletions, duplications and mixed deletions/duplications. The Genome STRiP
CNV discovery pipeline utilizes primarily read-depth during discovery and is
complementary to the Genome STRiP deletion discovery pipeline.

The reference genome was divided into 1,061,745 overlapping windows, each consisting of
5 kb of uniquely alignable sequence and overlapping adjacent windows by 2.5 kb. These
windows were genotyped using Genome STRiP and windows with evidence of
polymorphism were retained. Adjacent or overlapping windows with compatible
genotypes were merged to increase power. After this genome-wide scan, 179 samples
exhibiting excessive variation were removed from this analysis based on the number of
distinct calls in these samples exceeding the median (across all samples) + 3 MAD. The
effective discovery cohort contained 2,356 samples.

For each window with evidence of polymorphism, a hill-climbing algorithm was used to
refine the variant boundary through multiple rounds of genotyping using different
boundary intervals. The objective function used to select the best interval maximizes the

WWW.NATURE.COM/NATURE | 11



doi:10.1038/nature15394 {2 \H{H; W SUPPLEMENTARY INFORMATION

sum of genotype confidence for samples with non-modal copy number for the site. After
boundary refinement, duplicate calls are removed using the standard Genome STRiP
duplicate removal settings (50% site overlap and discordant LOD score of zero).

Candidate calls were then filtered using the following criteria: Sites are retained if (a) they
had a 95% confident genotype call rate of at least 80% (b) they had at least one sample
called non-homozygous-reference at 95% confidence, (c) at least 30% of the covered bases
were uniquely alignable and (d) the read-depth cluster separation was at least 5 standard
deviations. Sites passing these filters that were larger than 10 kb were retained. Sites
between 3 kb and 10 kb were retained if IRS p-values could be computed and all available
p-values were less than 0.01.

For the sites that were not confidently called as bi-allelic deletions, copy number
likelihoods were converted to multi-allelic genotype likelihoods. An expectation-
maximization algorithm was used to estimate the haploid allele frequency of each copy
number state, assuming Hardy-Weinberg equilibrium (HWE) within each population.
Alleles with an overall posterior likelihood of at least 0.001 were used in the variant model
and genotype likelihoods for this set of alleles were generated based on the diploid copy
number likelihoods and the estimated allele frequencies in each population.

Calling of SVs on chromosome X was similar to the procedure described above for the
autosome, except that processing was carried out separately after grouping samples into
batches to control for differential read-depth profiles on chromosome X that were
primarily driven by differences in sequencing depth between blood-derived DNA samples
and DNA samples from lymphoblastoid cell lines.

CNV discovery and genotyping was performed based on dividing the samples into four
batches: F1 and F2 for female samples with normalized chrX dosage below/above 1.96
(respectively) and M1 and M2 for male samples with normalized chrX dosage below/above
0.9985. Discovery was performed separately in the F1, F2 and M1+M2 cohorts. Following
the QC procedures outlines above for each of the three discovery batches, samples were
dropped if the number of called sites were above the median + 3 MAD in any of the three
batches or in the autosome. This yielded a discovery cohort for chrX of 2,137 samples
(1,054 males and 1,083 females).

The union of the discovery sites was then genotyped in two batches, one batch containing
the F1+M1 samples and one batch containing the F2+M2 samples. The genotyped sites
were merged and and duplicate site removal was performed as described above. Sites
larger than 20 kb were retained based on an estimated FDR using the IRS method of 2.5%
(Omni 2.5 array) and 0% (Affy6 array). Sites between 3 kb and 20 kb were retained if IRS
p-values could be computed and all available p-values were less than 0.01. The final callset
on chrX consisted of 764 sites of which 392 were confidently classified as bi-allelic
deletions.

A total of 74,751 potentially redundant input sites (autosome + chrX) were merged and
genotyped using Genome STRiP version 1.04.1257 to generate a set of 32,924 mostly non-
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redundant sites with genotype likelihoods in 2,535 samples suitable for building the
imputation scaffold with Impute2.

2.7.Pindel
SV Type(s): DEL

Deletion callset generation (contributed by: Kai Ye, Eric Wubbo Lameijer, Klaudia
Walter): Pindel'> (version 0.2.5a2) was run across Illumina paired-end samples in chunks
of 300 kb with the following parameters: -w 0.1 -x 5 -B 0 -T 4. Regions around the
centromeres were excluded. Split read based deletion calls appearing in at least five
samples and with more than five reads from both strands were collected for downstream
analysis. We estimated the FDR for deletions greater than 300 bp using SNP array probe
intensities from the Omni 2.5 and the Affymetrix 6.0 chips (both run on samples from the
1000GP) together with the Genome STRIiP IRS test. To reduce the FDR of the deletion call
set, the results of the IRS tests were used as training set. A likelihood ratio was computed
for each deletion by fitting density curves for the attributes deletion size, length of the
micro-homologies around the breakpoints, number of supporting samples and percentage
of P-sites (the sites that passed all filters from the strict genome mask annotation). The
curves were fitted separately for deletion calls that passed the IRS test and deletions calls
that did not pass. 14 deletions were randomly selected for PCR and Sanger sequencing. We
did not observe a PCR product for one deletion, and 11 out of the remaining 13 deletions
showed the (exact) same breakpoints as predicted by Pindel.

Complex deletion callset generation (contributed by Kai Ye, Ali Bashir): In addition to
the aforementioned Pindel deletion callset, we employed the latest Pindel version also for
capturing deletions with inserted sequences at the deletion breakpoints (ie., complex
deletion events) establishing an additional callset with Pindel complex deletion sites not
included in our phase 3 SV group data release (complex Pindel deletions available at
ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/integrated_sv_map). Complex Pindel deletion
sites were called across the entire set of low-coverage Illumina samples, and variants
retained within the complex Pindel callset if we observed read support evidence from both
strands and further if (and only if) the variant was present in NA12878.

2.8.MELT
SV Type(s): MEI
Contributed by: Eugene J. Gardner, Scott E. Devine

MEI callset generation: Mobile element insertions (MEIs) were detected with the Mobile

Element Locator Tool (MELT)® using discordant read pairs (DPs) to define potential MEI
sites and split reads (SRs) to identify breakpoints and target site duplications (TSDs). MEIs
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were detected across all phase3 Illumina low-coverage sample binary alignment/map
(bam) files. Samples with less than 90% properly mapped read pairs were removed from
the analysis because high levels of mapping artifacts in these samples confounded MEI
detection. The 82 samples that were excluded are listed in Table 2.8.1 below. Imputed MEI
calls were included in the final SV call set for the 82 samples in Table 2.8.1. MELT can be
obtained from http://melt.igs.umaryland.edu/.

MELT pipeline steps: DPs were first extracted from bam files and subsequently screened to
identify mate pairs where one mate mapped unambiguously to the reference human
genome sequence (Reference Mate - RM) and the remaining mate (Mobile Mate - MM)
aligned to one of three mobile element reference sequences (282 bp Alu Y consensus?®,
6,019 bp L1-Ta L1.317, or 1,628 SVA18) using Bowtie21° with default parameters. MMs were
further refined after alignment by developing filtering cutoffs to accommodate normal
sequence variation in each mobile element typel¢. Sites where at least four RMs clustered
within 500 bp of each other were considered candidate MEI sites. DPs and SRs that mapped
to each candidate site then were merged across all samples to build models containing all
available evidence for each candidate MEI site. These models were used to identify the
following features at each MEI site: the precise insertion site, strand, TSD, insertion
sequence and insertion length. All putative MEIs were genotyped across the 1000GP Phase
3 samples using a modified version of the equation described in Li et al.?0.

Filtering of Candidate MEIs: MEIs were required to have at least four DPs of supporting
evidence during initial discovery at each site for the final call set. This provided a good
balance between the false negative rate (FNR) and the FDR (Table 1, main text). Putative
MEIs were filtered if they mapped within reference mobile elements of the same type as
annotated by RepeatMasker v. 4.0.3 at the University of California Santa Cruz (UCSC)
Genome Browser website?l. To control for sequence coverage variation at candidate MEI
sites, 100 bp windows flanking each MEI site were sampled for depth of coverage
fluctuations. Sites that fell outside of the range of 70 to 130% sequence coverage were
filtered.

Table 2.8.1 - MELT Filtered Samples

PERCENT READS PERCENT READS
GENOME NAME PROPER PAIRED GENOME NAME PROPER PAIRED
HG01182 35.65383262 | NA19914 84.10528923
HG01183 37.74160819 | NA18636 84.43989059
HG01187 40.5099555 | NA19473 84.64369818
HG01188 48.38791739 | HG00236 84.80342026
NA19474 50.08947675 | HG00140 84.89970785
NA19338 54.74811848 | HG00238 85.0720453
NA19055 56.49774621 | NA19430 85.13356496
NA18498 59.51585106 | NA19247 85.49534598
HG01522 60.52264324 | NA19248 85.80111166
NA19707 63.54952663 | NA19901 86.14479404
HG01495 63.717762 | NA18870 86.19125899
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HG01204 64.35374775 | HG01366 86.24589902
NA19058 64.45264614 | HG01334 86.49511825
NA18867 65.53874032 | NA18853 86.79407677
NA19116 67.5861823 | HG02121 86.90209268
NA18984 69.10197844 | NA19064 87.32160657
NA19000 73.44250778 | HG01437 87.68970225
HG00123 73.45059672 | NA06985 88.13133853
NA18982 74.26809319 | HG03907 88.4480774
HG01101 74.80170209 | NA19819 88.6504557
NA18537 75.9427905 | HG03925 88.652049
NA18986 76.4162398 | NA19075 88.69913482
NA11994 77.02959592 | NA19213 88.77173126
HG00110 78.46756493 | HG03595 88.9682155
NA18504 78.58029335 | HG03908 88.99989296
NA19719 79.22589977 | HG03805 89.23752353
NA18624 79.82318449 | NA19682 89.27943855
NA18912 80.16712307 | HG03594 89.30545592
NA18632 80.89482933 | HG03926 89.384562
HG01168 81.80151954 | NA19189 89.40531169
NA19063 81.92548278 | HG02008 89.41626207
NA19703 82.83596144 | HG01176 89.44784702
NA19789 82.9684615 | NA19060 89.55853257
NA18633 83.00193183 | HG03304 89.56506047
NA19909 83.03416108 | HG01167 89.56741161
NA18623 83.27101572 | HG03378 89.64475573
HG00864 83.39286482 | NA19009 89.65493494
NA12399 83.4811382 | HG03354 89.67373574
NA20800 83.60649987 | NA19066 89.77061762
NA12400 83.73956843 | NA19921 89.8945942
NA11832 83.9340582 | NA19236 89.95338935
2.9.Dinumt

SV Type(s): NUMTs
Contributed by: Gargi Dayama, Ryan Mills

NUMTs callset generation: Nuclear insertions of mitochondrial DNA (NUMTs) were
discovered using dinumt?? (version 0.0.22) in 1000GP phase 3 samples using the following
parameters: --len_cluster_include = mean + 3 * standard deviation of sample insert size, --
len_cluster_link = 2 * len_cluster_include, --max_read_cov = 5 * mean sample coverage.
When possible, soft clipped reads were used to identify breakpoint positions. Confidence
intervals were set to the distance between most prevalent clipped positions, if available;
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otherwise, confidence intervals were set to the inner distance between supporting read
pair clusters. Calls were then filtered based on the following criteria: phred-scaled quality
filter <50, number of supporting reads <4, manual inspection.

NUMTs callset genotyping: Filtered calls were merged across samples and genotyped in
the same samples using custom software (gnomit, version 0.0.22) using a similar approach
to previously applied methodology?? to calculate genotype likelihoods, with breakpoint
position refinement based on cross-sample support and mtDNA mapping of soft clipped
reads. Population frequency was estimated from initial likelihoods and used as priors in
subsequent expectation maximization iterations (max 10). No-calls or calls with genotype
quality <13 were labeled as LowQual. Calls labeled with "IMPRECISE" did not have a
refined breakpoint position. 80 samples were omitted from genotyping due to sequencing
quality - NUMT calls in these have been included based on imputation at the stage of
haplotype phasing. Dinumt is available at: https://bitbucket.org/remills/dinumt.

2.10. Summary of all callsets
Contributed by: Tobias Rausch and Peter Sudmant

The total number of calls made by each method is presented in Table 2.10.1 along the
diagonal with the number of common calls by any two methods on the off-diagonals. We
note that that due to our strict FDR cutoffs many call-sets were heavily pre-filtered (e.g., for
Pindel only SVs < 1 kbp). So the true overlap among the raw calls is much higher than what
is shown in this table. Callers pursuing population-based SV discovery are indicated with
an asterisk (*). All the other five SV detection algorithms made calls independently per
sample (i.e, did not perform population-based calling).
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Table 2.10.1: SV calling algorithms, the total number of calls made by each tool, and
calls common to pairs of callers.

Break- Din
Dancer CNV- Delly Genom um Pin- Variation

Methods * nator* * eSTRiP MELT t del SSF -Hunter*
1

BreakDancer 8

(DEL) 10552 4925 3029 9738 0 0 150 6 7565
6

CNVnator 8

(DEL) - 18345 5056 12086 0 0 9 0 11133
3

Delly (DEL, 6

DUP, INV) - - 8229 6948 0 0 28 4 6222
1

GenomeSTRi 2

P (DEL, DUP, 5

mCNV) - - - 38404 0 0 417 2 16042

MELT (Alu,

L1, SVA) - - - - 16631 0 0 0 0

Dinumt

(NUMTS) - - - - - 168 0 0 0

Pindel (DEL) - - - - - - 9580 0 276
4
0

SSF (DEL, 8

DUP, mCNV) 2 367

VariationHu

nter (DEL) - - - - - - - - 23528

We additionally prepared a release of our SV map lifted over to GRCh38 coordinates. All but
98 SVs (0.1%) could be lifted over, with only 13 SVs being lifted to an unplaced GRCh38
contig, only 10 SVs differing in size by more than 10%, and the breakpoints of 99.7% of
assembled deletions were identical between GRCh37 and GRCh38. At most 0.5% of SVs in
our GRCh37 release have been fully or partially incorporated into GRCh38.

3. SV site merging, genotyping and phasing
Contributed by: Bob Handsaker, Tobias Rausch

To generate a haplotype-resolved SV set we used the following procedure. Initially, in order
to generate a high confidence set of large deletion sites to be used for joint haplotype
scaffold generation along with SNPs and insertions/deletions (indels), we employed
Genome STRiP! to re-genotyping sites called with the five most specific deletion discovery
algorithms (BreakDancer!, Delly3, CNVnator®, GenomeSTRiP14, and VariationHunter?>).
GenomeSTRiP’s redundancy removal function was used to merge these sites into a
coherent list of large high confidence deletions.
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A total of 74,751 potentially redundant input sites (autosome + chrX) were merged and
genotyped Genome STRiP version 1.04.1257 to generate a set of 32,924 mostly non-
redundant sites with genotype likelihoods in 2,535 samples suitable for building the
imputation scaffold with Impute2.

As the input call sets originated from multiple algorithms using the same input data, so a
large degree of redundancy was expected. In addition, the CNVnator input sites were the
union of sites called separately in each population and were therefore expected to also
have a high rate of internal redundancy.

To resolve this high rate of redundancy, we used a stringent protocol for duplicate site
detection and removal:

a) Remove all duplicate calls using standard settings in Genome STRiP (50% site overlap
and most discordant LOD score greater than zero).

b) Perform a second pass removing duplicate calls using criteria of site overlap greater
than 50% and no discordant genotypes at a 95% confidence threshold.

c) Perform a third pass removing duplicate calls using criteria of 80% site overlap only.

The results of each merging pass are indicated in the three summary lines in Table 3.1
(Mergel, Merge2, Merged call set). FDR estimates (using the IRS method, Omni 2.5 array)
ranged from 1% to 6.7% in the input call sets. The estimated FDR in the genotyped call set
was 3.1%.
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Table 3 .1- Merged Deletion Genotype Statistics

Call set Input Input Dup. Mono Other Pass Pass % IRS Sites | IRS Pass Self- Self-
FDR Sites Sites Sites Filters Sites Evaluate | Eval % Site IRS | overlap overlap
Estimat d FDR @ 50% @ 80%
e Estimat
e
EM_DL 4.4% 7,099 0 118 127 6,854 98.2% 4,750 69.3% 1.3% 0.0% 0.0%
SI_BD 3.2% 17,865 39 211 6,964 10,651 60.5% 6,226 58.5% 2.1% 0.0% 0.0%
YL_CN * 1%-5% | 41,294 27,269 53 1,128 12,844 91.9% 8,199 63.8% 1.6% 13.7% 11.7%
UW_VH 6.7% 20,254 2,794 185 2,817 14,458 83.7% 9,758 67.5% 2.5% 1.7% 1.0%
2
BI_GS 2.5% 29,944 0 0 0 29,944 100.0% 18,376 61.4% 2.5% 1.2% 0.0%
Merged - 74,751 36,547 0 0 38,204 100.0% 21,401 56.0% 3.0% 14.9% 12.9%
1
Merged - 74,751 40,955 0 0 33,796 100.0% 19,670 58.2% 3.2% 4.1% 2.5%
2
Merged - 74,751 41,827 0 0 32,924 100.0% 19,567 59.4% 3.1% 1.6% 0.0%
call set

* The CNVnator input calls were the union of 26 callsets made separately in each population.

The merged SV list was used for haplotype scaffold generation, along with SNPs and bi-
allelic indels, using Shapelt223. Following scaffold generation, all other SV callsets were
statistically phased into these haplotype scaffolds using MVNcaller?4, with the confidence in
individual variant phases depending on patterns of LD and VAF (e.g. singletons are
arbitrarily phased in this procedure). 98% of SVs >1% have a reported median MVNcall SV
carrier (phased genotype) posterior probability?* >0.95, compared to 89% for variants
<1%. Finally, we performed another SV merging and filtering step in order to remove
redundant calls, to harmonize the SV notation and to ensure a low site for the merged SV
call set. All post-phasing mono-monomorphic reference sites were excluded, cryptically
related samples (N=31) were dropped and CNVs were classified as bi-allelic deletions
(DEL), bi-allelic duplications (DUP) and multi-allelic CNVs (mCNV). Merging was performed
using an overlap graph G(r, c) = G(0.71, 0.71), requiring a RO (r) of at least 71% and a non-
reference copy number concordance (c) of at least 71%. Using these cutoffs ensured that
>99% of all connected components in the overlap graph were cliques. For each connected
component, we picked one representative call whereas all merged calls were specified in
the VCF INFO column.

After callset merging and statistical haplotype phasing we obtained improved site-based
FDR estimates (these are summarized in Table 1), which likely is due to a reduction of
samples with missing genotypes and improved SV boundary inference after merging.
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4. Breakpoint Analysis

4.1.Local assembly (short-read)

TIGRA (contributed by: Ken Chen, Wanding Zhou, Zechen Chong, Xian Fan): Breakpoint
assembly of deletions and duplications in our callset was performed using TIGRA-0.4.025.
For each breakpoint, TIGRA first extracted reads that were mapped near the predicted
breakpoint (+500 bp) from the set of bam files corresponding to carrier samples. Paired-
ends that were unmapped or mapped outside the window were also extracted. We then ran
an iterative de Bruijn graphic assembly algorithm to decode the set of non-reference alleles
that best explain the set of reads. An assembly score was calculated to summarize both the
length of the contigs and the proportion of reads that contributed to the assembly.

Velvet (contributed by Amina Noor, Danny Antaki, Madhusudan Gujral, Jonathan
Sebat): To enable further characterization of SV complexity, DEL and DUP calls were
generated in PCR-free high coverage Illumina WGS data for 30 samples using the forestSV26
tool. A total of 1,248 non-redundant raw DEL and DUP calls were initially made for this
purpose (including simple and complex sites). Genotype likelihoods for these calls were
determined using expectation maximization Gaussian Mixture Model classifier. The calls
were then filtered with non-reference genotype likelihood of greater than 0.75, resulting in
1,148 deletion and 43 duplication calls. FDR was determined to be 5.4% based on the IRS
test on array intensity data. To assemble breakpoints, soft-clipped reads were extracted
within +/- 1 kbp of start and end positions identified by forestSV. De novo assembly of
breakpoint-spanning reads was performed using Velvet?’. Assembled contigs were aligned
to the reference genome using BLAT?8 and breakpoints were inferred from the alignments.

For our call set, 4,838 putative breakpoint contigs were assembled and BLAT alignments
identified non-redundant breakpoints for 419 calls (indicating a success rate of 36%). We
verified breakpoints for NA12878 using Moleculo data, and observed that 40 out of 40
breakpoint contigs were supported by an identical Moleculo long-read.

SVs having multiple breakpoints were identified as complex breakpoints and there were 69
such instances. We classified these breakpoints by performing BLAT onto the reference
genome and generating dotplots for each SV. Out of these, 3 were deletion with inversions,
22 were insertions within deleted sequence, and 44 were multideletions.

4.2.Long read based breakpoint analysis

PacBio SMRT sequencing of NA12878 (contributed by: Ali Bashir, Matthew Pendleton,
Robert Sebra, Gintaras Deikus, Eric Schadt, Chris Mason): As described in further detail
elsewhere??, aliquots of 5 pg of NA12878 genomic DNA (Coriell) were diluted to 150 pL
using Qiagen elution buffer at 33 pg / pL. The 150 pL aliquot was individually pipetted into
the top chamber of a Covaris G-tube spin column and sheared gently for 60 seconds at
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4,500 rpm using an Eppendorf 5424 bench top centrifuge. Once completed, the spin column
was flipped after verifying that all DNA was now in the lower chamber. Then, the column
was spun for another 60 seconds at 4,500 rpm to further shear the DNA and place the
aliquot back into the upper chamber, resulting in a 10,000 to 20,000 bp DNA shear, verified
using a DNA 12000 Agilent Bioanalyzer gel chip. The sheared DNA was then re-purified
using a 0.45X AMPure XP purification step (0.45X AMPure beads added, by volume, to each
DNA sample dissolved in 200 pL elution buffer (EB), vortexed for 10 minutes at 2,000 rpm,
followed by two washes with 70% alcohol and finally diluted in EB). This AMPure XP
purification step assures removal of any small fragment and/or biological contaminant.

After purification and shearing, ~1.6 to 3.2 ug of purified and sheared sample was taken
into DNA damage and end-repair from each batch preparation. The DNA fragments were
repaired using DNA damage repair solution (1X DNA damage repair buffer, 1X NAD+, 1 mM
ATP high, 0.1 mM dNTP, and 1X DNA damage repair mix) with a volume of 21.1 pL and
incubated at 37°C for 20 minutes. DNA ends were repaired next by adding 1X end repair
mix to the solution, which was incubated at 25°C for 5 minutes, followed by the second
0.45X Ampure XP purification step. Next, 0.75 uM of blunt adapter was added to the DNA,
followed by 1X template preparation buffer, 0.05 mM ATP low and 0.75 U/pL T4 ligase to
ligate (final volume of 47.5 pL) the SMRTbell adapters to the DNA fragments. This solution
was incubated at 25°C overnight, followed by a 65°C 10-minute ligase denaturation step.
After ligation, the library was treated with an exonuclease cocktail to remove un-ligated
DNA fragments using a solution of 1.81 U/pL Exo Il 18 and 0.18 U/uL Exo VII, then
incubated at 37°C for 1 hour. Two additional 0.45X Ampure XP purifications steps were
performed to remove <2000 bp molecular weight DNA and organic contaminant. The
exonuclease cycle above was repeated a second time on all library preparations and
followed by an additional two 0.45X Ampure XP purifications and a third 0.40X Ampure XP
purification step, to chemically size select as stringently as possible.

Verification of MEIs, NUMTs and Complex Pindel calls using PacBio reads in NA12878
(contributed by: Ali Bashir): All phase 3 MEI and NUMTs calls in NA12878 were
considered analyzed with PacBio data as another means of verifying the respective callsets.
To process candidate complex Pindel sites, calls were first filtered using a minimum size
(50 bp) and a minimum Levenshtein distance of 50 relative to the reference hg19 allele.

All raw NA12878 PacBio reads were aligned to hg19 using BLASR30. For each candidate SV,
reads overlapping the region of interest were extracted. For complex Pindel calls, a
synthetic reference was created representing the putative call at each locus. Reads were
remapped to both the true and synthetic references; all reads that preferentially mapped to
the synthetic reference were passed on to the next step of the pipeline (for larger MEI and
NUMTs events this step was not required as the error-correction and assembly process
would automatically separate more highly diverged alleles).

Filtered reads were passed through an error-correction process (as described below) to
reconstruct putative assemblies spanning through each SV. Error-correction of all reads
was performed following the general principles proposed in Chin et al.31, using the FALCON
pipeline (https://github.com/PacificBiosciences/FALCON; [2015]). In short, all long reads
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are aligned to one another using BLASR. These reads are then grouped together by
selecting the top alignments (using a coverage cutoff of 40). A consensus is formed for each
read; the resulting read is trimmed at the ends to eliminate potential chimeras and low-
quality sequence (here we required at least 5X coverage of a given base). The reads are
then assembled using a string graph based assembly approach. Spanning assemblies were
returned for 82% (893 of 1,094) MEI predictions, 100% (4 of 4) NUMTs predictions and
100% of complex pindel events (743 of 743).

The resulting assemblies are then separately aligned, using BLASR, to the sequence
immediately left and right of the putative breakpoint in hg19 of the putative in hg19.
Breakpoint precision (Table 1) was evaluated by comparing the observed junctions vs.
aligned end points on each side of the breakpoint. For Pindel SVs, the putative insert
sequence between breakpoints was additionally extracted. These insert sequences were
then compared to the predicted Pindel calls using the Needle pairwise alignment tool from
the EMBOSS package3? in order to assess SV call accuracy.

4.3.Breakpoint derivation and analysis

We attempted de novo assembly of all deletions and duplications except for the Pindel calls
that are based on split read analysis, and which thus were already reported at basepair-
resolution in the original SV input callset. We evaluated the accuracy of Pindel’s SV
breakpoint assignments by comparing a subset of the SVs reported by Pindel with
assembled breakpoints. This analysis revealed that Pindel breakpoints are in perfect
agreement with our assemblies in >95% of cases (i.e, for 2,646 out of 2,764 breakpoints of
1,382 overlapping calls). All assembled breakpoint and Pindel calls were merged and used
for fine-resolution bp analysis.

CROSSMATCH alignments (contributed by: Ken Chen, Wanding Zhou, Zechen Chong,
Xian Fan): Breakpoint assembly contigs were first aligned using CROSSMATCH (Green,
unpublished; http://www.phrap.org/phredphrapconsed.html; [2015]) against the
corresponding reference assembly region that spans the putative breakpoints with 700 bp
flanking sequence on either end. A breakpoint was called “validated” and passed to the next
stage if the associated pair-wise alignments indicated the existence of the same SV class
(e.g., deletion) as was predicted by the original callers. A breakpoint was not validated if
the alignment was ambiguous, i.e., containing more than two high scoring pairs and having
an assembly score <200, or if the size of SV differed by more than 50% from the original
prediction.

AGE alignments (contributed by: Alexej Abyzov, Daniel Rhee Kim, Ken Chen): Contigs
locally assembled with TIGRA-SV2> were aligned with AGE33 to target deletion regions
extended by 1 kbp downstream and upstream. AGE was run with options ‘-indel -both’ to
infer deletion breakpoints and with options ‘-tdup -both’ to infer breakpoints of tandem
duplications. The following scoring parameters were utilized: match=1, mismatch=-10,
gap_open=-10, and gap_extend=-1. Typically each region had few alternative contigs
assembled, and each one was aligned to the target region.

WWW.NATURE.COM/NATURE | 22


http://www.phrap.org/phredphrapconsed.html

doi:10.1038/nature15394 {2 \H{H; W SUPPLEMENTARY INFORMATION

Each AGE alignment consists of aligned sequence from the left flank, an excised region (the
candidate SV region), and aligned sequence from the right flank. For each deletion
breakpoints were assigned as coordinates of excised region from a contig alignment that
satisfies all the following requirements: (i) the contig is at least 100 bp in length; (ii) at
least 90% of contig bases are aligned; (iii) length of each alignment flank is at least 35 bp
(regions of sequence micro-identity around excised region are not included in the lengths
calculation); (iv) contigs have no more than one alternative alignment of equal score; (v)
average alignment sequence identity in right and left flanks should be at least 96%; (vi)
alignment sequence identity in each flank should be at least 95%; (vii) coordinates of
excised region and target region should overlap reciprocally by at least 50%; (viii) each
coordinate (ie., start and end) of target region and excised region should not differ by more
than 500 bp; (ix) for an alternative alighment the previous two requirements should also
be satisfied. In case more than one contig satisfies the requirement no breakpoints were
assigned to the SV.

Unified set of breakpoints: Breakpoints derived from CROSSMATCH and AGE alignments
were merged and only SVs showing the exact same breakpoint junctions by both aligners
were retained.

Validation of breakpoint by PCR: We performed two rounds of breakpoint validation with
PCR. First we selected 40 random sites of deletions and designed primers to amplify
breakpoint sequence. In three cases the primers did not result in amplicon bands, neither
for the reference nor the alternate allele, and in three cases unspecific amplicons were
generated. For the remaining 34 cases we sequenced the amplified band with Sanger
technology, and in all cases the obtained sequence matched the one inferred through
assembly. Second we investigated 72 deletions exhibiting an additional insertion (‘micro-
insertion’) longer than 100 bases through PCR-amplification. In two cases no PCR product
or an unspecific PCR product was yielded, in two cases Sanger sequencing of the amplified
band failed, and in three additional cases we could not complete capillary sequencing
through the entire micro-insertion sequence. Of the remaining 58 sites, one was invalidated,
the sequence for 53 showed an exact match to the one predicted from assembly, and for 4
sites there was a single basepair or short indel difference in sequence (these differences
could be resulting from polymorphisms existing in population).

Verification of breakpoints in high coverage genomes: For verification purposes 30 genomes
were sequenced with PCR-free library preparation and 250 bp reads up to depth of 60X.
We utilized this data for deletion breakpoint validation. For each deletion with assembled
breakpoints and using the corresponding genotype information we selected high coverage
samples carrying the deletion. For those samples read pairs with mapped coordinates in
the 2 kbp vicinity of the breakpoints were extracted from BAM files, and each was tested
for an overlap at the leftmost flanking ends. If a suitable overlap was detected, the reads
were merged into a long continuous (gapless) genomic fragment of 250 to 450 bp in length.
To avoid confounding factors affecting this validation exercise (like mis-genotyping and
low efficiency of finding read overlaps) we only considered deletion sites genotyped in at
least four of those 30 high coverage samples. Using AGE we realigned constructed long
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fragments around breakpoints. We considered breakpoint perfectly confirmed if majority
of the aligned fragments had exact match to breakpoint sequence. Based on analysis of 879
deletion sites, 94.9% of breakpoint sequences were reproduced exactly, 2.7% of
breakpoints showed minor sequence differences, while 2.4% of breakpoint were
invalidated (approximately half of these showed MlIs longer than 100 bp - such MI is
another confounding factor for this validation, as their length is comparable to constructed
long fragments).

Breakpoint complexity analysis (contributed by: Ali Bashir and Alexej Abyzov):
To determine micro-insertion placement, 10 kbp upstream and downstream of the
predicted phase 3 breakpoint junctions (including the original deletion interval) were
analyzed for all assembled insertion sequences at least 10bp in length. The assembled
insertion sequence was set as the reference and the hg19 interval as the query; Nucmer3#
was run on the two sequences using the parameters “nucmer -mumref -1 10 -c 10”. The
resulting alignments were then filtered using the delta-filter command: “delta-filter -1 -i 95”
to determine optimal hits between query and the reference, ignoring hits with less than
95% alignment identity. We iterated through all remaining alignments and distinguished
the following alignment categories: (i) The alignment is in an inverted orientation and
abuts the deletion start (or end) boundary within 5 bp of the original deletion breakpoint;
(ii) The alignment starts within the breakpoint interval or <3 bp before the beginning of the
breakpoint interval, and ends within the breakpoint interval or <3 bp past the end of the
alignment; (iii) The alignment starts downstream of the region or overlaps by <3 bp, or the
alignment ends upstream of the breakpoint (or overlaps by <3 bp); (iv) The alignment
overlaps either end of the original deletion boundary (the alignments were required to
overlap >3 bp on each side of the breakpoint boundary to reduce spurious alignment calls).
For all unaligned subintervals >= 22 bp, we realigned these substrings to hg19 using bwa-
mem* in order to determine a potential origin for the sequence (the quality of each base
was set to be q20). These mapping assignments were then used to assign categories to each
event, as follows: Ins and Del - if the inserted sequence cannot be aligned to any interval,
Ins with Dup and Del - the inserted sequence contains a single duplication from outside the
original deletion interval; Ins with MultiDup and Del - the inserted sequence contains at
least 2 distinct duplications outside the deletion interval; Inv and Del - if the inserted
sequence is an inverted subsequence from the original deletion interval that is located at
either boundary of the deletion; MultiDel with inverted or non-inverted spacer - if the
inserted sequence maps to a single (or multiple) subintervals from the original deletion
interval; other - it did not fit strictly into one of these categories.

Additionally, to determine NA12878 specific insertion sequences within deletions
the same PacBio de novo assembly procedure was performed on all NA12878 phase 3
deletion breakpoints as as described previously (see “Verification of MEIs, NUMTs and
Complex Pindel calls using PacBio reads in NA12878”). Given the short size cutoff for
examining insertions (>=10 bp) an additional filter was added which required that the
PacBio assembly was able to verify the original deletion boundary within 1 bp. This limited
the total number of deletion breakpoints to 750.
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Identification of SVs with complex breakpoints by joining adjacent SV calls
(contributed by: Alexej Abyzov, Taejeong Bae): We reasoned that in some cases
independently called SVs that are adjacent in the genome may actually correspond to a
single complex structural variation event, and therefore can be reconstructed by joining
multiple (overlapping and non-overlapping) adjacent candidate SV sites. To identify
examples of breakpoint complexity in such manner, we extracted SV pairs with the
following characteristics: the distance between them is less than 100 kbp, they are
genotyped in at least five individuals, and the r value LD for them in the population is
greater than 0.9. This analysis yielded 119 SV pairs, of which 31 were genotyped in
NA12878.

Using long (2-10 kbp) PacBio and Moleculo reads for NA12878, we attempted to confirm
that the candidate SV pairs are indeed observed in the same haplotype. We also attempted
to derive their exact breakpoints with the associated complexity. We first re-estimated the
boundaries of candidate pairs, based on visual analysis of read-depth track for NA12878
genome. Multiple SV pairs in the same locus were grouped together, thereby reducing the
31 candidate pairs to 16 candidate regions. Next, we extracted sequence reads which were
longer than 2 kbp, soft-clipped more than 100 bp, and were mapped within a 1 kbp
window, both upstream and downstream, of each boundary of a candidate region. We then
used AGE?33 to realign the extracted reads around those loci. By inspecting AGE and BLAT
alignments, we derived the exact SV breakpoints.

In this way, we determined the precise breakpoint boundaries for 9 candidate regions. Of
these, three SVs were single deletions, three SVs represented two or three adjacent
(independent) deletions, and three represented SVs with complex breakpoints. The
complex cases are: (i) deletion with an insertion into the region outside of the boundary
(chr4:91931666-919357970); (ii) double deletion, with an inversion (chr17:5594699-
5597504); and a multi-deletion-inversion-duplication event (chr11:55365292-55457586,
shown in Figure 3). For the remaining 7 candidate regions, the breakpoints could not be
resolved. Of these, two regions resided in VD] loci, where multiple split-reads suggested the
presence of various breakpoints. In two additional cases, the distance between SVs in a pair
was larger than 15 kbp, i.e., beyond the span of PacBio or Moleculo reads. And in three
cases we could not find any supporting split-reads. These SVs were in highly repetitive
regions, where Moleculo and PacBio based analyses showed limitation (in the case of
Moleculo due to the short underlying DNA sub-reads, and in the case of PacBio due to
inherent high sequencing error rate).

Characterization of microhomology and mapping of template sites (contributed by:
Alexej Abyzov, Taejeong Bae, Hugo Lam, and Jasmine Mu):

We compared the formation mechanisms of assembled breakpoint-resolved deletion SVs in
this study with breakpoints from Conrad et al.3> and Mills et al.3¢, by examining sequence
patterns of breakpoints based on BreakSeq3” and manual review (ED Figure 9). The Mills
et al. study based on 1000GP pilot data exhibited a comparably higher fraction of SVs with
a repeat-associated formation mechanism (i.e. non-allelic homologous recombination, and
mobile elements), which may be explained by the fact that in Mills et al. the 1000GP SV
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analysis group focused on SV discovery only (rather than genotyping) and did not enforce a
global FDR cutoff. In our current study, due to an emphasis on identifying SVs for which
high confidence genotypes can be obtained, we do expect some bias against repetitive
elements, with the fewer number of reads mapping to them interfering with genotype
quality. Furthermore, the relatively small size of Alu elements led to relatively to fewer
reads being mapped to them, resulting in less robust discovery and genotypes for this class
too.

Mapping of template sites and characterization of microhomology (contributed by:
Alexej Abyzov, Taejeong Bae): For each deletion site (=50 bp) with an insertion (220 bp),
we searched for the origin of the insertion site (i.e. insertion template38) using BLAT
(http://www.kentinformatics.com). BLAT imposes a minimum 20 bps limit on the
sequence length it attempts to align, consequently we conducted mapping for insertions of
at least 20 bps in length. Each insertion was aligned to the hg19 reference genome using a
BLAT web interface (http://genome.ucsc.edu/cgi-bin/hgBlat). We manually examined
alignments with the aim of identifying a single template site for each insertion based on the
alignment, such that (i) the insertions is aligned almost full length with few mismatches
and/or short indels; (ii) the alignment has a considerably better alignment score than other
alignments. Out of the 4,813 complex deletions described in the main text, 796 showed an
insertion of at least 20 bp, and hence were used in this analysis. Out of these, we were able
to unambiguously map exactly one template site for 441 complex SVs (ED Table 3-C). We
determined micro-homologies (MH) between individual breakpoints of the deletion and
the corresponding template site boundary (Supplementary 4.3.1). A random distribution
was obtained by assessing MH between: (i) the left (denoted “5’”) deletion breakpoint and
right (denoted “3"”) template site boundary; (ii) as well as between the right (denoted “3")
deletion breakpoint and left (denoted “5’”) template site boundaries. Breakpoints partaking
in complex SV sites exhibit a similar distribution of microhomology lengths as the bulk of
non-complex (simple) SVs in our callset (ED Figure 9). This pattern of microhomology
observed between individual deletion breakpoints and corresponding insertion template
site boundaries is consistent with formation of complex SVs by a single mutational event,
presumably through template switching.

Analysis of SVs formed involving long homology stretches (e.g. by non-allelic
homologous recombination; NAHR) (contributed by: Alexej Abyzov, Taejeong Bae, Hugo
Lam, and Jasmine Mu):

To investigate SVs that based on BreakSeq were inferred to be formed by NAHR in more
detail, the RepeatMasker track was downloaded from the UCSC Browser, comprising
5,298,130 repeat annotation entries for HG19, out of which 1,142,278 and 916,234 were
Alu and L1 annotations respectively. 1,019,022 of the Alus and 22,124 of the L1s, which
were larger than or equal to 150 bp and 3000 bp (>=~50% of their full lengths)
respectively, were extracted to facilitate annotation of both the left and right breakpoints of
deletion events. Deletions classified as NAHR for which both breakpoints annotated with
the same type of repeat (i.e, Alu or L1) were inferred to be repeat-mediated (ie., Alu-
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mediated or L1-mediated). Out of 2,936 NAHR events inferred in our study, 1,777 (61%)
are Alu-Alu-mediated whereas only 8 events (0.3%) were found to be L1-L1-mediated (the
latter number is presumably a considerable underestimate due to ascertainment bias,
given the inability of Illumina sequencing with short insert sizes in resolving this form of
variation sensitivity). The remaining NAHR events were inferred to be formed by other
repeat classes.
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5. Validation Experiments

5.1.PCR validation of SV callsets

Experimental conditions of PCR validations: PCR experiments were carried out in different
laboratories, focusing on different SV types: EMBL (DEL, DUP, INV, NUMT), LSU (MEI), and
UMICH (NUMT).

EMBL
Contributed by: Adrian Stiitz, Benjamin Raeder, Thomas Zichner, Tobias Rausch, Jan
Korbel

PCR primers were obtained from Sigma. PCRs were performed using 10ng of genomic DNA
(Coriell) in 25 u 1 volumes using the Sequalprep Long PCR reagents (Life technologies) in a
96 well plate using the DNA Engine Tetrade 2 thermocycler (BioRad). PCR conditions were:
94°C for 3 minutes, followed by 10 cycles of 94°C for 10 s, 62°C for 30s and 68°C for 6
minutes and 25 cycles of 94°C for 10s, 60°C for 30s and 68°C for 8min, followed by a final
cycle of 72°C for 1 minutes. PCR products were analyzed on a 0.8% agarose gel stained
with Sybr Safe Dye (Life Technologies) and a 100 bp ladder and 1 kb ladder (NEB). If
necessary, gel bands were cut with a scalpel, gel extracted with the Nucleospin Gel and PCR
Cleanup kit (Macherey-Nagel) and send for capillary sequencing (GATC Biotech AG).

Allele frequency adjusted random site selection: For PCR validations of SV callsets, we
focused on a subset (rather than the entire set) of phase 3 samples. Validation sites were
picked in this subset of samples in an allele-frequency weighted manner in order to avoid
biasing PCR validations to common SV sites. First, an allele-frequency histogram was
computed on all genotyped sites. Second, the site list was subsetted to SVs were at least one
of the validation samples is a carrier and each site was annotated with its original allele
frequency. Last, validation sites were randomly picked in each frequency bin using the
annotated allele frequency of the validation sites and the proportion of sites in the original
allele frequency histogram.

Primer design: To design PCR primer pairs for the validation of a given SV, we
implemented a computational SV validation primer design pipeline in Python 2.7, made
available at https://github.com/zichner/primerDesign (2015). The pipeline utilizes
Primer33° as well as BLAST#? and is based on the following steps. First, the pipeline
extracts the genomic sequence of a 200 bp region next to each SV break point; the side and
orientation of the regions are depending on the SV type (see below). Then, Primer3 is
applied to compute a set of primer pairs for these regions. Subsequently, all primer
sequences are tested for their uniqueness across the genome using BLAST. Primers are
considered as unique only if all their off-target hits have at least four mismatches, or at
least three mismatches if all of them are at the 3’-end of the primer. If at least one primer
pair is found where one or both primers fulfill the uniqueness condition, the pair with the
best Primer3 score is reported. Otherwise, the size of the regions for which primers are
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designed is increased from 200 bp to 600 bp and the BLAST step is repeated. If this does
not result in a valid primer pair, the analysis is repeated for a region of 2000 bp and
afterwards 6000 bp. If still no primer pair can be designed, the corresponding SV cannot be
considered for validation through this procedure.

The following SV classes were systematically targeted for validation at EMBL:

Deletions: a pair of primers was placed outside of/flanking the predicted SV. This will
result in either a band with the expected size based on the reference genome, and/or a
band smaller, corresponding to the deletion allele. The band pattern therefore allows
distinguishing 0/0, 0/1 and 1/1 genotypes. In case of small deletions where no size
difference will be observed, capillary sequencing will be used to confirm the presence of
the small deletion.

Tandem Duplications: a pair of primer is placed within the predicted SV in an outward
facing orientation. This will result only in a band if a tandem duplication occurred, and
therefore this procedure can verify the presence of tandem duplications, but cannot
genotype them.

Inversions: 4 primers are designed, primer 1 and 4 are flanking the SV, and primers 2 and
3 are inside of the SV. The reference allele will be seen as primer combinations 1+2 and
3+4, whereas the inversion allele will be seen as 1+3 and 2+4. All 4 tests need to be
performed to be able to distinguish 0/0, 0/1 and 1/1 genotypes. It is of note that this
procedure leads to considerable failure rates in the presence of highly complex inversions
(such as those shown in Figure 3 in the main text and ED Figure 10), which is why long-
read-based targeted sequencing - which we found to be considerably more robust to
inversion complexity - was performed as an additional validation step (see further below).

NUMTs: a pair of primers was placed outside of/flanking the predicted SV. This will result
in either a band with the expected size based on the reference genome, and/or a band
larger, corresponding to the NUMTs insertion allele. The band pattern therefore allows
distinguishing 0/0, 0/1 and 1/1 genotypes.

LSU
Contributed by: Miriam Konkel, Jerilyn Walker, Mark Batzer

MEI: Randomly selected, allele frequency adjusted, MEI candidate loci (64 Alu, 61 L1, and
65 SVA loci) were included in our PCR validation analysis. For primer design, 600 bp of
flanking sequence were added up- and downstream of the breakpoint (insertion)
coordinate. The sequence was retrieved from the human reference genome [hg19] using
Galaxy#142. Prior to primer design, all sequences identified as Alu elements in the flanking
sequence were masked to Ns using RepeatMasker43. A safety margin of 50 nucleotides up-
and downstream of the insertion coordinate was granted for each candidate locus to
account for imprecise breakpoint calling.
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Primer pairs were selected using BatchPrimer3 v2.0%4. Each primer was subjected to a
BLAT?! analysis. Primers showing more than one match in the human genome were
redesigned with Primer345. Prior to primer redesign, the repeat content of the flanking
sequence was determined using RepeatMasker. To determine if the flanking sequence
matched to highly homologous loci, the flanking sequence was queried against the human
reference genome [hg19] using BLAT. In cases with high sequence homology, the most
homologous sequences were retrieved using the UCSC genome browser?l. Following an
alignment of the candidate locus with the other orthologous loci using the ClustalW feature
in the BioEdit program*® primer design was performed in regions with unique sequence to
the candidate locus with mismatches in other highly homologous loci. The primers were
queried against the human genome using BLAT and an in-silico PCR was performed to
confirm the presence of only one PCR product and the amplicon size, which represents the
empty allele (insertion absent).

A second primer pair was designed for loci originally identified as false positive if re-
analysis of the MELT calls either clearly showed the presence of an MEI insertion and/or
suggested a breakpoint outside of the original sequence coordinates. In these cases primer
design was performed with Primer3 including all steps for primer redesign (see paragraph
above).

For the analysis of the L1 and SVA candidate loci, previously designed internal primers
were utilized1836, In case of L1s, the primers resided in the 3’-terminus of the L1 consensus
sequence. For the analysis of SVA primers in the 3’ (up to five primers) and if necessary in
5’-terminus (up to three primers) were used. All PCR primers were ordered from Sigma
Aldrich, Inc. (St. Louis, MO). The PCR primer sequences used in this validation study are
available at http://batzerlab.lsu.edu (2015).

DNA Samples for PCR verification: A subset of 24 DNA samples from Phase III and the YRI
trio were used for the PCR validations (Table 5.1.1). The DNA panel also included human
cell line DNA (HeLa; ATCC CCL-2) as well as “Pop80”, a locally pooled DNA sample from
different individuals of diverse geographic origins (Asia, Africa, South American, and
European). As another PCR control, chimpanzee DNA (NS06006, Coriell) was included on
the panel, representing the presumptive pre-insertion site (empty site) for each MEI event
in human.

PCR details: Using either a Perkin Elmer GeneAmp 9700 or a BioRad i-cycler thermo-cycler,
PCR amplifications were performed in 25 ul reactions in a 96-well format. Each PCR
reaction contained 15-25ng of template DNA; 200 nM of each oligonucleotide primer; 1.5
mM MgClz; 1X PCR buffer (50 mM KCI; 10 mM TrisHCI, pH 8.3); 0.2 mM dNTPs; and 1-2 U
Tag DNA polymerase.

Candidate loci containing putative Alu elements were amplified using external primers (i.e.,
primers flanking the mobile element insertion). In cases of no amplification of the
candidate Alu element in the predicted individual, a temperature gradient PCR was
performed to optimize the annealing temperature of the reaction and then a “hot-start”
PCR was performed using Jumpstart Tag DNA polymerase (Sigma Aldrich, St. Louis, MO).
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For L1 and SVA candidate loci, a minimum of two separate PCR reactions were performed
to amplify the filled and the empty amplicon. To determine the absence of an insertion, a
PCR was performed using the external primer pair. A second PCR used one primer residing
within the L1 or SVA insertion (internal primer) in conjunction with an external primer
(forward or reverse, depending on the orientation of the predicted insertion) to amplify the
filled site. Moreover, all L1 candidate loci were subjected to the amplification of the entire
L1 in at least one individual using the external primers and Takara LA-Taq (Clontech
Laboratories, Inc., Mountain View, CA), a long-range polymerase. This was done in order to
determine the size of the L1 insertion and/or to determine if the L1 was indeed not present
if the putative L1 was not amplified in the predicted individual using the internal PCR
approach. In the latter case, the long range PCR was performed on the whole DNA panel.
(SVA candidate loci were not analyzed using a long range PCR approach because these PCR
reactions are commonly unsuccessful due to the high GC-content, the length, and the highly
variable number of tandem repeat (VNTR) region.)

PCR reactions were performed under the following conditions using a standard Tagq
polymerase: initial denaturation at 94°C for 90 s, followed by 32 cycles of denaturation at
94°C for 30 s, annealing at 57°C and extension at 72°C for 30 to 90 s depending on the
predicted PCR amplicon size. PCRs were terminated with a final extension at 72°C for 2 min.
For the amplification of the entire L1 using LA-Taq DNA polymerase, the above-described
protocol was modified in the following way. The extension step of each cycle was carried
out at 68° for 8 min 30 s, followed by a final extension step at 68° for 10 minutes at the end
of the run. All PCR products (20 ul) were size-fractionated in a horizontal gel chamber on a
2% or 1% (for loci amplified with LA-taq) agarose gel containing 0.1 ug/ml ethidium
bromide for 45-60 min at 175-200V or 1 hour/45 min at 150V, respectively. DNA
fragments were visualized with UV-fluorescence and images were saved using a BioRad
ChemiDoc XRS imaging system (Hercules, CA).

In addition to the estimation of the false detection rates, genotypes were recorded for each
individual and locus. The genotypes were determined based on the predicted amplicon size
of the empty site and the size-fractioned PCR products on the agarose gels.

Table 5.1.1:
Sample Population | Population Description Gender
HG00096 GBR British from England and Scottland Male
HG00268 FIN Finnish from Finland Female
HG00419 CHS Han Chinese South, China Female
HG00759 CDX Chinese Dai in Xishuangbanna, China Female
HG01051 PUR Puerto Rican Male
HG01112 CLM Columbian in Medellin, Columbia Male
HG01500 IBS Iberian Populations of Spain Male
HG01565 PEL Peruvian in Lima, Peru Male
HG01583 PJL Punjabi in Lahore, Pakistan Male
HG01595 KHV Kinh in Hochi Minh City, Vietnam Female
HG01879 | ACB African ancestry from Barbados in the Caribbean Male
HG02568 GWD Gambian in Western Division, The Gambia Female
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HG02922 ESN Esan from Nigeria Female
HG03006 BEB Bengali in Bangladesh Male

HG03052 MSL Mende in Sierra Leone Female
HG03642 STU Sri Lankan Tamil in the UK Female
HG03742 ITU Indian Telugu in the the UK Male

NA18525 CHB Han Chinese in Beijing, China Female
NA18939 | JPT Japanese in Tokyo, Japan Female
NA19017 LWK Luhya in Webuye, Kenya Female
NA19625 | ASW African ancestry in Southwest USA Female
NA19648 MXL Mexican ancestry in Los Angeles, CA (USA) Female
NA20502 TSI Toscani in Italia (Tuscans in Italy) Female
NA20845 GIH Gujarati Indians in Houston, TX (USA) Male

NA12878 CEU CEPH Utah, USA Female
NA19238 YRI Yoruba in Ibadan, Nigeria; Mother of trio Female
NA19239 YRI Yoruba in Ibadan, Nigeria; Father of trio Male

NA19240 YRI Yoruba in Ibadan, Nigeria; Daughter of trio Female

UMICH

Contributed by: Sarah Emery, Jeffrey Kidd

NUMTs: NUMTs identified by computational analysis were validated by polymerase chain
reaction (PCR) and Sanger sequencing of amplicon(s) that spanned 50-500 bp of gDNA
flanking the insert, the breakpoint between the gDNA and the insert, and the insert. Primer
sets that hybridize to the gDNA flanking the insert were designed using Primer3 Software
(http://www.genome.wi.mit.edu/cgi-bin/primer/primer3 www.cgi, [2015]) and
amplification was done with Platinum Taq (Invitrogen Life Technologies, Gaithersburg,
MD), Picomaxx (Agilent Technologies, Palo Alto, CA), or LongAmp (New England Biolabs,
Beverly, MA) products in a 20-50ul reaction volume containing 50 ng of template DNA, 1
uM primer, and 1.5mM MgCl; if not supplied in the PCR buffer. Thermocycling was done for
30 cycles at 56-67 2C annealing temperature and 1-15 minute extension time. For inserts
less than 3 kbp, a PCR product of the predicted size was identified in individuals
homozygous or heterozygous for the insert by agarose gel electrophoresis and the insert
was sequenced in one individual. Amplicons of interest were purified from a PCR reaction
for homozygous individuals (Qiaquick PCR purification kit, Qiagen, Valencia, CA) or isolated
from the gel for heterozygous individuals (Qiaquick Gel Extraction Kit, Qiagen) and
sequenced at the University of Michigan Sequencing Core. For inserts larger than 3 kbp, a
PCR product of the predicted size was identified in individuals heterozygous for the insert
by gel electrophoresis. For sequencing, two overlapping PCR products were made using
primer sets designed as outlined above with one primer that binds in the gDNA flanking the
insert and one primer that binds in the middle of the insert.

5.2.Long-read-based validation of inversions

Targeted validation of inversions using long DNA read data: Experimental inversion
validations using targeted long-read (i.e., PacBio or Oxford Nanopore MinlON) sequencing
of PCR amplicons were performed at two centers (EMBL Heidelberg and Baylor College of
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Medicine). Targeted PacBio sequencing of fosmid clones was pursued at the University of
Washington.

EMBL Heidelberg
Contributed by: Tobias Rausch, Markus Fritz, Adrian Stiitz, Sascha Meiers, Andreas
Untergasser, Jan Korbel

Predicted genomic inversions: Inversions inferred to be present in sample NA12878 were
verified in two independent long read data sets: a) high coverage NA12878 PacBio data
generated at Mount Sinai Hospital and b) high coverage NA12878 Illumina Moleculo data
generated by [llumina.

PacBio and Moleculo reads were aligned to the hg19 reference using the BLASR30 read
aligner. For every predicted inversion in NA12878 all reads were extracted spanning the
entire inversion locus. MUMmer-3 (ref*’) was used to compute forward and reverse
matches between the sequence read and the reference slice it aligns to. Matches were
plotted and plots were manually screened for a “diagnostic inversion signature” (see e.g.
example inversions shown in Figure 3).

Primer design + PCR: Primer design for 96 randomly selected, frequency adjusted
inversions between 1-3 kbp in size was done as described above with the following
modification: primers were placed at least 1 kbp away from the predicted breakpoints to
allow unbiased amplification of both alleles even in the presence of an additional flanking
deletions/insertions (i.e., appreciable “complexity”). PCR amplicon sizes were between 3-9
kbp.

PCR primers were obtained from Sigma. PCRs were preformed using 10ng of genomic DNA
(Coriell) in 35 1 volumes using the Sequalprep Long PCR reagents (Life technologies) in a
96 well plate using the DNA Engine Tetrade 2 thermocycler (BioRad). PCR conditions were:
94° C for 3 minutes, followed by 10 cycles of 94° C for 10's, 62° C for 30s and 68° C for 8
minutes and 25 cycles of 94° C for 10s, 60° C for 30s and 68° C for 10 minutes, followed
by a final cycle of 72° C for 10 minutes. 10ul PCR product aliquots were analyzed on a
0.8% agarose gel stained with Sybr Safe Dye (Life Technologies) and a 1 kbp ladder (NEB).

The band pattern, size and intensity was recorded and grouped into three classes: 1. PCR
failures/unspecific reactions (11X); IL. strong (36x) and middle (32X) intensity bands and
[II. weak (10X) and very weak (7X) intensity bands. Next, 5ul of the remaining PCR of
strong band loci and 8.75ul of middle bands (1:1.75 ratio) were mixed and purified by
adding 237.5ul of AMPure XP beads (Agencourt, 0.5X volume) and eluted in 50ul nuclease
free water. The same was done for 4ul of weak bands and 20ul of very weak bands (1:5
ratio) followed by AMPure XP bead cleanup (0.5X). The concentration of amplicon PCR
pools was quantified with the Qubit BR kit (Life Technologies).

Pacific Biosciences Amplicon library prep + sequencing: The purified amplicon PCR DNA
pool was used with the 2 kbp template preparation and sequencing protocol (Pacific
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Biosciences) with slight modifications such as inclusion of the repair DNA damage step
from the 6 kbp template protocol. Briefly, 2.5ug of amplicon pool DNA was cleaned up with
provided special AMPure PB beads (0.6 volumes) and eluted with a concentration of 60
ng/pl. Afterwards, the repair DNA damage step was performed on ice by individually
adding 5 ul DNA damage repair buffer, 0.5 ul NAD+, 5 ul ATPhigh, 0.5 ul dNTP and 2 ul of
DNA damage repair mix in 50 ul and incubating it for 20 minutes at 37°C. After addition of
2.5ul End repair mix and 5 minutes incubation at 25 °C, an AMPure PB cleanup step (0.6
volumes) was performed and eluted into 30 ul provided elution buffer. Blunt adapter
ligation reagents were individually added and incubated for 15 minutes at 25°C and heat
inactivated for 10 minutes at 65°C. After addition of 0.5 ul Exolll and ExoVII enzyme, the
mix was incubated for 1 hour at 37°C. After two rounds of AMPure PB cleanup (0.6
volumes), the final library was eluted into 10 ul elution buffer and quantified with both
Qubit HS (Life Technologies) and Bioanalyzer 12000 (Agilent Technologies). Further
processing of the library and sequencing was done as recommended by the manufacturer
and each library was sequenced on one SMRT cell using P4-C2 chemistry at the core
facilities of the Max-Planck Institute (Kéln, Germany).

Oxford Nanopore MinlION library prep + sequencing: The purified amplicon PCR DNA
pool was used with the genomic DNA sequencing kit (version SQK-MAP002) for MinION
library prep as part of the MinlON early access programme (Oxford Nanopore
Technologies). Briefly, 1.5-2 ug of amplicon pool DNA and 5 ul of DNA-CS were end
repaired using the end repair module reagents (NEB) for 30 minutes at 20°C, purified with
0.5 volumes of AMPure XP beads and eluted in 25.2 ul nuclease free water. A-tailing (NEB)
was performed in 30ul for 30min at 37°C and followed by adapter ligation (Oxford
Nanopore Technologies) by adding 10 pl adapter mix, 10 ul of HP adapter and 50 ul of
blunt T/A ligase mix (NEB) and incubation for 10 minutes at 20°C. A special AMPure XP
cleanup step (0.4x volume) was performed, using 150 pl of provided wash buffer instead of
70% EtOH once and elution into 25 pl provided elution buffer without a drying step. Next,
tether annealing was performed by adding 10 pl tether mix and incubation for 10 minutes
at 20°C and followed by the library conditioning step by addition of 15 ul HP motor mix and
incubation o.n. at 20°C at 750 rpm. Briefly before the MinlON sequencing run, 6 pl of
prepared library was mixed with 140 pl EP buffer and 4 pl of fuel mix, gently mixed to
produce the final library and loaded on a primed MinION flowcell (version FLO-MAP001
and FLO-MAPO002). MinION flowcells were analyzed with the software client Metrichor v
0.17.39962, the sequencing software MinKNOW v 0.46.1.9 and the 2D workflow v1.7. We
considered flowcells with more than 200 active pores in the MAP_Platform_QC run.
Flowcells were primed with 150 pl EP buffer followed by 10 minutes waiting time, before
150 pl of final amplicon library were loaded and sequencing was initiated.

Comparison of PacBio versus MinlION inversion validation data: A subset of 69 PCR
amplicons was analyzed using both PacBio as well as MinION technology, with the primary
goal to assess the potential of Oxford Nanopore MinlON sequencing to verify and classify
inversions. In 37 cases (53.6%), both technologies agreed in revealing the presence (35
loci) or absence (two loci) of inversions in given samples, and additionally in each case the
inversion was inferred as present both techniques agreed in the classification of the
inversion type. Example plots for each inversion class are shown below. In the remaining
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cases, 20 loci could be reliably analyzed by PacBio data but remained uninformative in
MinION data due to noisy data or low coverage, whereas two loci could be analysed with
MinION data but not with PacBio data. Thus, in spite of overall higher read error rates seen
for the MinION technology, both long-read technologies were deemed to be suitable for
verification and characterization, with classifications showing 100% concordance for loci
with sufficient coverage.

The FDR estimate for inversions based on amplicon PCR sequencing is likely conservative
for the following reason: We could not exclude allelic dropouts of the inversion allele for
particularly complex inversion loci where PCR primers were unable to anneal, and
accordingly observed a strong allelic bias of the variant allele relative to the reference allele
for several loci (up to 1:100 for variant allele vs. reference allele), presumably since the
inversion allele was disadvantaged during the PCR step or during primer annealing.

Baylor College of Medicine
Contributed by: Fuli Yu

To enable validation of inversions and NUMTSs with PacBio reads, unique variant sites were
selected for experimental validation using the BCM-HGSC long-range PCR amplification and
PacBio sequencing pipeline, using amplicons 3-4 kbp in size. After PacBio library
preparation, three PacBio libraries were individually sequenced per SMRT cell following
the manufacturer’s Guide - Pacific Biosciences Template Preparation and Sequencing,
version 10.

Both the circular consensus sequences (CCS) reads and continuous long reads (CLR) were
mapped against human reference genome GRCh37. We used BLASR3? and BWA-SW48
aligners to verify performance, and selected the CCS BLASR pipeline for data processing.
For validation, we manually inspected each amplicon per sample site using the IGV
browser (results were generally concordant between CLR and CCS reads).

University of Washington
Contributed by: Maika Malig, Mark Chaisson, Evan Eichler

We selected a total of 35 inversion sites (inferred by DELLY) from two genomes (NA12756
and NA19129) for validation using long-read (PacBio) SMRT sequencing of fosmid clone
inserts (~40 kbp). A total of 113 clones (2-4 clones per site) were selected and grown
based on mapping of fosmid end-sequence pairs to GRCh374°. DNA was individually
prepared for each clone (High Pure Plasmid Isolation Kit™, Roche) and DNA from 7-8
clones were pooled. A 20 kbp SMRTbell™ template library was prepared for each pool; the
library sequenced with one SMRTcell per pool using either P4-C2 or P5-C3 chemistry and
inserts were assembled using HGAP and QUIVER post-processing3! as previously
described>0. 111/113 (98.2%) of the clone inserts resolved into a single se quence contig
with on average 400-fold sequence coverage per fosmid clone insert. Assemblies were
compared with GRCh37 using Miropeats®! and dotplot analysis to identify breakpoints and
confirm inversion status. Overall, 82.3% (28/34) of sites validated with 1 site excluded due
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to sequence complexity. This is a conservative estimate because only one haplotype was
recovered for 2/6 of the invalidated sites. Excluding these two sites would result in a
validation rate of 87.5%. We further employed PacBio reads from the recently sequenced
CHM1 genome>? for the verification of phase3 inversions which the EMBL group genotyped
into CHM1 using published CHM1 Illumina sequencing data>2.

5.3.Validation of CNVs using IRS
Contributed by: Bob Handsaker, Seva Kashin, Peter Chines, Tobias Rausch

The IRS test estimates a FDR for a set of putative copy number unbalanced (or CNV) SV
calls - ie., deletions, duplications, and mCNVs - by utilizing the distribution of a test
statistic (across all calls) derived from the relative probe-level intensities of the same
probe(s) between samples expected to have different copy number levels. We utilized SNP
probe intensities from two different SNP arrays: the Omni 2.5 and the Affymetrix 6.0. The
probe intensities were normalized and summarized as described below.

Using the normalized probe intensities, for each genotyped SV site, up to two tests were
performed: One test based on samples with predicted copy number less than the reference
copy number of two copies (dels) and one test for samples with predicted copy number
greater than two (dups). For the first test, the samples are divided into two subsets, those
with predicted copy number two and those with predicted copy number less than two
(other samples are not used in the first test). For each probe underneath the SV, the
samples are first ranked according to the probe intensities with ties broken randomly.
Then using the ranks at each probe, the samples are re-ranked across all probes, with ties
broken randomly. A rank-sum test is performed to test whether the samples predicted to
have copy number below the reference copy number have lower ranks than the samples
with reference copy number. The second test is symmetrical to the first test, comparing the
subset of samples with copy number above two to the samples with reference copy number.

An implementation of this test is available as the IntensityRankSum annotator module in
the Genome STRIiP software.

For each SV, these tests yielded either one or two p-values depending on the range of copy
number genotypes at that SV. The FDR of a set of SVs was estimated by dividing the
putative SVs into three subsets: (a) SVs with observed copy numbers either at or below the
reference copy number (b) SVs with observed copy numbers either at or above the
reference copy number and (c) SVs with observed copy numbers both above and below the
reference copy number. Subsets (a) and (b) have one p-value while subset (c) has two p-
values. For subsets (a) and (b), we estimate the FDR of these subset as two times the
fraction of sites with p-value >0.5. For subset (c) with two p-values, we estimate the FDR of
this subset as four times the fraction of sites having both p-values >0.5. An overall FDR for
the call set as a whole is calculated as the weighted sum of the FDRs of the three subsets (a-
c). The final IRS FDR estimates for the bi-allelic deletions, bi-allelic duplications and multi-
allelic copy number variants (mCNVs) are shown in Table 1 (main text).
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Generation of Array Intensity Matrices for IRS test: The probe intensity values for the
Affymetrix 6.0 array were generated from array data generated and contributed by Coriell.
Array data was available for 2,504 samples, of which 2,476 were included in the final 1000
Genomes data set.

For the Affy 6.0 array, the probe intensities were first normalized using the apt-probeset-
summarize utility from Affymetrix with the following parameters:

apt-probeset-summarize

--cel-files cel-file-list

-a "quant-norm.target=1000,pm-only,plier.optmethod=1,expr.genotype=true”
--cdf-file cdf-file

--probeset-ids probeset-id-list

--precision 2

The normalized intensity values from the A and B SNP probes were then summed (for the
Affy 6.0 copy number probes, the individual probe intensity was used).

The probe intensity values for the [llumina Omni 2.5 array were generated from arrays run
at the Broad Institute for 2,141 samples, of which 1,639 were included in the final 1000GP
data set.

For the Omni 2.5 array, normalization of the probe intensities was performed at the Broad
Institute using the default protocol for SV analysis for the BirdSuite software packageSs3
using the InfiniumIDATParser utility. The probe intensities for the A and B SNP probes
were then summed.

For the Omni 2.5 array, all of the array probe sequences were realigned using the protocol
specified below and probes with a score less than 13 were excluded. The realigned
coordinates were used to determine the start and end position of each probe against the
reference genome.

BWA (version 0.5.8c) was used to align the probe sequences to GRCh build 37 of the human
genome, with default parameters. Most Infinium assays use a single 50 bp probe, and assay
the position immediately 3' of the annealed probe by a single-base extension reaction.
Assays of A/T and C/G SNP assays use two different probes that differ at only the last
position, which is the nucleotide to be assayed. For the latter assays, we first removed the
last base of the probe, and then mapped the remainder of the probe in the same manner as
the other assays. Thus the probe regions for the two-probe assays are 49 bp long.

The BWA alignments are processed to identify the exact position being assayed, the
orientation of the assayed alleles with respect to the reference, the distance of the nearest
mismatch, if any, from the 3’ end of the probe, and the number of next-best hits with a
single additional difference from the reference genome. If any variant from the 1000 GP
Phase 1 integrated panel (minor allele frequency >1%) is found in the region where the
probe aligned, the variant nearest to the 3’ end of the probe was noted.
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In addition to annotating each assay with the above characteristics, we also assigned a
score, based on a ranking of the "most deleterious" annotation for each assay:

Score N assays Description

0 440 unmapped (not included in file)

1 269 probe aligns to more than two loci (the BED file shows one of these,
chosen at random)

2 1,579 probe has more than three next best hits, or next best hit does not
differ within 7 bp of 3" end

10 157 mismatch within 7 bp of 3' end of probe

11 2,819 probe aligns to two loci

12 2,530 probe has three or fewer next best hits, all of which have a difference
within 7 bp of the 3" end

13 37,550 variant within 7 bp of 3' end of probe

30 515 indel more than 7 bp from 3' end of probe

35 4,443 mismatch more than 7 bp from 3' end of probe

38 27 neither allele matches reference

40 296,741 variant more than 7 bp from 3' end of probe

44/46 948 additional hit to "random" contig, not a chromosome

50 2,101,982 no issues detected

5.4.Validation of CNVs using array-CGH

Contributed by: Ankit Malhotra, Tobias Rausch, Chengsheng Zhang, Dariusz
Plewcyznski, Kamen Radew, Eliza Cerveira, Mallory Romanovitch, Przemyslaw Szalaj,
Ryan Mills, Charles Lee

We designed a custom Agilent 1M CGH microarray (aCGH) for validation purposes,
targeting known structural variation sites from various sources including the 1000GP
Pilot3¢ and Phase 154 releases, DGV>°, and other recent publications?>¢ for a total of 22,531
deletions, 46,268 duplication; 4,873 MEIs and 142 retroduplications. These variants were
segmented into discrete regions of overlap between overlapping events, with between 1 to
7 custom probes assigned to each individual segment. Remaining probes were uniformly
distributed across the genome to create a “backbone”. We obtained genomic DNAs of the
phase 3 samples from the Coriell Institute for Medical Research and performed CGH using
the standard protocol provided by the manufacturer. Briefly, the testing DNA sample and
the reference DNA sample (NA10851) were fragmented by enzymatic digestion with Alul
and Rsal, and labeled with Cy5 and Cy3, respectively, followed by co-hybridization to the
custom microarrays. After hybridization, arrays were washed and scanned, and the final
feature extraction files were used for data analysis.

We generated aCGH data for all individuals from the phase 3 set. To control for noise, we

excluded probes that were inconsistent across the whole population of individuals as
follows. For each probe, we first calculated the mean and standard deviation of the
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reference channel intensity across the entire set of arrays. As the reference signal is coming
from the same sample (NA10851), we expect each individual probe to behave similarly
across essentially 2,500+ replicate experiments. All probes whose reference intensity value
fell greater than 1 standard deviation away from the mean of all probes were excluded. A
similar filtering was applied using the log2 ratio of the sample/reference signal. However,
here we allowed a lower bound of 2 standard deviations before excluding probes. We also
limited our analysis to internal probes only, defined as probes falling completely within the
bounds of the interrogated region.

Next, we corrected individual arrays for %GC bias and normalized them across all the
individuals to their respective medians. To correct for the %GC bias, we binned probes
from each array into 14 %GC content bins (from less than 20% GC content to greater than
80% GC content). Each bin was then centered to a mean log2 ratio of 0. To normalize arrays
from for population level analysis, the median log?2 ratio of each array was then centered to
0.

We next developed a custom software named canny (https://bitbucket.org/remills/canny
[2015]) to assign integer copy numbers (CN) to each predicted variant for each sample.
Briefly, this software first intersects the collection of filtered probes derived above with
individual deletions and duplications from each algorithm in order to assign sets of probes
to each individual predicted variant. Regions with >5 probes are retained and the median
value is calculated across each region for every sample. These are then clustered into
discrete copy number states using a mean-shift approach (R package: LPCM) with
bandwidth=0.05 and threshold=0.3. The largest cluster was set to CN=2 with neighboring
clusters sequentially lower or higher, respectively, and were removed entirely if the read-
depth of the reference sample (NA10851) was significantly higher or lower than its GC-
corrected mean coverage indicating a skewed baseline copy number ratio.

The aCGH derived copy number for each predicted variant and each sample was used to
guide the merging of structural variant predictions from individual tools. In particular, the
aCGH data confirmed the assumption that paired-end genotyping methods are inclined to
underestimate the deletion carrier samples in low-coverage sequencing data. RD based
methods such as GenomeSTRiP, however, showed overall a high concordance between the
sequencing derived copy number and the aCGH copy number in a set of manually inspected
deletions. As a result, we decided to give priority to GenomeSTRIiP genotyped deletion calls
in a given set of redundant deletion calls. RD methods, however, can be difficult to calibrate
to the true baseline copy number 2 state and hence, we also observed overlapping CNVs
were the genotypes between independent prediction methods appeared to be copy number
shifted. We again manually inspected such cases using the aCGH data to get an independent
assessment of these copy number shifted sites. This analysis clearly suggested a
preferential selection of those predictions where most samples were genotyped as copy
number 2.
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5.5.Validation of CNVs using Complete Genomics
Contributed by: Goo Jun

We developed a pipeline to genotype copy number unbalanced SVs (i.e.,, CNVs) based on
Complete Genomics (CG) WGS data, to enable comparing CG-based SVs to our phase3
dataset. This pipeline consists of two main steps: 1) identification of candidate intervals
and merging overlapping intervals, as well as 2) multi-sample clustering and genotyping.

The first step is identification of candidate intervals. CG variant data include two different
sources for possible deletion events: SV events from depth-based ploidy calls along 2,000
bp intervals, and so-called junction events detected from read mapping (a junction event
denotes the case where a read is mapped across two separate regions of the reference
genome; e.g. owing to a large deletion). We first collected junction intervals and SV
intervals to build a single list of candidate intervals across all samples, then all candidate
intervals were sorted first by starting positions and then by ending positions. All duplicate
intervals were removed to avoid unnecessary computation. We used hierarchical
agglomerative clustering by using R) as a similarity measure to obtain merged intervals.
Within the set of overlapping intervals, two intervals with maximum RO were merged to a
single interval, and then the process was repeated until there remained no pair of intervals
with RO >0.5. Once the list of candidate intervals was finalized with no more significantly
overlapping intervals, we collected the normalized average depth (GC-corrected) from each
sample for each candidate interval.

The next step was to decide whether each interval is polymorphic (or not) by estimating
Gaussian mixture models with 1, 2, and 3 components. The 1-component model is a single
Gaussian distribution; hence the maximume-likelihood parameters are easily calculated by
taking the mean and the variance of the data. Each component in the 2 or 3 component
models has three parameters: (q, y, 6), where a is the mixture weight, p is the mean and o
is the standard deviation. These parameters are obtained by standard expectation-
maximization algorithm. Each component in the mixture model is initiated with suitable
values for 0, 1, and 2 deletions. Decision on number of components is based on Bayesian
information criterion (BIC). BIC is a function of log-likelihood, number of components, and
number of samples. By, BIC for k-component model is calculated as

Bk =-2 LLK + 2k log n
, where n is the number of components in the model, k is number of free parameters in
Gaussian mixture model and LLK is the overall log-likelihood of data given the model. We

choose the model with the lowest BIC value. If either 2 or 3 component model is chosen, the
next step is evaluating how well the components are separated.
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Within Bayes decision rule, it is known that Bhattacharyya coefficient (BC) sets an upper
bound on the theoretical classification error; hence we use BC as a measure for overlap
between Gaussian components. The Bhattacharyya distance D between two Gaussian
distributions N(u1, 612) and N(p2, 622) is given as:

D = (M1- 12)/8 Oavg? +0.5 log (0avg?/0102)

, where 0avg? = (012 + 022)/2. BC is obtained easily from D as BC = exp(-D). If the model has
more than 1 component and the maximum overlap between components (BC) is lower than
the given threshold, then we conclude that the candidate interval contains deletions. The
final step is making calls based on the posterior probability.

We genotyped 433 Complete Genomics sequenced samples. This dataset included 129 trios
and 12 duos from 427 samples, and 6 samples that were sequenced twice with CG
technology. Each sample was sequenced at >40x coverage. Sequencing data and variant
information have been generated by Complete Genomics pipeline version 2.2. We identified
8,321 large deletions with maximum BC threshold of 0.01. Genotypes were set to be
missing when posterior probability from the mixture model is less than 0.9, and average
call rate is 99.9%. Because both trios and duos were represented in the data, it was
possible to check for Mendelian consistency to measure genotyping accuracy. We used
Merlin>7 to estimate genotype error rates. CG SV set showed extremely low error rate
estimates of 0.1%.

WWW.NATURE.COM/NATURE | 41



doi:10.1038/nature15394 {2 \H{H; W SUPPLEMENTARY INFORMATION

6. Analysis of Structural Variation

6.1.Population genetic analyses

Deletions, Duplications, mCNVs
Contributed by: Peter Sudmant, Evan Eichler

Population Diversity: To assess the relative diversity of each of the individual populations
assessed in this study, we calculated the per-individual SV-heterozygosity and SV-
homozygosity for deletions, bi-allelic duplications, and multi-allelic copy mCNVs. We define
SV-heterozygosity to be the total number of heterozygous events identified in an individual
and SV-homozygosity to be the total number of homozygous events (ED Figure 5).

We find that African populations exhibit on average 27% more heterozygous deletions per
individual than other populations (mean of 1,705 vs. 1,342), commensurate with the
increased diversity of individuals from the African continent. We note that these
differences are likely due to a shift in the allele frequency spectrum as has been noted for
SNPs 5859 Next to Africans, Puerto-Ricans exhibited the highest deletion SV-heterozygosity,
consistent with African-admixture into Puerto-Rican populations. Africans from the South
West exhibited the largest variance among individuals, consistent with this population
being made up of a diverse collection of admixed individuals. East Asian populations
exhibited the lowest levels of deletion SV-heterozygosity. In contrast to deletion SV-
heterozygosity, African populations exhibited the lowest levels of deletion homozygosity,
again, consistent with the increased diversity of African populations. East Asian
populations exhibited the highest levels of homozygosity.

PCA: To explore relationships of the different populations explored in this study we
performed principal component analysis (PCA) using deletion genotypes. Genotypes were
normalized as described by Patterson®. Briefly, for a particular deletion with 0,1,2
genotypes, the vector of genotypes was first centered about the mean, ¢ ,and then divided

by /p(j)(1 — p(j)where p(j) is an estimate of the allele frequency of a particular site,
estimated as /2. The resulting matrix of all transformed genotypes was then used for

estimation of the principal components. PCA was performed on the entire set of
populations, and additionally on each continental group independently. While PC1-4
described population structure when all individuals were included in the analysis, only PCs
1 and 2 exhibited structure in each of the continent-specific analyses, with the exception of
the analysis of African populations.

PCA of all individuals separated African from non-African populations along PC1, and
highlighted admixed populations. PC2 separated the European, South Asian and East Asian
populations into distinct clusters while populations of the Americas clustered either
intermediate to Europeans and South Asians (PUR, CLM) or intermediate to East Asians
and South Asians (PEL, MXL). PC3 cleanly separated South Asians from all other individuals
and PC4 described a long cline of all the Americas individuals with PUR and CLM clustering
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closest to African, European and East Asian individuals and Peruvians and Mexicans (PEL,
MXL) stretching the furthest from the African, European, East Asian cluster.

The African continental population-specific PCAs describe the proportion of admixture of
ASW and ACB individuals along PC1 and separate into three clusters along PC2 made up of
the Gambian (GWD) and Mende in Sierra Leone (MSL) individuals, the Yoruban (YRI) and
Esan (ESN) Nigerian populations, and the Luhyan individual (LWK). The admixed ASW and
ACB populations cluster closest to the Nigerian populations. PC3 further distinguishes LWK
from the other populations with some overlap with GWD individuals.

The American continental population-specific PCA shows a cline of separation of
Colombian (CLM), Mexican (MXL) and Peruvian (PEL) populations along PC1 with Puerto
Rican populations separating along PC2.

The East Asian continental population-specific PCA separates Dai (CDX), Kinh (KHV),
Southern Han (CHS), Han in Beijing (CHB), and Japanese (JPT) populations out long PC1.
Little clustering is observed along PC2.

The European continental population-specific PCA largely separates Finnish populations
from the remaining individuals with Toscani (TSI) and Iberian (IBS) individuals clustering
together opposite the Finns. Again little to no clusters are observed along PC2.

The South Asian continental population-specific PCA largely exhibits two clusters along
PC1 - a tight clustering of Sri Lankan (STU), Telugu from the UK (ITU) and Punjabi from
Pakistan (PJL) populations and a looser cluster of Gujerati from Texas (GIH) and Bengali
from Bangladesh (BEB).

These results are broadly similar to previous reports by Jakobsson et al. ¢1 and others.
Vst analysis: To systematically identify SVs that show stratification among populations, we
calculated Vst®? for each structural variant. Vst is a metric that compares the variance

between two populations of size n; and n; individuals respectively:

2 2
02_n1'01 +n, 03
T n, +n,

or
where g2is the variance in copy number genotypes. For mCNVs, duplications and deletions,
we thus calculated the Vst among all pairwise population and super-populations
classifications. We selected a Vst cutoff of 0.2 to indicate population stratification of a locus,
which has previously been used as a metric of high-stratification®, identifying 16 highly
stratified duplications, 2925 highly stratified deletions and 231 highly stratified mCNVs
(Table 6.1.5).
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Table 6.1.5. Total number of high-Vst events identified for

each class and the number of gene intersecting high-Vst MEIs .
events using Vsts calculated among all sub-populations. In Contributed by: Eugene J. Gardner,
parentheses are the number of events identified for super- Scott E. Devine
opulations. X-linked calls are excluded.
SV type | total Vst>=0.2 Vst>=0.2 and MEI population genetics studies
events intersecting genes The MEI population genetics studies
depicted in ED Figure 5 were
DUP 6120 16 (12) 1009 performed with the integrated phase
DEL 42441 | 2872 (1312) | 1113 (512) 3 MEI call set. Missing genotypes were

imputed using the phase 3
mCNV 2994 227 (111) 113 (60) SNP/mdel/large deletion haplotype
scaffolds. The subset of 13,678 MEIs
that were in HWE (p = 0.05)) was used in all MEI population genetics studies (ED Table 4).
MEIs were required to be in HWE in all 26 populations to be included in the HWE set used
for population genetics studies. This set included 10,378 Alu, 2,603 L1, and 697 SVA sites
(52.0M, 13.0M, and 3.5M genotypes, respectively). Only MEIs on autosomes were used.

Phylogenetic Tree Construction

The phylogenetic tree depicted in ED Figure 5 was constructed from twenty populations
belonging to the four non-admixed super-populations EUR (CEU, FIN, GBR, IBS, TSI), SAS
(GIH, PJL, BEB, STU, ITU), EAS (CHB, JPT, CHS, CSX, KHV), and AFR (YRI, LWK, GWD, MSL,
ESN) using PHYLIP version 3.9693. Six populations from the AMR (CLM, MXL, PEL, PUR) and
AFR (ACB, ASW) continental groups were excluded due to high levels of admixture in these
populations.

The phylogenetic tree depicted in ED Figure 5 was constructed as follows: First, MEI allele
frequencies were determined in each population. Next, the GENDIST algorithm provided
with PHYLIP was applied using the Cavalli-Sforza®* genetic distance measurement. Finally,
NEIGHBOR®> was run with the GENDIST output in UPGMA mode to generate the neighbor
joining tree depicted in ED Figure 5. To generate bootstraps, 100 replicates were
performed as outlined above with the additional step of collapsing replicate trees using
CONSENSE (also provided with PHYLIP). The raw data used for these analyses, including
branch lengths and MEI allele frequencies, are provided in ED Table 4.

In a separate experiment, a hypothetical ancestor (ANS) that lacked all of the phase 3 MEIs
(i.e., had homozygous REF genotypes at all phase 3 MEI sites) was incorporated into the
tree. As expected, the ancestor rooted the tree (bottom), and was very distant (with a
branch length of 0.04109) from modern humans. Admixed individuals also were placed on
the tree. The ASW and ACB populations clustered with the AFR clade (as expected due to
high levels of AFR ancestry). The PEL and MXL populations clustered as outgroups of the
EUR and SAS super-populations, likely reflecting higher levels of native ancestry,
particularly in PEL individuals. The PUR and CLM populations clustered as outgroups of the
EUR super-population, coinciding with a high proportion of European ancestry.
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Branch-Specific Mobile Elements

MEIs were assigned to specific branches on the phylogenetic tree as follows. MEIs were
inspected to determine whether each MEI was present in the twenty non-admixed
populations described in the phylogenetic tree section above. Any MEI that was unique to a
single population was assigned to that population. MEIs were assigned to an upper branch
if they were present in 100% of constituent populations of a given branch. Branch-specific
MEIs are listed in ED Table 4.

Admixture analysis

The admixture analysis outlined in ED Figure 5 was performed using ADMIXTURE®®. The
cross validation test associated with ADMIXTURE indicated that K = 5 was optimal®’.
Genotypes were prepared for ADMIXTURE using VCFtools ver 0.1.12b% and PLINK ver
1.969. ADMIXTURE was run with default parameters in accordance with the instruction
manual provided at the ADMIXTURE download site
(http://www.genetics.ucla.edu/software/admixture/ [2015]). ED Figure 5 was sorted by
the estimated majority ancestry for each superpopulation. Raw Q values generated by
ADMIXTURE at K=5 for each individual are provided in ED Table 4. We note that while
MEIs are homoplasy-free and thus useful as forensic markers, this is not an explicit
requirement of ADMIXTURE.

Principle Components Analysis

To examine population structure using an orthogonal approach we performed Principle
Components Analysis (PCA) using the same method as that used for deletions outlined
above. The results largely corroborate population structure seen in deletions with PC1
separating AFR individuals from all other super-populations and PC2 separating EAS, SAS,
and EUR individuals.. PUR and CLM individuals largely group within the EUR population
with PEL and MXL populations intermediate to the EAS and EUR super-populations. As
expected, African derived populations (ACB, ASW) largely clustered within the AFR super-
population. PC3 and PC4 are similar to the population structure observed in deletions with
the exception that there was a relative lack of separation of AMR individuals along PC4
with MEIs compared to deletions.

Inference of mutation rates and selective signatures from the site frequency
spectrum (SFS)

The site frequency spectrum can be used to infer various population genetic parameters of
different forms of genetic variation and to make inferences about selection. To estimate the

mutation rate of various classes of SVs from our dataset we first estimated Waterson’s 0:
~ K

w

- 1

-1
where K is the number of segregating sites and n is the number of chromosomes assessed.
We then estimated the mutation rate as:

~

Ow = 4N, p
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assuming an effective population size Ne of 10,000 (ref. 79). Estimates of the mutation rate
for various SV classes are reported in Table 6.1.6. We estimate a mutation rate of 0.113
deletions per haploid genome per generation, higher than previous estimates (i.e, Conrad
et al’%: 0.03; Kloosterman et al.’l: 0.04 ), which can be explained by our increased power
for detecting SVs <5 kbp. Indeed, when excluding calls <5 kbp we estimate a mutation rate
of 0.037 consistent with earlier reports’%71. Additionally, our rate of novel alu insertion,

0.035 per haploid genome per generation, is very similar to that reported by Kloosterman
etal’1 (0.023).

Table 6.1.6: Estimates of Waterson’s 0 and the inferred mutation rate p assuming an effective
population size of 10,000.

N 0 SV type 1]
1 0.10993955 DEL_HERV 2.75E-06
9 0.989455947 DEL_SVA 2.47E-05
56 6.156614781 DEL_LINE1 0.000153915
168 18.46984434 INS 0.000461746
786 86.41248603 INV 0.002160312
835 91.79952396 SVA 0.002294988
1238 136.1051625 DEL_ALU 0.003402629
3048 335.0957474 LINE1 0.008377394
5713 628.0846472 DUP 0.015702116
12748 1401.509379 ALU 0.035037734
32916 3618.770216 DEL (> 500bp) 0.090469255
40952 4502.244438 DEL 0.112556111

We also assessed the site frequency spectrum of bi-allelic SVs as a function of size, focusing
only on deletions and duplications, variant classes with >1000 sites and sufficient spread in
terms of SV sizes. We observe that as deletions increase in size, they become increasingly
more rare, evidence of selection against events that are more likely to intersect functional
elements (P<2.2e-16, linear model). For duplications we independently assessed events
<15 kbp and >20 kbp, as different filtering parameters were used for calls below and above
these size thresholds. We observed that SV size has little effect on the mean allele
frequency of biallelic duplication events in either range (P=0.07 and P=0.382 respectively).

6.2.eQTL Analysis

Contributed by: Francesco Paolo Casale, Oliver Stegle

To ascertain the effect of SVs on gene expression, we considered 446 individuals from the
GEUVADS consortium?? that are overlapping with the 1000GP samples. We extracted the
genotypes of SVs with VAF>1% from the 1000GP SV Analysis Group release set, which
resulted in a set of 14,531 SVs considered for this analysis. We additionally obtained
11,514,964 SNPs and 1,296,114 indels (<50bp) from the 1000GP marker paper release set,
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using this VAF cutoff. We employed a common 0/1/2 encoding (0: major hom, 1: het, 2:
minor hom). For multi-allelic copy number variants (mCNVs), we considered the number of
copies as a genetic feature. Allele frequencies for multi-allelic variants were calculated as
mean copy number across genotyped individuals divided by the maximum copy number
value for a given variant.

Gene expression levels were estimated using BitSeq’? using the raw expression levels
obtained from array express (http://www.ebi.ac.uk/ena/data/view/ERP001942 [2015]).
Briefly, raw sequencing reads were aligned using Bowtie mapping to the GRCh37 reference
build 69. Quantification of transcripts was pursued using BitSeq’3 version 0.4.3 with
default settings. To map eQTLs, we used gene expression abundance estimates, which were
obtained by averaging over multiple isoforms per gene. After removing lowly expressed
genes, this resulted in 18,969 protein-coding genes from the autosomes, which we used for
all of our eQTL analyses. Following the approach taken in’?, we used PEER 74 to estimate
and account for hidden covariates and confounding factors. We estimated K=30 hidden
factors using PEER with default parameter values. All subsequent analyses were performed
on PEER adjusted expression data except for effect size estimates, which were obtained on
unadjusted expression values.

cis eQTL mapping

We mapped cis eQTLs using a linear mixed model implemented in LIMIX75, considering
variants up to 1 Mbp up- or down-stream of each gene and jointly testing for associations
using SVs and SNPs. In this analysis, population structure was accounted for using a
random effect term and covariates were accounted for as fixed effects.

To correct for multiple testing within cis candidate regions of individual genes, we
employed a permutation approach, where we permuted genetic markers relative to the
covariates, random effect matrices and the phenotype (thereby retaining the relationship
between the random effect and the expression trait). Both for permuted and non-permuted
data we obtained the test statistics of the most associated variant within any cis region.
Region-wise adjusted p-values were estimated by comparing the actual test statistics to the
empirical null test statistics from 10,000 permutation experiments. To adjust for multiple
testing across genes, we employed the Benjamini Hochberg procedure, estimating g-values
for every gene. At FDR 10%, this resulted in a total number of 9,591 genes with an eQTL
(egenes). A complete list of all discovered eQTLs is provided as ED Table 7.

Identification of LD-linked SV eQTLs

First, to identify strict SV-lead eQTLs, we considered each of the 9,591 egenes and tested
whether the lead variant (minimal p-value) was an SV or a SNP/indel. This stringent
criterion resulted in 54 strict SV-lead eQTLs (ED Table 8). This number may be an
underestimate of the true number of SVs at MAF>1% affecting gene expression given
expected systematic differences in genotyping accuracy between SNPs and SVs. We thus
also considered the lead variants for each of the 9,591 egenes and tested for SVs in local LD
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(within +/- 1 Mb window, r*2>0.5, a test only considering biallelic SVs). These LD
association tests were implemented using PLINK®?, using the full panel of 2,504 individuals,
yielding 166 additional egenes where an SV was in LD with a SNP lead eQTL. Taken
together, this results in 220 eQTLs with evidence for an SV-implicated regulatory effect, 54
strict SV-lead eQTLs and 166 LD-linked SV eQTLs (ED Table 8). We found similar
proportions of SV implicated eQTLs for secondary and tertiary associations (data not
shown).

Enrichment analysis

We considered two alternative approaches to estimate the relative enrichment of SVs with
a regulatory effect on gene expression compared to SNPs. First, we calculated the number
of SV eQTLs relative to the number of SVs in cis candidate regions genome wide, comparing
this to the relative proportion of SNP eQTLs versus the total number of SNP variants in the
same regions. This basic enrichment score resulted in an up to 47-fold enrichment (mCNV;
p<2.84E-39) of SVs when considering strict SV-lead eQTLs and in an up to 65-fold
enrichment (mCNV; p< 8.01E-59) when considering LD-linked eQTLs; see ED Table 8).
Statistical significance of the enrichments was assessed using a one-sided Fisher’s exact
test. To place the SV enrichment into context of shorter insertion and deletions (indels), we
also considered eQTLs where one of 1,296,114 indels was the lead variant (similar to the
primary analysis of the GEUVADIS data’?). Notably, although indels explain a much larger
number of eQTLs than SVs (1,339 versus 54 strict SV eQTLs and 220 LD-linked SV eQTLs),
they were only marginally enriched compared to SNPs (1.4 fold, p<1.23E-30, ED Table 8).
In the following analysis, we considered SNPs and indels together as these variant classes
appeared to be comparable in terms of their potential to associate with gene expression.

We note that basic count-based enrichment may yield optimistic enrichments. This is
because the number of effective SNP variants that are being tested within cis regions is
substantially reduced due to strong local linkage patterns. We thus also considered a
second enrichment strategy, where we compared the number of SVs that were in LD with a
lead eQTL to a random expectation obtained from a sampling background model. To
perform this enrichment analysis, we chose random locations in cis candidate regions and
attempted to identify loci that match key properties of the 14,531 SVs that were considered
in the cis eQTL analysis. These randomly drawn loci were approximately matched to real
SVs, considering allele frequency (to the nearest 0.1 bin), haplotype length (within 50%
size of each other) and distance to the TSS (within bins of 1000 bp). Here, haplotype length
was estimated by the maximum distance of two variants close to the locus that have an r?
value >= 0.80.

Using this strategy, we generated 100 random SV sets in cis candidate regions and assessed
the proportion of these pseudo-SVs that were in LD with a cis eQTL. We used this random
expectation to calculate the enrichment of genuine LD-linked SV-eQTLs (versus SNP/indel
eQTLs), again resulting in a robust enrichment (ED Table 8) for this conservative
enrichment testing approach.
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In summary, we have carried out two complementary approaches to assess the enrichment
of SV-implicated regulatory effect on gene expression compared to, and both analyses
support a robust enrichment of SVs showing that SVs are likely to have an appreciable
regulatory effect once occurring in the vicinity of genes.

SV-centric analysis of genic and coding SVs

In addition to the enrichment analysis jointly considering SVs and SNP/indel variants, we
also performed an SV-centric analysis, through testing coding SVs in isolation for
associations with gene expression levels (ED Table 8; multiple-testing adjustment using
Benjamini Hochberg; FDR cutoff = 10%). When considering the full set of 559 coding SVs
(at 1% VAF), this analysis yielded 89 coding SVs in associations with gene expression (ie.,
20% of SVs showed association at the given FDR threshold). The most frequently
associated variant types were deletions and CNVs. For example 46 out of 260 gene coding
sequence affecting mCNVs (18%) and 35 out of a total of 159 coding deletions (27%) were
eQTLs according to this analysis (ED Table 8). We reasoned that because of the relatively
moderate size of the gEUVADIS cohort, power to detect genetic effects of coding SVs is
limited, especially for genes that are lowly expressed as well as for SVs that are relatively
rare. To better understand the limits of detection, we restricted this association analysis to
SVs with increased allele frequency and to genes with increased levels of gene expression.
As expected, the power to detect eQTL effects of common SVs in highly expressed genes
were dramatically increased, e.g. resulting in the majority of highly common deletions
(VAF>20%) intersecting the coding regions of highly expressed genes to be eQTLs (ED
Table 8).

Taken together, this analysis suggests that a large proportion of coding SVs affect the
transcriptome. We note that this analysis does not account for the possibility that genic or
coding CNVs merely tag SNPs that are causing gene expression differences (however, for
gene-coding SVs this likely affects only a small number of cases).

6.3.Evidence for RNA intermediates of sequences inserted at

deletion breakpoints.
Contributed by: Alexej Abyzov, Nick Parrish, Eugene J. Gardner

Approximately 25% of assemble deletion breakpoints contained inserted sequences. These
typically arise as errors during non-homologous end joining (NHE]) or are copied from loci
proximal to the deletion due to replication template switching”6. Another potential source
of such inserted sequences was recently described: RNA reverse-transcribed and
integrated into the site of a double-strand break’’. In addition, transposable elements have
been shown to be integrated within deletions and at sites of double-strand breaks in cell
culture’879 and in reference genomes80-82. We therefore examined the deletion breakpoints
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described here for evidence that the inserted sequences could have been derived from an
RNA intermediate.

Exclusion of introns from the inserted sequences provides the highest-confidence evidence
of an RNA intermediate. No examples of intron exclusion were found in the inserted
sequences described here (data not shown). Therefore we looked for evidence suggestive
of an RNA intermediate (albeit not formally excluding a DNA source) namely 3’ poly(dA)
tails that may form as a consequence of template-primed reverse transcription of
polyadenylated RNA. Allowing for a few non-A bases in the tail we identified 16 candidate
SVs. We noted a preponderance of 3’ poly(dA) tracts of at least 10 nucleotides, of which
there were 12 examples (in contrast to only four 5 poly(dA) tracts). This differs
significantly from the prediction, based on random sampling of DNA templates as predicted
by template switching mechanisms, that one would observe on average 3.4 such tracts in
either orientation in a set of 1,651 inserted sequences of length greater than 10 bp. Twelve
3’ poly(dA) tracts represents a statistically significant increase from the predicted 3.4 (p-
value of 2.2x10-4). Based on statistical support for the notion that some of these inserted
sequences could have been inserted through an RNA intermediate, we examined these
poly(dA) containing inserted sequences in further detail. In one case (SV call id:
UW_VH_1748), an RNA intermediate explains several features of the structural variant that
template switching mechanisms cannot: the putative template DNA is on a distinct
chromosome from the deletion and matched the inserted sequence with the exception of a
poly(dA) of 36 bp. This variant can be parsimoniously explained if an mRNA transcribed
from chromosome 2 was polyadenylated and inserted into a 410 bp deletion in
chromosome four.

The remaining 15 poly(dA) containing inserted sequences were associated with the 3’
termini of Alu elements from active subfamilies®3, consistent with their potential to be
transcribed and mobilize. However, as Alu poly(dA) tracts are genome-encoded and are
abundant as potential DNA templates in a template switching mechanism, we sought
additional evidence to determine which of these sequence insertions, if any, were involved
an RNA intermediate. We considered the degree of conservation of these inserted
sequences to a given Alu subfamily, reasoning that highly mutated elements would be less
likely to mobilize®3 and potentially have uniquely identifiable DNA templates. Four
elements with divergence from their subfamily consensus at several nucleotides were
identified. These four elements were likely inserted via a DNA template switching
mechanism because sequences identical to the insertions were found on the same
chromosome by BLAT or BLAST alignment. This left eleven 3’ partial Alu elements within
deletion breakpoints for which an RNA intermediate could not readily be excluded. By
trimming poly-A/T tails and matching the remaining MI sequence with 50 kbp of deletion
breakpoints, we identified potential template site for only 3 MIs, demonstrating that
majority of these MI sequences are unlikely to be copied from local DNA templates. Next we
examined the sequence at the deletion breakpoint for evidence of endonuclease cleavage
consensus sequence. Allowing one deviation from the consensus, all eight remaining
poly(dA) containing sequence insertions were within such sites. Thus these sequence
insertions likely represent Alu-insertion associated deletions84, albeit with a degree of 5’
truncation.

WWW.NATURE.COM/NATURE | 50



doi:10.1038/nature15394 {2 \H{H; W SUPPLEMENTARY INFORMATION

We also sought to identify Non-Canonical Alu Insertions (NCAIs)82 by looking at discordant
read pairs that mapped to the human reference adjacent to the Phase III deletion calls. We
examined all such discordant pairs to see if the unmapped mate aligned to an Alu
consensus sequence8>. After identifying candidate deletions, manual assembly was
performed using Pacbio, Moleculo, or one of 30 high coverage genomes to confirm the
presence of partial Alu sequences within the deletion breakpoints. Five sites were
identified with this approach that were not identified by the assembly-based approach.
Finally, we excluded DNA template switching or non-allelic homologous recombination
using the same method outlined above, looking for an exact match in the human reference
to the inserted sequence within 50 kbp. No such matches were found for any of the five
insertions, thus leaving the only likely formation mechanism as NCAI (Alu insertions at
NHE] deletion - ED Table 13c).

6.4.Dispensable genes
Contributed by: John Huddleston, Evan Eichler

We identified 5,819 homozygous deletion genotypes from the complete set of structural
variants (SVs) and annotated all events that completely deleted at least one exon
(untranslated region, UTR or coding sequence, CDS) in the RefSeq gene annotations for
GRCh37/hg19. For each SV that deleted at least one gene, we annotated the minimum
residual variation intolerance score (RVIS) score of all affected genes8¢. Additionally, all
homozygous deletions were annotated for their heterozygous and homozygous frequencies
in each super population. With this approach, we identified 204 homozygous deletions
affecting 240 genes. Based on the DAVID gene ontology classification®’, these genes were
functionally enriched for immunoglobulin domains (Benjamini corrected p-value=1.0E-5)
and glycoproteins (Benjamini corrected p-value=1.6E-3). Correspondingly, the mean of the
minimum RVIS percentile of genes per homozygous deletion was 0.76, suggesting that
these homozygously deleted genes are highly tolerant of mutation.

6.5.0verlap enrichment analysis of SVs versus genomic

elements
Contributed by: Yan Zhang, Mark Gerstein

We performed permutation tests for several functional genomic elements (ED Table 6.5.1.,
below) intersecting with SVs. We employed a “partial overlap statistic” and an “engulf
overlap statistic” respectively in two series of tests, whereby the partial overlap statistic
reflects the count of genomic elements (e.g. CDS) showing at least 1 bp overlap with SV
intervals (e.g. deletions), and engulf overlap statistic reflects the count of genomic elements
that are fully imbedded in at least one SV interval. In the permutation tests, the null
distribution (random background) of the overlap measures is calculated from true genomic
elements intersecting randomly shuffled SV locations. We generated 1,000 randomly
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shuffled SV sets. Each shuffled set contains the same number of SVs, same proportion of
SVs, and same length distribution as the real set. For deletions, we additionally generated
1000 randomly shuffled sets in each allele frequency bin of (0, 0.001], (0.001,0.01], and
(0.01,1]. Taking heterogeneity of chromosomes into account, we required that shuffled SVs
are still located on the same chromosome, and removed hg19 gap locations. BEDTools88
was used for bed file operation and generating shuffled sets. The enrichment of genomic
element-SV overlap is expressed as log2 fold change of the observed overlap statistic
versus the mean of the null distribution. Positive (negative) log2 fold change indicates
enriched (depleted) genomic element-SV overlap compared to random background. Each
pair of genomic element type and SV type was tested individually. Empirical p-value were
calculated, and reported to be significant if p-value <0.01. Error bars in the plots (Figure
2ab, ED Figure 7) reflect standard deviations of log2 fold changes in each permutation test.

In order to test whether CDS from a “low RVIS category” (e.g. RVIS<20) were more
depleted of deletions than CDS with higher RVIS, we performed another set of permutation
tests between each pair of RVIS categories. In each pairwise test, we pooled the CDS in both
RVIS categories (e.g. “low” or “high” labeled). Then, we shuffle the RVIS labels of the CDS
regions 1000 times to generate CDS pools with random RVIS labels. Overlap statistic
(partial or engulf) of each RVIS category in the pool was calculated overlapping with

deletions. This test statistic reflected the ratio of the overlap statistic between two RVIS
Partial overlap statistic of CDS with low RVIS label vs.deletions
). The observed test

Partial overlap statistic of CDS with high RVIS label vs.deletions
statistic was compared with the null distribution of test statistics calculated using the
randomized pools. Empirical p-values were calculated for each pairwise test.

categories (e.g.,

ED Table 6.5.1 - Genomic elements used in overlap enrichment analysis.

Index | Genomic elements Description Source

1 Gene Annotated whole gene region GENCODE v19(ref 89)

2 Gene low retroduplication A subset of genes, with known paralogs and/or Gene and pseudogene
pseudogenes; annotation from
Genes with the number of retroduplications GENCODE v19, gene-
(including paralogs and pseudogenes) in range [0, paralog pairs from
10], ~95% in the subset Ensembl gene-

3 Gene high retroduplication A subset of genes, with known paralogs and/or pseudogene pairs
pseudogenes; newly identified from
Gene with the number of retroduplications PseudoPipe?! for
(including paralogs and pseudogenes) in range (10, | GENCODE v19
152], ~5% in the subset pseudogenes

4 CDS Annotated protein coding sequence region GENCODE v19

5 CDS low RVIS A subset of CDS with low Residual Variation CDS annotation from
Intolerance Score (RVIS) GENCODE v19, RVIS

6 CDS medium RVIS A subset of CDS with medium RVIS from literature8é

7 CDS high RVIS A subset of CDS with high RVIS

8 Exon Annotated exons in protein coding region GENCODE v19

9 UTR Annotated UTRs in protein coding region GENCODE v19

10 Intron Protein coding transcripts excluding exons Processed from

GENCODE v19

11 Pseudogene Pseudogenes GENCODE v19,

12 Pseudogene processed A subset of pseudogenes - processed pseudogenes requiring Type is

13 Pseudogene unprocessed A subset of pseudogenes - unprocessed transcript
pseudogenes

14 Segmental duplication Segmental duplication (Eichler Lab)
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15 lincRNA Long, intervening noncoding RNAs GENCODE v19

16 Ultraconserved Ultraconserved regions across species From literature92.93

17 Ultrasensitive nc Ultrasensitive non-coding regions From the study of

1000GP (Phase 1),
Funseq®*

18 ENCODE TF ENCODE TF motif boundaries - more conserved Processed from data of
regions in TF peak regions; overlapping intervals ENCODE?95, Funseq93.94
are merged.

19 TF peak ENCODE TF peak region, union is taken for multiply | Processed from
reported peak regions ENCODE TF peak data

20 piRNA Clusters piRNA Clusters, filtered with RPKM = 5 Processed from data

published in
literature®

Overlap enrichment analysis of SNPs versus genomic elements

We also performed the permutation tests for functional genomic elements intersecting
with SNPs. The genomic elements used in this study are described above in the section
“Overlap enrichment analysis of SVs versus genomic elements”. We binned the SNVs into
three allele frequency bins (0, 0.001], (0.001,0.01], and (0.01,1]. Similarly as in the SV
analysis, we shuffled SNPs 1,000 times, while taking heterogeneity of chromosomes into
account. We required the shuffled SNPs to be located on the same chromosome (removing
assembly gaps). Partial overlap statistic was used, which is the count of genomic elements
(e.g. CDS) that have at least 1 bp overlap with SNPs. The enrichment of genomic element-
SNP overlap was expressed as log2 fold change of the observed overlap statistic versus the
mean of the null distribution. Positive (negative) log2 fold change indicates enriched
(depleted) genomic element-SNP overlap, compared to random background. Empirical p-
value was calculated, and reported to be significant if p-value < 0.001. Error bars in the
plots (ED Figure 7) indicate standard deviations of log2 fold changes in each permutation
test.

6.6.Association of SVs with GWAS SNPs
Contributed by: Ryan Mills, Tobias Rausch, and Oliver Stegle

LD with GWAS SNPs

We sought to explore possible connections between our discovered SVs and previously
reported SNPs that had been found to be associated with various phenotypes through
genome-wide association studies (GWAS). To do this, we made use of the NHGRI Catalog of
published GWAS (http://www.genome.gov/gwastudies/ [2015]) that describes 18,064
SNPs linked to a multitude of phenotypes. We cross-referenced this list with the set of
genotyped phase 3 SNPs using their rs IDs, conservatively identifying 12,892 that were
common to both sets. We then calculated the LD (r?) between these SNPs and all SVs that
had been reported within a 1 Mbp window using plink®?. In this manner, we identified 136
SVs in strong LD (r?>=0.8) with a GWAS SNP.

GWAS SNP Enrichment

We next explored whether we were observing a higher prevalence of GWAS SNPs in the
flanking regions of SVs than we would expect from chance alone, an enrichment analysis
controlled for VAF and haplotype size. To address potential biases in our enrichment
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testing, we first removed redundancies between SNPs in high LD with each other and
associated with the same phenotype. This resulted in a set of 12,495 GWAS SNPs. We
focused on common SVs from our set with a minor allele frequency of >0.01 (n=9,188), of
which roughly half (n=4,307) were present on a high-confidence haplotype block with
definable length, which for the purpose of the analyses described in this chapter were
defined as segments surrounding SVs having at least 1 SNP both upstream and
downstream of the SV with r? >= 0.80 within 1 Mbp. (The flanking SNPs were used to define
haplotype length.)

These data were summarized and stratified across different SV length bins (1 kbp-5 kbp-, 5
kbp-20 kbp, >20 kbp) and maximum r? values (0.4, 0.6, 0.8) and were then compared to our
observed set. We observed a marked enrichment of GWAS SNPs in the flanks of larger
(most pronounced for >20 kbp) SVs (when controlling for VAF and haplotype size). We
additionally observed 1.75 fold enrichment for deletions <1 kbp, albeit not shown on the
same Figure 2 panel since these small deletions were genotyped using an alternative
genotyping algorithm (i.e., split-read based rather than read-depth based genotyping).

All custom software and relevant data sets utilized for this analysis can be found here:
https://bitbucket.org/remills/1000gp_sv_phase3 [2015]

6.7.Personalized genomes analysis
Contributed by: Jieming Chen, Mark Gerstein, Oliver Stegle

Construction of personalized reference genomes

To study the effect of including SVs when constructing personalized reference genomes, we
considered NA12878. Using the tool vcf2diploid®” and additional custom scripts
(http://alleledb.gersteinlab.org/docs/; citation: Chen J, Rozowsky ], Bedford ], Harmanci A,
Abyzov A, Kong Y, Kitchen R, Regan L, Gerstein M. Allele-specific binding and expression: a
uniform survey over many individuals and assays. Manuscript submitted.), we construct
two alternative personalized reference genomes by incorporating phase 3 SNP
(http://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/integrated_sv_map/ALL.wgs.integrat

ed_sv_map.20130502.svs.genotypes.vcf.gz [2015]) and SV variants
(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/working/20140708_previous_phase
3/v4_vcfs/ [2015]) into the GRCh37 reference genome

(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical /reference/phase2_reference_assemb
ly_sequence/ [2015]), only considering the 22 autosomes. First, we incorporated only SNPs
and short indels, consisting of 3,548,153 SNVs and 554,853 indels. This reference will be
referred to as the ‘SNPs-genome’. In addition to this SNP/indel personalized genome, we
considered a second reference, incorporating an additional set of 1,383 large SVs with
breakpoint information
(http://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/integrated_sv_map/supporting/brea
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kpoints/1KG_phase3_all_bkpts.v5.txt.gz [2015]) (termed ‘SNPs+SVs-genome’). Because
NA12878 is part of a CEU trio, most of the variants are phased into the paternal and
maternal haplotypes, while those that are not, are randomly phased. In addition, we used
the UCSC liftover tool (http://hgdownload.cse.ucsc.edu/admin/exe/ [2015]) to obtain
matching personalized reference annotations based on hg19, considering a total of 54,839
genes and 280,213 exons in the GRCh37 reference (autosomes only). Using this approach a
total of 280,179/280,181 (maternal/paternal) exons could be lifted on to the personalized
genome reference using SNPs and 280,160/280,149 exons could be lifted to the
personalized reference that included SNPs and SVs. Among these 280,123 exons were
present in all reference genomes. We considered this set of consensus exons (out of
280,213 in the GRCh37 reference) to compare alternative genomes for read mapping (see
below).

Read alignment and quantification

We used RNA-Sequencing reads for NA12878 obtained from Kilpinen et al®. We then
aligned the raw sequencing reads to alternative reference genomes, either considering the
native GRCh37 reference, or separately aligning reads to the maternal and paternal genome
of the two alternative personalized reference genomes (NA12878 SNPs- or SNPs+SVs-
genome). Reads were aligned using STAR (Version 2.4.0h) with parameter settings:

1. Generation of the reference for alignment:
STAR --runMode genomeGenerate --outTmpDir $tmp_dir --genomeDir $genome_dir --
genomeFastaFiles $genome --runThreadN 6 --sjdbGTFfile $annotation --sjdbOverhang 100
2. Read alignment:
STAR --genomeDir $genome_dir --outFilterMultimapNmax  $multi_map_max -
outFilterMismatchNmax 10 --alignintronMax 500000 --alignMatesGapMax 1000000 --
sjdbScore 2 --alignS]JDBoverhangMin 1 --genomeLoad NoSharedMemory --
outFilterScoreMinOverLread 0.33 --outSAMstrandField intronMotif --outSAMattributes NH
HI NM MD AS XS --outSAMunmapped Within --outSAMtype BAM SortedByCoordinate --
runThreadN $nthreads --readFilesIn $fasta_1 $fasta_2 --outFileNamePrefix $alignment_base
#indexing
samtools index $alignment_base/Aligned.sortedByCoord.out.bam

To count reads, we used custom scripts to quantify the number of reads mapping to genes
and exons in hg19. For this analysis, only primary alignments were considered and both
individual read pairs were counted separately. For the personalized genome approaches
the union of unique reads (matched by read ID) mapped to the maternal or paternal
alignment for a particular genomic feature were considered. All scripts used for the
generation and the quantification of reads from personalized genomes are available on
github (http://github.com/ostegle/SV1000gPersGenome [2015]).

Assessment approach

To assess the impact of alternative references, we considered the total number of reads
mapped to 280,123 consensus exons that were present in all three reference annotations
(autosomes only). Additionally, we considered the number of genomic features with at
least 10, 100 or 1,000 reads mapped and the relative difference between alternative
quantifications, requiring at least a difference of 10 reads and a one-fold difference (ED

WWW.NATURE.COM/NATURE | 55


http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/breakpoints/1KG_phase3_all_bkpts.v5.txt.gz
http://hgdownload.cse.ucsc.edu/admin/exe/

doi:10.1038/nature15394 {2 \H{H; W SUPPLEMENTARY INFORMATION

Table 9).

Overall, a larger number of reads could be aligned to the SNPs+SVs-genome compared to
the SNPs-genome. For example, 37,435,162 reads could be aligned to 280,123 consensus
exons when using the GRCh37 reference. When considering the SNP-based reference,
37,702,108 reads mapped to the same set of exons (+266,946 reads) and 37,707,787
(+272,625 reads) mapped to the SNPs+SVs reference. The SNP-based reference resulted in
535 consensus exons with a profound change in expression compared to the GRCh37
reference (+/- 10 or more reads change, 1 fold change), whereas the SNPs+SVs reference
resulted in 525 exons with a similar change in expression compared to the GRCh37
reference genome. The direct comparison between the SNP- and SNPs+SVs-genomes
revealed 24 exons with a marked change in expression (+/- 10 or more reads change, 1 fold
change), 18 of which were included in the set of 535 exons mentioned above.

The difference between the SV and SNP-based reference was even more dramatic when
restricting the analysis to the 18 exons with a direct SV overlap. Six of these 18 exons were
expressed (>10 reads) and of these, four exhibited substantial changes in expression (+/-
10 reads, 1 fold change) when using the SNPs+SVs-genome compared to the SNPs-genome
(ED Table 9).

6.8. Features associated with SV clusters
Contributed by: John Huddleston, Evan Eichler

To investigate the relationship between SV hotspots and replication timing, we obtained
Repli-seq data from the UCSC Genome Browser's UW Repli-seq track set. Specifically, we
used the wavelet-smoothed signal track for a cell line from a normal individual who is also
part of the 1,000 Genomes cohort (NA12878). The wavelet-smooth signal track provides a
summary floating point value for each location in the genome where smaller values
represent late cell cycle and larger values represent early cell cycle. We intersected SV
clusters with this Repli-seq signal and calculated the weighted mean of the signal per
cluster. We found no clear relationship across all clusters between distinct CNVRs per
cluster and replication timing. Within the thirty GM12878 SV hotspots, 12 hotspots (40%)
intersected with regions of late replication (wavelet signal < 20). The mean Repli-seq signal
across all SV hotspots of 38 is slightly lower than expected for equivalently-sized regions in
random genomic regions (p = 0.012978 with 1,000,000 permutations) suggesting that
there is a bias for SV hotspots in regions of late replication.

SV clusters are predominately composed of deletions. Deletions are the most common SV in
2,260 of 3,163 clusters (71%) and 30 of 30 hotspots (100%). On average, deletions
compose 66% of SVs in clusters and 63% of SVs in hotspots. Given that the overall
proportion of deletions in the complete SV call set was 62%, the composition of SV clusters
and hotspots is consistent with expectations.
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In addition to checking for biases in replication timing and SV type, we compared SV
clusters with previously described fragile sites*® and genes affected by fragile sites
(http://en.wikipedia.org/wiki/Chromosomal fragile site). To test fragile sites described in
Table 1 of Mrasek et al“8, we first mapped the cytoband locations for each site to
corresponding coordinates in GRCh37/hg19 available from the UCSC Genome Browser. We
intersected SV clusters with fragile site loci and assigned a binary value of 0 or 1 to each
cluster based on the absence or presence of an overlap with a fragile site, respectively. Of
3,163 SV clusters, 1,960 (62%) overlapped with known fragile sites. This pattern
represents a significant enrichment for fragile sites compared to equivalently-sized loci
that were randomly distributed across the genome (p = 0.001723 with 1,000,000
permutations). Of the 30 SV hotspots (clusters containing >36 distinct CNVRs), 23 (77%)
overlap with known fragile sites (p = 0.035818 with 1,000,000 permutations). Additionally,
we found 11 of 16 (69%) previously described genes affected by fragile sites intersected
with a SV cluster and 3 of 16 (19%) intersected with a SV hotspot.

6.9. Comparison of SVs to clinical genomics datasets
Contributed by: John Huddleston, Evan Eichler

We compared our dataset to a number of previously published clinical genomics studies to
assess its utility to inform medical genetics. The studies assessed include: Yang et al.?®, The
Deciphering Developmental Disorders [DDD] Study 100, Wright et al. 191, Boone et al.192
Dittwald et al.193 and Coe et al. 194. We also compared de novo SVs from the DDD Study with
all SVs from 1000 Genomes.

First, we assessed the overlap between disease-associated genes described in eTable 4 of
Yang et al.??and homozygously deleted genes described in the 1000 Genomes samples. Of
318 distinct genes identified by Yang et al. 2014°°, only 2 (0.6%) were also identified in
1000 Genomes homozygous gene deletions specifically DEAF1 and TPM3. The deletion of
DEAF1 in 1000 Genomes individuals deleted a 43bp exon in an alternate isoform (RNA
accession: FJ985253.1). Similarly the deletion of TPM3 in the 1000 Genomes deleted the
last exon of the smallest alternate isoform (RNA accession: NR_103460.1).

For the comparison of all SVs from the 1000 Genomes cohort with the 87 de novo CNVs
reported by the Deciphering Developmental Disorders (DDD) Study??, we used a standard
50% RO test and identified one deletion and two duplications shared between the two call
sets. None of the 61 CNV-affected genes in the DDD Study overlapped with homozygous
gene deletions from the 1000 Genomes. When we considered all genes in the DDD Study
affected by SNVs whose predicted effects were greater than a missense (based on
Ensembl's VEP ordered list:
http://uswest.ensembl.org/info/genome/variation/predicted_data.html), only one gene,
LEPREL1, overlapped with the set of 1000 Genomes homozygously deleted genes. The
1000 Genomes deletion of LEPREL1 deletes the first non-coding exon of one isoform (RNA
accession: NM_001134418.1).
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For the comparison of disease-associated genes described in Wright et al. 2015101 and
homozygously deleted genes in 1000 Genomes samples, we used the Developmental
Disorders Genotype-to-Phenotype (DDGZ2P) database of 1,339 genes (Appendix 2, S1d) and
the subset of 146 genes in that set that had an associated diagnosis among patients
(Appendix 2, S2). Of the 1,339 genes, 5 (0.4%) overlapped with homozygously deleted
genes in 1000 Genomes samples (CFC1, DEAF1, GHR, HYAL1, and SCN11A). There were no
overlaps with the 146 genes associated with a patient diagnosis.

In our comparison between 1000 Genomes dispensable genes and other clinical studies, we
found very few shared genes. Of the five homozygous gene deletions identified in Boone et
al. 2013192, only one (LEPREL1) was also present in the 1000 Genomes dispensable genes.
Similarly, we only found 4 of 374 heterozygously deleted genes (1%) from Boone et al
2013102 in the dispensable genes list. For comparison with Dittwald et al. 2013103, we
selected the 232 disease-genes that overlapped directly-oriented paralogous low-copy
repeats (DP-LCRs). Of these 232 genes, 5 (2%) overlap with dispensable genes from 1000
Genomes including CFHR1, CFHR3, FCGR3B, GYPB, and SNRPN. For comparison with Coe et
al. 2014104, we selected all gene deletions with Signature deletion p-value < 0.01 using the
"Newest RefSeq Name" identifier for each gene. Between the 1,945 Signature deletions and
dispensable genes from 1000 Genomes, there were 12 shared genes (0.6%) including
ADNP2, ATAD3B, ATAD3C, HBA1, HSBP1L1, IRAK2, KCNG2, LPAL2, PQLC1, RBFA, TBC1DZ21,
and TXNL4A.

Overall, the result that dispensable genes in the 1,000 Genomes cohort are rarely found in
large disease cohorts is consistent with the notion that 1,000 Genomes samples represent
to a great extent unaffected (“normal”) individuals.

6.10. Evidence of Uniparental Disomy in 1000 Genomes Trio Families
Contributed by: Yu Kong and Adam Auton

Our SV callset includes a median number of homozygous deletions per individual of 557.
We searched for instances of uniparental disomy (UPD) to investigate these homozygosity
stretches (and additional stretches of homozygosity that may have escaped our SV calling
strategy) in further detail. Specifically, to detect instances of UPD, we used SNP microarray
data for trios generated on the OMNI and Affy platforms. In total, 407 trios were genotyped
on the OMNI platform, 631 were genotyped on the Affy platform, with 404 trios having
been genotyped on both. This data can be found on the 1000 Genomes FTP site in the
following location: /voll/ftp/release/20130502 /supporting/hd_genotype_chip/

Using this data, we first identified all Mendelian errors within each trio. The median trio
has 701 Mendelian errors on the OMNI platform (IQR: 332), and 616 on the Affy platform
(IQR: 571). In the presence of UPD, we would expect to observe large numbers of
Mendelian errors consistent with over transmission of alleles from one parent or the other.
We therefore extracted errors consistent with UPD, and found the median trio to have 529
(robust ¢ = 248) and 418 (robust ¢ = 259) such errors on the OMNI and Affy platforms
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respectively. We extracted 21 unique trios with more than 1,000 UPD-consistent
Mendelian errors on one array or the other (Table ).

Affy Oomni
Trio Total Mendel Errors MaFernaI uPD- Pat.ernal UPD- Total Mendel Errors Ma?ernal UPD- Pat.ernal UPD- Region of clustered UPD events UPD derived
consistent errors consistent errors consistent errors consistent errors from parent

HG01243_HG01241_HG01242 2225 726 358 1195 428 616 None

HG01891_HG01890_HG01889 957 456 39 1176 455 588 None

HG02222_HG02221_HG02220 700 208 427 1379 319 958 chr4 : 4.9Mb - 8.6Mb Father
HG02492_HG02490_HG02491 13177 520 527 None

HG02650_HG02648_HG02649 2789 1395 171 chré : 8.2Mb - 32.3Mb Mother
HG02677_HG02675_HG02676 7431 591 573 None

HG02776_HG02774_HG02775 6035 4295 238 chri2:43.1Mb - 134Mb Mother
HG02871_HG02869_HG02870 1521 788 382 None

HG03098_HG03096_HG03097 1156 583 540 None

HG03110_HG03109_HG03108 1847 530 486 None

HG03161_HG03160_HG03159 1708 732 440 None

HG03269_HG03268_HG03267 1189 469 534 None

HG03374_HG03373_HG03372 8170 519 483 None

HG03453_HG03451_HG03452 1147 587 515 None

NA12329_NA06984_NA06989 1019 590 101 2544 1407 266 chr18: 67.0Mb - 78.0Mb Mother
NA12865_NA12874_NA12875 1081 610 110 2049 1131 135 chrl: 238Mb - 249Mb Mother
NA18497_NA18498_NA18499 1127 571 456 1315 680 440 chrl:22.3Mb - 28.5Mb Mother
NA18518_NA18519_NA18520 1197 425 724 1293 453 649 chrll: 0Mb - 27.8Mb (Affy Only) Father
NA19208_NA19207_NA19206 1282 384 789 1240 365 536 chr9 (Affy Only) Father
NA19742_NA19741_NA19740 94991 42333 118 170397 74398 205 Whole Genome Mother
NA19918 NA19916_NA19917 1189 369 716 1521 410 989 chrl7 : OMb - 8.3Mb Father

Table 6.10.1: Trios with > 1000 UPD-consistent Mendel errors.

We visually inspected these 21 trios for clusters of UPD-consistent errors along the genome.
Of the 21, 11 showed no clear evidence of clustering of UPD transmission events within
localized regions of the genome. A further two trios showed potential UPD events, but only
on the Affy array, potentially indicative of cell-line artifacts. Finally, one trio showed
evidence of maternal UPD across the whole genome, potentially indicative of a sample mix-
up, or other artifact.

The remaining 7 trios contained localized regions with clusters of UPD transmissions from
one parent or the other. These regions averaged 22.1Mb in size, ranging from 3.7Mb to
90.9Mb. Only 1 in 240 (0.5%) of genes in our homozygous gene deletion knockout list
coincided with these seven potential UPD stretches. Furthermore, there was no evidence of
preferential UPD from one parent or the other, with 5 UPD events transmitted from the
mother, and 2 from the father.

Given the sample size of 634 trios, we estimate the rate of UPD to be of the order of 1%.
This is considerably higher than the estimates of ~0.02% presented in the literaturel0s.
And while our resolution for mapping these events is higher compared to cytogenetics
studies, we note that our estimate is likely an overestimate of the true incidence of UPD for
a couple of reasons. First, the DNA from our study is derived from cell lines, which may
contain somatic genomic alterations that have occurred since transformation. Indeed, we
note that 4 of the 10 samples containing evidence of putative UPD regions are derived from
the CEU and YRI populations, which represent the oldest cell lines within the 1,000
Genomes Project collection, and that two of the putative UPD regions are only detected
using one microarray platform. Second, all but one of our detected UPD regions are less
than 25Mb in size, and do not cover whole chromosomes as might be expected under many
UPD casual mechanisms1%. As such, many of our detected regions may be the result of
localized somatic genome alterations leading to mis-identification of UPD.
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6.11.Long Regions of Homozygosity 1000 Genomes Individuals
Contributed by: Adam Auton, John Huddleston, Peter Sudmant

Runs of homozygosity (i.e., extended stretches of a genome without of heterozygous
variants) occur within an individual when both homologous chromosomes share a recent
common ancestor. To quantify the expected levels of homozygosity in the 1,000 Genomes
samples, we applied a HMM procedurel®” to identify long runs of homozygosity (LROH)
within the 1000 Genomes samples. Using the Phase 3 callset, we identified LROH across the
autosomes for each individual using VCFtools version 0.1.1368 with the following
command:

vcftools --gzvcf
ALL.chrXXX.phase3_shapeit2_mvncall_integrated_v4.20130502.genotypes.vcf.gz --LROH --
chr XXX --keep population_file.txt

where XXX represents the chromosome number, and population_file.txt represents a file
that lists all of the individuals within a given population. The locations of the identified
LROH were converted from physical distances to genetic distances using the sex-averaged
map from Campbell et al. 198, and LROH less than were 1cM discarded.

On average, samples within the 1000 Genomes contain 23.0 cM of sequence within LROHs,
and representing approximately 0.7% of the genome (median: 8.8 cM; standard deviation:
46.7 cM). However, there is considerable variation between individuals, with 109
individuals (~4%) having no LROH longer than 1 cM, and 25 individuals (~1%) having
more than 250 cM of their genome contained within LROHs. In addition, the extent of LROH
varies between populations, with the lowest levels of LROH found within the ASW and ACB
samples (median: 2.1 cM and 3.4 cM respectively), and the highest within the STU and PJL
samples (median: 41.7 cM and 29.7 cM respectively).

We additionally searched for individuals harboring long autozygos tracts, homozygous
stretches of 5 Mbp or greater!%9. We identified 447 individuals harboring at least a single
autozygos tract. Particularly large amounts of autozyosity were observed in PJL, STU, ITU
and CLM populations.

Furthermore, we searched for an association of LROH with complex SVs. Of the 447
samples with a LROH >=5 Mbp, 33 (7%) had a complex SV that mapped within the LROH.
This proportion is less than expected compared to a mean of 115 samples from a null
distribution created by counting samples with shared complex SVs in randomly placed
LROH regions >=5 Mbp (empirical p < 0.00001 after 100,000 iterations). Thus, compared to
previously presented data from clinical samples (Carvalho et al.119) our data shows that an
association between complex SVs and large homozygous regions is uncommon in healthy
SV carriers.
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