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Figure I. Illustration of pre-processing LGE image to match with the T1-map pixel to 

pixel. In this example, the LGE image (B) (raw pixel spacing of 1.41mm) was interpolated to 

have matching pixel spacing (1.15mm), and transformed to have matching Image Position 

and Image Orientation with T1-map (A) based on the Dicom metadata. The resulting image 

(C) has the same size, pixel spacing, position and orientation with T1-map – therefore, a 

pixel-to-pixel match in the myocardium.  
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Figure II. LGE examples and their desired quality categories. Assessors were blinded to 

whether an image was VNE or LGE. (A-E) Five quality categories. (F) An example 

demonstrating the use of refined quality scoring. In the interface, human observers were 

allowed to register intermediate scores recorded on the scale of 0-100, e.g. ‘36’ in this example. 

The motivation of this design was that categorical scales are typically more intuitive for human 

operators, whilst finer numerical scales are more suitable for statistical analyses. 
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Figure III. T1-maps (n=10) in test materials that were excluded before VNE and LGE 

quality assessment. Severe artefacts are present in all these T1-maps, preventing any 

interpretation; therefore, these cases were manually excluded from subsequent analysis; see 

note 1 in Figure 2. 

 

 

Figure IV. Image slices (n=4) in test materials that were retrospectively excluded in the 

analysis stage. These images were manually rejected by consensus of two experienced 

clinical operators comparing VNE and LGE, because of (A-C) large difference in slice locations 

between VNE and LGE, and (D) coil errors affecting the LGE image, as identified during the 

lesion assessment; see note 2 in Figure 2. 
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Figure V. Association between image quality and LGE-VNE agreement in quantifying 

lesion fractions, using threshold setting from Figure 5E as an example. The absolute 

difference between LGE and VNE quantification reduces with better image quality (p=0.006). 
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Table I. Lesion burden volume fractions by VNE and LGE in 121 test patients. Lesion regions are calculated using the same thresholding 

methods FWHM, FWQM, FWEM (i.e., thresholding at 50th, 25th, 12.5th percentiles reflecting hyper-intensity lesions to intermediate-intensity subtle 

changes) for VNE and LGE, and also adjusted thresholding at 35th, 20th, 10th percentiles for VNE. 

Modalities LGE VNE Threshold-adjusted VNE 

Quantification methods  

(threshold values in percentile) 

FWHM 

(50th) 

FWQM 

(25th) 

FWEM 

(12.5th) 

FWHM 

(50th) 

FWQM 

(25th) 

FWEM 

(12.5th) 

Threshold 

(35th) 

Threshold 

(20th) 

Threshold 

(10th) 

Average lesion amount (% of LV) 9.8% 26.1% 44.4% 4.6% 17.7% 38.0% 9.9% 24.1% 43.9% 

Lesion amount <5% of LV (n) 59 11 0 86 13 0 48 2 0 

Lesion amount 5-10% of LV (n) 20 12 0 17 25 2 25 12 0 

Lesion amount 10-15% of LV (n) 12 18 5 10 22 2 22 18 2 

Lesion amount >15% of LV (n) 30 80 116 8 61 117 26 89 119 

 



Supplements for: Zhang et al, Gadolinium-free CMR Virtual Native Enhancement 

Page 6 of 11 

Supplemental Expanded Method 

This supplemental material provides the deep learning method details for reproducibility of the 

technology. The virtual native enhancement (VNE) image generator was constructed based 

on multiple streams of U-nets [24], and trained it using the conditional generative adversarial 

network (cGAN) [25] strategy. 

VNE generator 

U-Net is a popular generative convolutional neural network (CNN) architecture that translates 

an input image into corresponding output masks or images. The VNE generator consists of 

three streams of 14-layer U-net blocks (Figure VI). Two streams utilize magnitude cine and 

inversion recovery images, with the third stream processing the T1-map. The final 

convolutional layer of these U-Nets is removed, such that they output feature maps from the 

second last layer. All feature maps are concatenated and passed onto a further 6-layer U-net 

block (Figure VII) to fuse the information and produce a VNE image. 

 

Figure VI. Configuration of the convolutional stream. The convolutional stream is used to 

extract feature maps from a native modality, in this example, T1-mapping. BN = batch 

normalization. Dropout rate was set as 0.2. 
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Figure VII. Configuration of the CNN fusion block. The fusion block combines feature maps 

of multi-modalities and derive VNE images. 

 

VNE generator training using cGAN 

CGAN consists of two “adversarial” models: a generative model G and a discriminative model 

D. In this application, G is the VNE generator that produces the VNE images which resembles 

LGE, and D is a classification neural network (Figure II) that distinguishes between VNE and 

LGE images. G and D are trained simultaneously. 

Objective 

G and D are trained by optimizing the value of an objective function (Figure ). Suppose there 

is a native CMR input 𝑥  which is processed by G to produce the VNE image 𝐺(𝑥)  that 

resemble the LGE image 𝑦. In this application, the objective for cGAN optimization can be 

expressed as an adversarial minimax game: 

min
𝐺

max
𝐷

 (𝜆1‖𝑦 − 𝐺(𝑥)‖1 + 𝜆2‖𝑉𝐺𝐺(𝑦) − 𝑉𝐺𝐺(𝐺(𝑥))‖1 + log (1 − 𝐷(𝐺(𝑥))) + log 𝐷(𝑦)), 

where G is optimized to minimize the objective function, while D is optimized to maximize the 

objective function. The first term is an L1 loss that encourages the generator G to produce 

𝐺(𝑥) that matches 𝑦 pixel by pixel. Rather than exact replication of real LGE signal intensities, 

this VNE application focuses on enhancing the native CMR signals and translating the native 

images into the presentation of LGE. To account for this the second term is a perceptual loss 

[49] which calculates differences between high-level image feature representations of 𝐺(𝑥) 

and 𝑦 . The features, denoted by 𝑉𝐺𝐺(𝐺(𝑥))  and 𝑉𝐺𝐺(𝑦) , are generated from the last 

convolutional layer of a 16-layer VGG network pre-trained on ImageNet [50]. In the third and 

fourth terms, 𝐺(𝑥) and 𝑦 are input to the discriminator D which produces the “realness” labels 
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𝐷(𝑦)  and 𝐷(𝐺(𝑥))  as 1: “real” LGE or 0: “virtual” LGE. The objective of training D is to 

distinguish between real and virtual LGE images, i.e., to maximize the last two terms. 

Simultaneously, G is encouraged to produce VNE that cannot be distinguished from real LGE 

appearance by the discriminator D, i.e., to minimize the third term. The weighting parameters 

𝜆1 and 𝜆2 are used to balance the magnitude of terms. In this application, a much lower 𝜆1 =

20 and higher 𝜆2 = 200 were set in order to enforce matching in perceptual features rather 

than pixel values. The strategy results in a trained generator that translates the existing native 

CMR signals into LGE image appearance. 

 

To account for the inevitable position differences between native modalities and LGE used in 

training, additional modification was added to the first L1 loss term, to shift the LGE image 

locally and search for the best match: 

min
𝑖,𝑗

‖𝑦𝑖,𝑗  − 𝐺(𝑥)‖
1

, 

where 𝑖, 𝑗 ∈ {−10, −9 … , 10} denote the shift in pixels horizontally and vertically.  

Optimization 

To improve the robustness of the model, on-the-fly augmentation was employed on the 

training dataset, introducing uniformly distributed random rotation within ±5 degrees and 

translation within ±2 pixels around the manually annotated center of the LV cavity. The 

specifications of training CNN were: input size=128x128, batch size=1, learning rate=0.0002; 

Adam [51] was used as the optimizer. The networks were implemented in TensorFlow [52] 

and trained using an NVIDIA TITAN XP GPU, for 400 epochs, taking approximately 25 hours. 

Once trained, generating the test VNE images (n=349) takes 16.7 seconds on the GPU (0.05 

seconds per image), or 43.5 seconds (0.13 seconds per image) on a 3.80GHz Intel Core i5 

CPU. 
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Figure VIII. Configuration of the discriminator. The neural network discriminator is used in 

the conditional Generative Adversarial Network training approach. 

 

 

Figure IX. VNE neural network training using a conditional Generative Adversarial 

Network (cGAN) approach. IRW = inversion recovery-weighted images. VGG = VGG Neural 

Network. 
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Supplemental Content: HCMR investigators 

(In alphabetical order) 

Theodore Abraham, MD, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, 
Baltimore, MD;  

Lisa Anderson, MD, St George’s University Hospitals NHS Trust, London, United Kingdom;  

Florian Andre, MD, Department of Medicine, Heidelberg University, Heidelberg, Germany; 

Evan Appelbaum, MD, Departments of Medicine, Cardiovascular Division & Radiology, Beth Israel 
Deaconess Medical Center, Harvard Medical School, Boston, MA;  

Camillo Autore, MD, Division of Cardiology, Department of Clinical & Molecular Medicine, St. Andrea 
Hospital, Sapienza University, Rome, Italy;  

Colin Berry, MD, British Heart Foundation Glasgow Cardiovascular Research Center, Institute of 
Cardiovascular & Medical Sciences, University of Glasgow, UK;  

Elena Biagini, MD, Cardio-Thoraco-Vascular Department, University Hospital of Bologna, Policlinico S. 
Orsola-Malpighi, Bologna, Italy;  

William Bradlow, MD, Department of Cardiology, New Queen Elizabeth Hospital Birmingham, UK;  

Chiara Bucciarelli-Ducci, MD, Bristol Heart Institute, Bristol National Institute of Health Research (NIHR) 
Biomedical Research Center, University Hospitals Bristol NHS Trust & University of Bristol, UK;  

Amedeo Chiribiri, MD, PhD, Cardiovascular Division, Kings College London British Heart Foundation 
Center of Excellence, The Rayne Institute, St. Thomas Hospital Campus, London, UK;  

Lubna Choudhury, MD, Division of Cardiology, Department of Medicine, Bluhm Cardiovascular Institute, 
Northwestern University Feinberg School of Medicine, Chicago, IL;  

Andrew Crean, MD, Division of Cardiology, Peter Munk Cardiac Center, University Health Network, 
University of Toronto, Ontario, Canada;  

Dana Dawson, MD, Aberdeen Cardiovascular & Diabetes Center, University of Aberdeen, UK;  

Milind Y. Desai, MD, Department of Cardiovascular Medicine, Center for Radiation Heart Disease, Heart 
& Vascular Institute, Cleveland Clinic, Cleveland, OH;  

Patrice Desvigne-Nickens MD, National Heart, Lung, and Blood Institute; 

John DiMarco MD, PhD, University of Virginia Health System; 

Eleanor Elstein, MD, Division of Cardiology, Department of Medicine, Royal Victoria Hospital, McGill 
University Health Center, Montreal, Quebec, Canada;  

Andrew Flett, MD, Department of Cardiology, University Hospital Southampton NHS Foundation Trust, 
Southampton, UK;  

Nancy Geller PhD, National Heart, Lung, and Blood Institute; 

Stephen Heitner, MD, Oregon Health & Sciences University (OHSU), Division of Cardiovascular 
Medicine, Knight Cardiovascular Institute, Portland, OR;  

Adam Helms, MD, Department of Internal Medicine, University of Michigan, Ann Arbor, MI;  

Carolyn Ho, MD, Cardiovascular Division, Brigham and Womens Hospital, Boston, MA;  
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Daniel L. Jacoby, MD, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale 
School of Medicine, New Haven, CT;  

Han Kim, MD, Duke Cardiovascular Magnetic Resonance Center & Division of Cardiology, Duke 
University Medical Center, Durham, NC;  

Bette Kim, MD, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York City, NY; 

Dong-Yun Kim PhD, National Heart, Lung, and Blood Institute; 

Eric Larose, MD, Quebec Heart & Lung Institute, Laval University, Quebec, Canada;  

Masliza Mahmod, MD, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, 
University of Oxford, UK;  

Heiko Mahrholdt, MD, Department of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany;  

Martin Maron, MD, Hypertrophic Cardiomyopathy Center & Research Institute, Tufts Medical Center, 
Boston, MA;  

Gerry McCann, MD, Department of Cardiovascular Sciences, University of Leicester, UK;  

Michelle Michaels, MD, Erasmus University, Rotterdam, the Netherlands;  

Saidi Mohiddin, MD, Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit, St 
Bartholomew’s Hospital, London, UK;  

Sherif Nagueh, MD, Methodist DeBakey Heart & Vascular Center, Houston, TX;  

David Newby, MD, Center for Cardiovascular Science, University of Edinburgh, UK;  

Iacopo Olivotto, MD, Cardiomyopathy Unit & Genetic Unit, Careggi University Hospital, Florence, Italy;  

Anjali Owens, MD, Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, 
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA;  

F. Pierre-Mongeon, MD, Montréal Heart Institute, Canada;  

Sanjay Prasad, MD, National Heart & Lung Institute, Imperial College London & Royal Brompton 
Hospital, London, UK;  

Ornella Rimoldi, MD, Vita Salute University & San Raffaele Hospital, Milan, Italy;  

Jeanette Schulz-Menger, MD, Charité, Medical Faculty of the Humboldt University, Experimental & 
Clinical Research Center and Helios Clinics, Cardiology, Berlin, Germany;  

Mark Sherrid, MD, Hypertrophic Cardiomyopathy Program, Leon Charney Division of Cardiology, 
Department of Medicine, New York University School of Medicine, New York, NY;  

Sven Plein, MD, PhD, Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular 
and Metabolic Medicine, University of Leeds, UK; 

Albert van Rossum, MD, Department of Cardiology, Amsterdam UMC, HZ Amsterdam, the Netherlands;  

Jonathan Weinsaft, MD, Departments of Medicine & Radiology, Weill Cornell Medical College, New 
York, NY;  

James White, MD, Calgary Foothills Medical Center, University of Calgary, Alberta, Canada;  

Eric Williamson, MD, Department of Radiology, Mayo Clinic, Rochester, MN. 

 


