

SUPPLEMENTARY INFORMATION

In format as provided by the authors

Transplanting neural progenitor cells to restore connectivity after spinal cord injury

Itzhak Fischer, Jennifer N. Dulin and Michael A. Lane

https://doi.org/10.1038/s41583-020-0314-2

Supplementary Table 1. Clinical trials transplanting NPCs for repair after spinal cord injury.

Table summarizes key clinical trials that transplanted NPCs and related cells with a goal of repair after human spinal cord injury, with references to the ClinicalTrial registry. Note that there is not presently a standard approved primary outcome measure for clinical trials in spinal cord injury, although there are several peer-reviewed guidelines ^{224,236,240,241}.

Company/ Institution	Intervention	Inclusion Criteria	Treatment Time	Phase of Study	Outcomes	Duration	Patients treated	Trial Identifier and Clinical Ref.
University of Florida (USA)	Developing Spinal Cord Tissue (6-9 weeks)	>18yrs Post- traumatic syringomyelia, ASIA A-D 7 Thoracic, 1 Cervical	Chronic: ~11-30yrs	Pilot Safety Study	Safety, Graft survival, Motor and Sensory Testing	1997 - 2000	8	1,2
Yonsei University (Korea)	Human neural stem/progenitor cells – telencephalon derived (13wk gestation) "hNSPCs"	16-60yrs AIS A-B Cervical	Acute to Chronic: <1wk to >6 months	Phase I/IIa Non- randomized, Open label	Graft survival, ISNCSCI exam, SSEP, MEP	2005 - 2008	19	NCT0000879 3
Geron (USA)	Oligodendrocyte Precursors "GRNOPC1"	18-65yrs ASIA A-B Thoracic (T3-T11)	Acute: 7-14 days	Phase I Non- randomized, Open label	Safety	2010 - 2011	5	NCT01217008 4-7
StemCells Inc	Human brain derived neural	18-60yrs ASIA A-C	>12 weeks	Phase I/II Single blind	Safety, Graft survival,	2011 - 2015	12	NCT01321333 Follow-up

"Pathway" (USA)	stem cells "HuCNS-SC"	Thoracic (T2-T12)		Randomized	ISNCSCI exam			studies: NCT01725880 NCT03069404 8,9
		18-60yrs ASIA B-C Cervical		Phase II Single, Randomized	Safety, Graft survival, ISNCSCI exam	2014 - 2016	31	NCT02163876
NeuralStem [now Seneca Biopharma] (USA)	Human fetal spinal cord derived neural stem cells: NSI-566RSC "NeuroCells"	18-65yrs AIS A Thoracic (T2-T12) & Cervical (C5-C7)	Chronic: 1-2 years	Phase I Open label	Safety, Graft Survival, ISNCSCI exam, Bowel function, Bladder function	2014 - Active	Estimated 8	NCT01772810
Asterias [then BioTime, now Lineage Cell Therapeutics] "SCiStar" (USA)	Oligodendrocyte Precursors "AST-OPC1" (continued from Geron)	18-69yrs ASIA A-B Cervical (C5-C7)	Sub- acute: 14-42 days	Phase I/IIa Open label	Safety, Graft survival, ISNCSCI exam	2015 - 2017	25	NCT02302157
NeuroRegen Scaffold (China)	Scaffold™ Combined With Mesenchymal Stem Cells or Neural Stem Cells	18-65yrs ASIA A cervical and thoracic (C5- T12).	Chronic	Phase I/II	Improvements in ASIA, SSEP, MEP	2016- 2020	30	NCT02688049

Novagenesis Foundation (Russia)	Autologous Neural Stem Cells with 3D matrix	18-50yrs ASIA A Cervical, thoracic, lumbar	Acute, subacute, chronic	Phase I	Safety	2014- 2018	30	NCT02326662
---------------------------------------	--	--	--------------------------------	---------	--------	---------------	----	-------------

References:

- Thompson, F. J. *et al.* Neurophysiological assessment of the feasibility and safety of neural tissue transplantation in patients with syringomyelia. *J Neurotrauma* **18**, 931-945, doi:10.1089/089771501750451848 (2001).
- Wirth, E. D., 3rd *et al.* Feasibility and safety of neural tissue transplantation in patients with syringomyelia. *J Neurotrauma* **18**, 911-929, doi:10.1089/089771501750451839 (2001).
- Shin, J. C. *et al.* Clinical Trial of Human Fetal Brain-Derived Neural Stem/Progenitor Cell Transplantation in Patients with Traumatic Cervical Spinal Cord Injury. *Neural Plast* **2015**, 630932, doi:10.1155/2015/630932 (2015).
- Chapman, A. R. & Scala, C. C. Evaluating the first-in-human clinical trial of a human embryonic stem cell-based therapy. *Kennedy Inst Ethics J* **22**, 243-261, doi:10.1353/ken.2012.0013 (2012).
- Bretzner, F., Gilbert, F., Baylis, F. & Brownstone, R. M. Target populations for first-in-human embryonic stem cell research in spinal cord injury. *Cell Stem Cell* **8**, 468-475, doi:10.1016/j.stem.2011.04.012 (2011).
- Wirth, E., 3rd, Lebkowski, J. S. & Lebacqz, K. Response to Frederic Bretzner et al. "Target populations for first-in-human embryonic stem cell research in spinal cord injury". *Cell Stem Cell* **8**, 476-478, doi:10.1016/j.stem.2011.04.008 (2011).
- Strauss, S. Geron trial resumes, but standards for stem cell trials remain elusive. *Nat Biotechnol* **28**, 989-990, doi:10.1038/nbt1010-989 (2010).
- Levi, A. D. *et al.* Emerging Safety of Intramedullary Transplantation of Human Neural Stem Cells in Chronic Cervical and Thoracic Spinal Cord Injury. *Neurosurgery* **82**, 562-575, doi:10.1093/neuros/nyx250 (2018).
- Anderson, A. J., Piltti, K. M., Hooshmand, M. J., Nishi, R. A. & Cummings, B. J. Preclinical Efficacy Failure of Human CNS-Derived Stem Cells for Use in the Pathway Study of Cervical Spinal Cord Injury. *Stem Cell Reports* **8**, 249-263, doi:10.1016/j.stemcr.2016.12.018 (2017).