
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

At the focus of this paper are 1d quantum 

many-body systems, when the Hamiltonian 

takes the form of a translation invariant 

sum of local operators and the initial 

condition takes the form of a particularly 

simple product state. 

At the heart of the paper is the question 

whether the long-time average of a given 

observable is contained within some given 

(possibly small) interval or not. 

The main result is to show by way of 

specific examples that this question 

is undecidable in general. 

 

The main problem of the paper seem to me 

that the main result only applies to the 

thermodynamic limit, that is, to infinitely 

large systems: 

 

1. Every real system in nature and on the 

computer is finite. The present result 

has no implications for any such system! 

 

2. The thermodynamic limit is essentially meant 

to be a purely theoretical "trick" in order 

to make ones life easier. If it turns 

out to actually make life more complicated, 

as the present work indicates, one 

simply should let it be. 

 

3. It seems to me quite reasonable to expect that 

solving an infinitely large system by means 

of a computer cannot be done with finite 

resources. Maybe this is too naive, nevertheless 

when looking at the present paper from this 

viewpoint, there remains a suspicion that 

things may be in some sense quite obvious. 

 

4. As a physicist, it would appear to me more 

interesting to understand what is going on 

physically rather than in terms of statements regarding 

Turing machines: Apparently, upon increasing the 

systems size, the relaxation process becomes 

slower and slower. For every finite system, 

the long-time average is computable, but apparently 

the problem is that certain limits do not commute 

here. But how exactly does it happen that one 

knows the answer to the considered problem 

for any finite system size but cannot extrapolate 

from this information what happens in the 

limit of infinitely large systems? 

By the way, there are other systems which may behave 

similarly, for instance (classical) glasses. So, 

maybe also for glasses the thermalization problem is 

undecidable in the sense of the present paper? 



 

In conclusion, this paper appears to me quite provocative 

and of high originality. However, its importance seems 

quite a bit oversold. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In the recent years, many important physical properties have been shown to be algorithmically 

undecidable: there is no algorithm that, no matter how long it runs, can always decide whether a 

given property is present in the system. The present manuscript focuses on the problem of 

whether thermalization in quantum spin systems is an undecidable property. 

 

Most (if not all) of the undecidability results are based on embedding the Halting problem for 

Turing machines into the physical model considered, in such a way that yes/no instances of the 

Halting problem correspond to yes/no instances of the property considered. In this work, the 

authors construct a nearest neighbor spin chain Hamiltonian and a family of initial states, which 

encodes the input to a Universal Turing Machine (UTM), and show that the expectation value of a 

certain observable converges to zero or to a positive (computable) value depending on whether 

the UTM halts on that particular input. 

 

I believe that the problem of understanding which features of physical systems are undecidable is 

very interesting, some aspect of the current manuscript make me doubt of the impact of the work 

presented. Specifically, these are some issues I would like the authors to address: 

 

* The definition of thermalization 

In order to say that "thermalization is undecidable", one has to make a precise statement about 

what exactly is the decision problem considered. While the authors claim that they give a precise 

statement of this result, I am not satisfied by the statement in the Theorem on page 2 (main 

article). 

 

What are the inputs to the decision problem exactly? In other words, is thermalization a property 

of the Hamiltonian alone, or of the triple Hamiltonian/input state/observable? From what I 

understand, the authors can show undecidability if one uses the latter definition. In fact, what 

would happen if there exists a different pair input state/observable for which one can easily show 

that the system does *not* thermalize? Could not one then claim already that the system does not 

thermalize? 

 

If it is indeed the case that the authors consider "thermalization" a property not of the 

Hamiltonian, but of the triple Hamiltonian/input state/observable (which is the only one that fits 

their results), then this should be mentioned more explicitly in the paper, and most probably 

reflected in the abstract itself. This would seem to be a quite weak notion of thermalization. 

 

* The definition of STA and HTA. 

The authors do make a more formal definition of two decision problems in the supplementary 

material, with the definitions of the problems STA and HTA. 

In these definition, what is the role of H in STA and ρ in HTA? Are they some sort of "parameters" 

of the problem, or are they actually inputs to the decision problem? Again, this is important since 

by reading the definition, one could deduce that the undecidability result holds for any choice of 

these parameters (up to some restriction such as large enough local Hilbert space dimension), but 

the authors only show undecidability of the two problems for a single specific choice of H and ρ 

(respectively). 

 

* The relationship of STA and HTA with the problem of thermalization 

The Lemma of the main text and Lemma 1 (supp. mat.) claims that it is undecidable whether the 

long-term average of A<sub>L</sub> concentrates near zero or near the expectation value of A 

under the state e<sub>2</sub>. In order to connect this to the problem of thermalization of the 

triple Hamiltonian/input state/observable, one has to connect the long-term average value of 



A<sub>L</sub> to its thermal average: this seems to me a crucial step, but it is only very briefly 

brushed upon in the main text ("it can be easily realized" the authors claim in the second 

paragraph of page 2, without further explanation), and 

only briefly mentioned in section 10.4 (supp. mat.). I find it unusual that such a crucial point is 

relegated to a small paragraph at the end of the supplementary material. I suggests the authors 

expand on this in the main text (referring to the appropriate section of the supplementary material 

if needed). 

 

My issue with this connection is that I do not see clearly why the thermal average of the 

observable could not also be by itself uncomputable. In that case, while one cannot decide 

whether these two quantities are close to zero or strictly positive, one might be able to decide 

whether their difference is close to zero or not. 

 

In section 10.4 (supp. mat.) it is claimed essentially that one can arbitrarily change the thermal 

average of the observable without changing its long-term average. First of all, this does not seem 

to fix the issue of what to do in the case that the thermal average itself is uncomputable (as the 

change one would need to make is itself uncomputable, the modified observable would become 

uncomputable). Secondarily, if one can arbitrarily change the thermal average of the observable to 

any desired value, in what sense is the result about thermalization of the same observable? One 

would believe that there would be physical reasons (whose presence might be as well 

uncomputable) for which these two quantities coincide, but here we have complete freedom over 

one of them, and indeed the authors claim that the same observable can be modified to either 

thermalize or not thermalize. This seems to support my impression that the result is actually 

weakly connected with thermalization. 

 

On top of the above points, I have some comments about the presentation of the paper which I 

think should be addressed, as they make the paper less readable and in some points a bit obscure. 

 

* Lemma 1 in supplementary material: 

There are a few issues I have found in the statement of this Lemma, and since it is the main result 

of the manuscript I think there should not be the smallest ambiguity about its content: 

- The set V<sub>A,η</sub> is mentioned in Lemma 1 but never actually defined anywhere later 

in the proof or in the rest of the supplementary material. 

- "V<sub>A,η</sub> is large enough to encode all the bit strings" what does this sentence mean? 

Does it mean V<sub>A,η</sub> is infinite and at least countable? 

 

* Large L limit: 

I think the authors should be a bit more explicit in how precisely is the thermodynamic limit (large 

L limit) taken. Let me explain what I mean. 

 

In the main text, the authors say they consider a spin chain of length L, and then take the limit for 

L to infinity. They then define a sequence of states, for each value of L, such that the first 

component (e_0) is different from the rest (e_1) (eq. 1 in main text and eq. 7 in the 

supplementary material). Usually, when considering the thermodynamic limit of a finite spin chain 

on an interval, both sides of the interval are sent to infinity (i.e., in the limit the locations of the 

spin are indexed by integers Z). In this case, the resulting state would be equal to an infinite 

product of e<sub>1</sub>, since the state e<sub>0</sub> has been "pushed to infinity" on the 

left. In other words, it would be impossible to find a state on the infinite chain such that its 

restrictions to finite chains satisfy eq. 7 (supp. material). 

 

This could be fixed by requiring that e<sub>0</sub> is not in the left-most position, but at the 

origin (the other alternative is to take a one-sided limit, obtaining a system defined only on an 

half-infinite chain, but I doubt this is preferable). I suspect that the periodic boundary conditions 

of the Hamiltonian would make the construction work in the same way as before, but I suggest 

that the authors check this. 

 

* Eq. 8 in main text / eq. 38 in supp. material 

This equation, present verbatim in both documents, seems to be missing the dependence of $\bar 

A$ from the initial state ψ (i.e. the coefficients c<sub>i</sub>): in fact, as it reads know, it 



implies that the long term average of any observable is independent of the initial state, which is 

clearly absurd. In fact, while this equation is referred to (for example, in section 8.3 and 9.3 of the 

supplementary material), it is not really used in this form but in its correct form. 

 

Even when corrected, I do not really understandρ why this (seemingly elementary) statement is 

considered to be so essential to be present in the main text. I suggest that the authors, after fixing 

the formula, either explain its importance in the main text or replace it with some more interesting 

detail about their methodology. 

 

 

* Eq. 2 in supp. material 

The text reads "χ is a characteristic function which takes 1 (resp. 0) if the statement inside the 

bracket is true (resp. false)", but in the equation χ takes a scalar as an argument. 

 

* The role of M<sub>G</sub> 

A Turing machine M<sub>G</sub> is introduced on page 9 (supp. mat.) but it is not explained 

what role it plays until page 11. I found it a bit confusing. Maybe the authors should mention what 

role M<sub>G</sub> is going to play in their overview of the proof in Section 5 (supp. mat.). 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Shiraishi and Matsumoto report a technical result that implies that the question of whether a 

certain class of one-dimensional quantum systems thermalizes is undecidable. I find the result 

intriguing, and I can well imagine that it may merit publication in Nature Communications. At the 

same time, the presentation and the level of precision of the writing is such that working through 

the paper is a painful experience, where I ran into so many instances of unclear statements that in 

some of the sections I gave up to even try to follow the argument in its full extent. Here comes a 

non-exhaustive list of some of the points: 

 

(1) In the theorem on page 2 the authors speak of a given(!) observable A, a given value A*, a 

given initial state \psi0, and a given Hamiltonian H. The statement of the theorem is that than one 

cannot decide whether thermalization occurs. In this generality, this appears wrong. I certainly can 

write down an example of (H,A,\psi0) for which thermalization CAN be proven. Shouldn't the 

proper statement of the theorem be something like "given (A,\psi0), there exist H for which 

thermalization is undecidable"? (And a similar version with the roles of \psi0 and H interchanged?) 

I'm confused! 

 

(2) A lemma, like a theorem, is meant to be an essentially self-contained statement of a result. 

The Lemma presented at the end of page 2 fails in this respect and is pretty much 

incomprehensible. Let me go through it sentence by sentence from the perspective of a reader. 

--"Set the dimension of the local Hilbert space d to be sufficiently large." I won't be able to do this, 

because I am given no instructions what "sufficiently large" is. Can this be avoided, as is done in 

many mathematical proofs, in the form "...then there exists a finite d0 such that for all local 

dimensions d>d0 the following holds true:"??? 

--"Given ... we fix a universal reversible Turing machine (URTM)." Reading this, I must assume 

that I can fix ANY universal reversible Turing machine that I like, because no specificities are 

given. This is of course not true. A very specific construction is used. To meet the standards of a 

lemma, this construction must be described in an equally rigorous way, which should maybe be 

stated as a separate Lemma, such that it can then be referenced. 

--Next the operators V_x are mentioned and x is called the input, but one has no chance to 

understand where this input comes from, nor how V_x depends on the input. Sure, I can find this 

out by working through the proofs, but this is not how it is supposed to work. This is frustrating to 

read and leaves one puzzled. 

(Minor remark: the exponent in Eq. (1) must be ^{\otimes(L-1)}, I presume?) 

Short summary: I consider the lemma entirely incomprehensible and hence useless. 

 

(3) Page 3, Classical machines: "TM3 is a simple TM, which flips the state of A-cells if and only if 



TM2 halts." This is mentioned just like this, only that A-cells haven't been introduced so far. This 

may be a minor example, but this is what makes this paper so frustrating to read. Congratulations 

to anyone who can follow the rest of the section, I can't. 

 

(4) Fig. 2 uses the symbols a_1, a_2, q_u,r, and \beta, none of which have been introduced. How 

is one supposed to understand the figure then? 

 

At this point, the confusing an imprecise presentation had discouraged me to an extent that I 

stopped working through the paper in full detail. I believe it is not the reader's job to decipher 

things, but the authors' job to explain them as precisely and lucidly as possible. This, in my 

opinion, Shiraishi and Matsumoto have not achieved to do. 

 

To summarize, I am still intrigued by the paper. I would love to see the paper written in a form 

such that it can be seriously considered for publication in Nature Communications. Unfortunately I 

can't recommend the present version to any reader. 

 

---------------------------- 

 

Here are a few additional minor remarks: 

 

(5) Page 1: "The ETH claims that all the energy eigenstates of a given Hamiltonian are thermal, 

that is, indistinguishable from the equilibrium state, as long as we observe macroscopic 

observables." 

 

(6) Fig. 1a: This illustration may give the incorrect impression that "equilibrium" is one kind of spin 

configuration (microstate) and "nonequilibrium" is some other kind of spin configuration, whereas 

these are in fact huge sets of microstates. 

 

(7) Fig. 1b: This illustration seems to suggest that, for equilibration to occur according to the 

definition of the paper, <A>(t) has to remain in a narrow interval around A*, which is not the 

case. In fact, the definition of equilibration via the long-time average allows for huge fluctuations 

of <A>(t). Presumably the axis label is just incorrect and should be the long-time average of 

<A>(t), not <A>(t) itself. 



Response to reviewers

Summary of changes

• We have explicitly stated the undecidability of thermalization as The-
orem 2. We have also added the proof idea and its full proof as the
section entitled From relaxation to thermalization to the main article
and Sec. 11 to the Supplementary material. We have added three fig-
ures, Figs.5, 6, and 7, for its explanation.

• We have explained the absence of a sufficiently large system size in
terms of the busy beaver function in the newly added section entitled
No sufficiently-large system size in the main article and Busy beaver
function in the method part. We have also described this point in
detail in Sec. 12 of the Supplementary material.

• To clarify the dependency and arbitrariness of several quantities and
parameters, we have drastically refined the description around Theorem
1 in the main article, and around Theorem 1a and 1b (Theorem 1 and
2 in the previous manuscript) in the Supplementary material.

• We have added a new section (Sec. 3) to the Supplementary material
which provides a brief review of theoretical computer science.

• For readability, we have changed the definition of the generalized URTM
denoted byMG such thatMG also contains TM1. Accordingly, we have
modified several description in Sec. 7 and removed the symbol M̃G from
Sec. 10 of the Supplementary material. In addition, we have modified
the meaning of gray regions in Fig. 3.

• To avoid confusion, we have replaced the input code for TM2 from x
to u.

• To avoid confusion, we have denoted the spatial average of A, 1
L

∑
iAi,

by calligraphic A.
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Response to Referee 1

Referee 1: The main problem of the paper seem to me that the main result
only applies to the thermodynamic limit, that is, to infinitely large systems:

1. Every real system in nature and on the computer is finite. The present
result has no implications for any such system!

2. The thermodynamic limit is essentially meant to be a purely theoretical
“trick” in order to make ones life easier. If it turns out to actually make life
more complicated, as the present work indicates, one simply should let it be.

Since the summary and these two comments concern the same problem,
we shall treat them together.

The first comment states that results with thermodynamic limit have no
implication for real systems in nature because real systems are finite, and
the second comment states that if a complicated result is obtained through
the thermodynamic limit, we should not consider it seriously. As far as we
see, these two criteria are not supported by standard theoretical physics. In
fact, various theoretical rigorous results in statistical mechanics and quan-
tum many-body systems are formulated in the thermodynamic limit. One
example is the phase transition in equilibrium statistical mechanics, which
is proven to occur only in the thermodynamic limit. Another example is the
spectral gap in quantum many-body systems: The presence or absence of the
spectral gap (gapful or gapless) can be defined only in the thermodynamic
limit. Both the phase transition and the spectral gap are important topics
in statistical mechanics and quantum many-body physics.

In addition, some results under the thermodynamic limit show highly
complicated phenomena which are worth investigating deeply. The replica
symmetry breaking is a complicated type of phase transition, which is one
of the central research topics in spin glass physics and information statistical
mechanics. We remark that the existence of the replica symmetry breaking
in our real three-dimensional world has not yet been shown, and the long-
standing debate has continued. Another example is the Haldane conjecture
stating qualitative differences between the spectral gap of half-odd-integer
spin chains and integer spin chains. This conjecture was first regarded as
strange and some physicists do not believe this conjecture, while it is now
considered as one of the most important and breakthrough findings in quan-
tum many-body physics. A more striking example is the presence or absence
of the spectral gap, which is proven to be undecidable (T. S. Cubitt, et al.,
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Nature 528, 207 (2015)). The undecidability of the spectral gap is formulated
in the thermodynamic limit and shows an unexpected complicated behavior,
while this result is considered to be an important result.

We also comment on the fact that most notions in theoretical computer
science, including computational complexity, computability, and the speed
of algorithms, are formulated in the large size limit. Since our research is
interdisciplinary between physics and theoretical computer science, the large
size limit is unavoidable.

On the basis of these facts, we conclude that our result does not decrease
its importance by the fact that our result is formulated in the thermodynamic
limit.

Referee 1: 3. It seems to me quite reasonable to expect that solving an
infinitely large system by means of a computer cannot be done with finite
resources. Maybe this is too naive, nevertheless when looking at the present
paper from this viewpoint, there remains a suspicion that things may be in
some sense quite obvious.

Maybe our previous presentation impresses our results understated. Our
claim is that any possible method cannot solve the problem of thermaliza-
tion, and we mentioned direct numerical simulation just as an intuitive and
familiar example which might be inefficient. We would like to clarify two
facts:

1. Various problems are solved by indirect approaches efficiently. In con-
trast to these cases, our result excludes the possibility that the problem
of thermalization is solved by any indirect approaches.

2. The problem of thermalization cannot be solved even with unlimited
computational resource.

We shall clarify the latter point in detail. If our computational resource is
large but finite, we cannot compute thermalization in some systems. How-
ever, even if our computational resource is unlimited (we can increase the
computational power arbitrarily), the problem of thermalization is still out
of reach.

In addition, direct numerical simulations usually compute the desired
value with a small error if we employ a sufficiently large system size and
sufficiently long running time. In the case of near-integrable systems, for ex-
ample, the Hamiltonian is written as H = Hint + εV with integrable Hamil-
tonian Hint and perturbation εV with a small parameter ε, and the necessary
system size and time are obtained by the small parameter ε. Thus, with the
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unlimited computational resource, we can compute near-integrable systems
for any ε > 0. In contrast, the constructed system showing the undecid-
ability of thermalization does not have a sufficiently large system size, and
thus even with the unlimited computational resource we cannot compute the
fate of thermalization. Therefore, we consider that these behaviors are not
obvious ones.

In the revised manuscript, we have added a new section entitled No
sufficiently-large system size to the main article and a new section (Sec. 12) to
the Supplementary material, both of which explain the absence of sufficiently
large system size, its background, and unsolvability even with unlimited com-
putational power.

Referee 1: 4. As a physicist, it would appear to me more interesting to
understand what is going on physically rather than in terms of statements
regarding Turing machines: Apparently, upon increasing the systems size,
the relaxation process becomes slower and slower. For every finite system,
the long-time average is computable, but apparently the problem is that
certain limits do not commute here. But how exactly does it happen that
one knows the answer to the considered problem for any finite system size
but cannot extrapolate from this information what happens in the limit of
infinitely large systems? By the way, there are other systems which may
behave similarly, for instance (classical) glasses. So, maybe also for glasses
the thermalization problem is undecidable in the sense of the present paper?

Since this comment covers various points, we shall answer them one by
one.

In the first sentence, Referee 1 states that they do not prefer statements
with Turing machines. I understand that physicists are not familiar with
theoretical computer science and Turing machines. However, our study con-
cerns the hardness of problems in physics, which is interdisciplinary research
between physics and theoretical computer science. In fact, physics does not
have good languages to state the hardness of problems, but theoretical com-
puter science indeed has. Therefore, the use of theoretical computer science
is unavoidable. Maybe the question of Referee 1 asks why we use a specific
form of a computation system, Turing machines. The reason is that Turing
machines can emulate any possible computation system such as C++ and
Python, which is declared in the Church-Turing thesis, and thus we can cover
all possible computations by just considering Turing machines.

We understand that some readers are not familiar with theoretical com-
puter science. For such readers, we have added a new section (Sec. 3) to the
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Supplementary material, which provides a brief review of theoretical com-
puter science.

From the second to fourth sentences, Referee 1 asks what actually hap-
pens in the constructed system. In each system, we observe one of “simple
thermalization phenomena (the observed value is indeed the long-time av-
erage in the thermodynamic limit)” or “extremely long plateau before ther-
malization (the observed value is in a prethermal plateau far from that in the
thermodynamic limit)”, both of which are not so strange at this point. What
is highly strange is that we cannot distinguish these two by using any tool.
Although we know the full Hamiltonian and we can use unlimited computa-
tional resources, we cannot exclude the possibility that the observed stable
value is in fact an extremely long prethermal plateau.

To clarify this, we have added the explanation on this point to Sec. 12 of
the Supplementary material.

In the last two sentences, Referee 1 comments on the similarity to glassy
systems. The connection between glassy dynamics and computational com-
plexity is frequently mentioned (e.g., M. Mezard and A. Montanari, Informa-
tion, Physics, and Computation. Oxford university press (2009)), and thus
this comment suggests a very fruitful direction. As far as we see, some sys-
tems of glasses always lack thermalization (i.e., the fate of thermalization is
decidable), while some marginal systems may leave the fate of thermalization
to computational consequences. Thus, although the constructed Hamiltoni-
ans have no disorder, they may be related to a subclass of glassy systems.
Since the problem of the connection between glassy systems and computa-
tional complexity is very deep and no one has a clear answer, we cannot
answer the question by Referee 1 at present. In the revised manuscript, we
have stated this research direction in the third paragraph of Discussion in
the main article.

Referee 1: In conclusion, this paper appears to me quite provocative and of
high originality.

We thank Referee 1 for finding our paper provocative and highly original.

Referee 1: However, its importance seems quite a bit oversold.

Honest to say, we tried but failed to grasp what point Referee 1 feels
as quite a bit oversold. As we have explained, formulation with the ther-
modynamic limit is a standard framework in theoretical physics, and thus
this point does not reduce the importance of our results. Referee 1 may feel
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that our paper impresses that further investigation of quantum thermaliza-
tion is meaningless or any finite-size numerical simulation is unreliable. We
fully agree that these impressions are highly overstating and our results do
not mean such devastating consequences. To avoid such impressions, we have
added a new sentence to the last paragraph of Discussion in the main article.
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Response to Referee 2

Referee 2: I believe that the problem of understanding which features of
physical systems are undecidable is very interesting, some aspect of the cur-
rent manuscript make me doubt of the impact of the work presented. Specif-
ically, these are some issues I would like the authors to address:

Referee 2: * The definition of thermalization
In order to say that “thermalization is undecidable”, one has to make

a precise statement about what exactly is the decision problem considered.
While the authors claim that they give a precise statement of this result, I
am not satisfied by the statement in the Theorem on page 2 (main article).

What are the inputs to the decision problem exactly? In other words, is
thermalization a property of the Hamiltonian alone, or of the triple Hamil-
tonian/input state/observable? From what I understand, the authors can
show undecidability if one uses the latter definition. In fact, what would
happen if there exists a different pair input state/observable for which one
can easily show that the system does *not* thermalize? Could not one then
claim already that the system does not thermalize?

If it is indeed the case that the authors consider “thermalization” a prop-
erty not of the Hamiltonian, but of the triple Hamiltonian/input state/observable
(which is the only one that fits their results), then this should be mentioned
more explicitly in the paper, and most probably reflected in the abstract
itself. This would seem to be a quite weak notion of thermalization.

We thank Referee 2 for raising two important questions which must be
addressed. The first one concerns the input of the decision problem, and
the second one concerns the situation that a system with an initial state
thermalizes with respect to an observable while the same system with another
initial state does not thermalize with respect to another observable.

We first answer the first question. We agree that our previous explana-
tion is a little confused. In the revised manuscript, the input of the decision
problem for thermalization is a Hamiltonian alone, and that for relaxation
is a Hamiltonian (and a target value A∗). Both the input state and the ob-
servable are arbitrarily given and fixed, as far as they satisfy weak conditions
(assumptions on the existence of |ϕ2⟩ and |ϕ3⟩). In the proof of undecidabil-
ity, we construct a proper family of Hamiltonians for any given inputs and
observable as far as the conditions are satisfied.
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We regret that our previous presentation left this point ambiguous. In the
revised manuscript, we have explicitly described this point above Theorem 1
in the main article and in Sec. 4 in the Supplementary material.

We shall proceed to the second question. In our paper, we define thermal-
ization with respect to each observable and with each initial state. Hence,
even in the same system (the same Hamiltonian), some initial states may
thermalize with respect to some observables and some other initial states
may not with respect to some other observables.

One may feel that we should characterize thermalization in an uncon-
ditional form, that is, a system is called to thermalize if any initial state
thermalizes with respect to any macroscopic observable in this system. Here,
we would like to notice the fact that at present no concrete system with local
interaction is proven to thermalize in the above sense, and most physicists
believe that constructing a thermalizing system is a very hard problem. Since
in the proof of undecidability we need to prepare a family of systems where
the statement (presence of thermalization) is true, we employ the definition
of thermalization not in this unconditional form but in the conditional form
with an initial state and an observable. With the latter definition, we can
prove thermalization in several systems. In the revised manuscript, we have
explicitly stated this point in the fourth paragraph, a newly added paragraph,
of Discussion in the main article.

Referee 2: * The definition of STA and HTA.
The authors do make a more formal definition of two decision problems

in the supplementary material, with the definitions of the problems STA and
HTA. In these definition, what is the role of H in STA and ρ in HTA? Are they
some sort of “parameters” of the problem, or are they actually inputs to the
decision problem? Again, this is important since by reading the definition,
one could deduce that the undecidability result holds for any choice of these
parameters (up to some restriction such as large enough local Hilbert space
dimension), but the authors only show undecidability of the two problems
for a single specific choice of H and ρ (respectively).

In the case of STA, the Hamiltonian is fixed to a proper one, but it is
independent of the observable A. In the case of HTA, the state is some sort of
“parameters” given arbitrarily. In the revised manuscript, we have clarified
these points in Sec. 4 in the Supplementary material.

Referee 2: * The relationship of STA and HTA with the problem of ther-
malization
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The Lemma of the main text and Lemma 1 (supp. mat.) claims that
it is undecidable whether the long-term average of AL concentrates near
zero or near the expectation value of A under the state e2. In order to
connect this to the problem of thermalization of the triple Hamiltonian/input
state/observable, one has to connect the long-term average value of AL to
its thermal average: this seems to me a crucial step, but it is only very
briefly brushed upon in the main text (“it can be easily realized” the authors
claim in the second paragraph of page 2, without further explanation), and
only briefly mentioned in section 10.4 (supp. mat.). I find it unusual that
such a crucial point is relegated to a small paragraph at the end of the
supplementary material. I suggests the authors expand on this in the main
text (referring to the appropriate section of the supplementary material if
needed).

My issue with this connection is that I do not see clearly why the thermal
average of the observable could not also be by itself uncomputable. In that
case, while one cannot decide whether these two quantities are close to zero
or strictly positive, one might be able to decide whether their difference is
close to zero or not.

In section 10.4 (supp. mat.) it is claimed essentially that one can ar-
bitrarily change the thermal average of the observable without changing its
long-term average. First of all, this does not seem to fix the issue of what to
do in the case that the thermal average itself is uncomputable (as the change
one would need to make is itself uncomputable, the modified observable would
become uncomputable). Secondarily, if one can arbitrarily change the ther-
mal average of the observable to any desired value, in what sense is the result
about thermalization of the same observable? One would believe that there
would be physical reasons (whose presence might be as well uncomputable)
for which these two quantities coincide, but here we have complete freedom
over one of them, and indeed the authors claim that the same observable can
be modified to either thermalize or not thermalize. This seems to support my
impression that the result is actually weakly connected with thermalization.

We agree with the comments of Referee 2 in two points: First, our pre-
vious explanation is very ambiguous and lacks rigor, and second, the pre-
vious form of our result on the undecidability of thermalization is a weak
result. Triggered by the latter comment, we tried to prove a stronger form
of undecidability, and fortunately succeeded in proving it. Now our theorem
(Theorem 2 in the revised manuscript) on thermalization takes the form that
both the initial state and the observable are arbitrarily given, and only the
Hamiltonian is the input of the decision problem. The key idea in this im-
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provement is to change the orthonormal basis {|ei⟩} instead of the observable
A.

We have added a new section entitled From relaxation to thermalization to
the main article, and a new section (Sec. 11) to the Supplementary material
in order to demonstrate the undecidability of thermalization.

Referee 2: On top of the above points, I have some comments about the
presentation of the paper which I think should be addressed, as they make
the paper less readable and in some points a bit obscure.

Referee 2: * Lemma 1 in supplementary material:
There are a few issues I have found in the statement of this Lemma, and

since it is the main result of the manuscript I think there should not be the
smallest ambiguity about its content:

- The set VA,η is mentioned in Lemma 1 but never actually defined any-
where later in the proof or in the rest of the supplementary material.

- “VA,η is large enough to encode all the bit strings” what does this sen-
tence mean? Does it mean VA,η is infinite and at least countable?

What we intended to state in “VA,η is large enough to encode all the bit
strings” is that VA,η has infinitely many unitary operators and we have a
proper correspondence between any bit string to a unitary operator. How-
ever, as commented by Referee 2, the symbol VA,η does not appear after the
Lemma. Therefore, we have decided not to use the symbol VA,η.

Referee 2: * Large L limit:
I think the authors should be a bit more explicit in how precisely is the

thermodynamic limit (large L limit) taken. Let me explain what I mean.
In the main text, the authors say they consider a spin chain of length

L, and then take the limit for L to infinity. They then define a sequence of
states, for each value of L, such that the first component (e0) is different from
the rest (e1) (eq. 1 in main text and eq. 7 in the supplementary material).
Usually, when considering the thermodynamic limit of a finite spin chain on
an interval, both sides of the interval are sent to infinity (i.e., in the limit the
locations of the spin are indexed by integers Z). In this case, the resulting
state would be equal to an infinite product of e1, since the state e0 has been
”pushed to infinity” on the left. In other words, it would be impossible to
find a state on the infinite chain such that its restrictions to finite chains
satisfy eq. 7 (supp. material).

This could be fixed by requiring that e0 is not in the left-most position,
but at the origin (the other alternative is to take a one-sided limit, obtaining
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a system defined only on an half-infinite chain, but I doubt this is preferable).
I suspect that the periodic boundary conditions of the Hamiltonian would
make the construction work in the same way as before, but I suggest that
the authors check this.

As guessed by Referee 2, the periodic boundary condition and the almost
uniform initial state (|ϕ0⟩⊗|ϕ1⟩⊗L−1) makes our argument consistent. Owing
to the translation invariance of the Hamiltonian and the observable, the
initial state with 1 ≤ i ≤ 2L and that with −L + 1 ≤ i ≤ L provide the
same physics by just relabeling the sites −L+1 ≤ i ≤ 0 in the latter system
as j = 2L+ i. We have added a comment on this point as footnote 5 in the
Supplementary material.

Referee 2: * Eq. 8 in main text / eq. 38 in supp. material
This equation, present verbatim in both documents, seems to be miss-

ing the dependence of Ā from the initial state ψ (i.e. the coefficients ci):
in fact, as it reads know, it implies that the long term average of any ob-
servable is independent of the initial state, which is clearly absurd. In fact,
while this equation is referred to (for example, in section 8.3 and 9.3 of the
supplementary material), it is not really used in this form but in its correct
form.

Even when corrected, I do not really understand why this (seemingly
elementary) statement is considered to be so essential to be present in the
main text. I suggest that the authors, after fixing the formula, either explain
its importance in the main text or replace it with some more interesting
detail about their methodology.

We thank Referee 2 for pointing out the typo and suggestions. Following
their advice, we have fixed the typo and removed this explanation from the
main text.

Referee 2: * Eq. 2 in supp. material
The text reads ”χ is a characteristic function which takes 1 (resp. 0) if

the statement inside the bracket is true (resp. false)”, but in the equation χ
takes a scalar as an argument.

In Eq.(2) in the previous manuscript, the argument of χ is the statement
“⟨ψ(t)|A|ψ(t)⟩ ≃ Tr[AρMC]”, which is not a scalar but a relation. At the
same time, we noticed that many brackets in Eq.(2) decrease readability,
and in addition, the above statement left some ambiguity. Therefore, in the
revised manuscript we have modified Eq.(2) as

lim
V→∞

lim
T→∞

1

T

∫ T

0

dtχ{
∣∣⟨ψ(t)|A|ψ(t)⟩ − Tr[AρMC]

∣∣ < ε} = 1 (1)
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Referee 2: * The role of MG

A Turing machine MG is introduced on page 9 (supp. mat.) but it is not
explained what role it plays until page 11. I found it a bit confusing. Maybe
the authors should mention what role MG is going to play in their overview
of the proof in Section 5 (supp. mat.).

Following their advice, we have clarified why we generalize the URTM,
which is stated in Sec. 6 and Sec. 7.2 in the revised Supplementary material.
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Response to Referee 3

Referee 3: Shiraishi and Matsumoto report a technical result that implies
that the question of whether a certain class of one-dimensional quantum
systems thermalizes is undecidable. I find the result intriguing, and I can
well imagine that it may merit publication in Nature Communications. At
the same time, the presentation and the level of precision of the writing is
such that working through the paper is a painful experience, where I ran
into so many instances of unclear statements that in some of the sections I
gave up to even try to follow the argument in its full extent. Here comes a
non-exhaustive list of some of the points:

Firstly, we apologize for our poor presentation. Below, we answer all the
ambiguous points raised by Referee 3.

Referee 3: (1) In the theorem on page 2 the authors speak of a given(!) ob-
servable A, a given value A∗, a given initial state ψ0, and a given Hamiltonian
H. The statement of the theorem is that than one cannot decide whether
thermalization occurs. In this generality, this appears wrong. I certainly
can write down an example of (H,A, ψ0) for which thermalization CAN be
proven. Shouldn’t the proper statement of the theorem be something like
“given (A,ψ0), there exist H for which thermalization is undecidable”? (And
a similar version with the roles of ψ0 and H interchanged?) I’m confused!

The structure of the decision problem on relaxation (Theorem in the
previous manuscript, and Theorem 1 in the revised manuscript) is as follows
(Here we dropped the amount of errors and some conditions on the initial
states, observables, and Hamiltonians to avoid confusion.):

1. The observable A and the initial state |ψ0⟩ are given arbitrarily. These
two are fixed parameters of the decision problem.

2. Our task is to decide whether this observable from this initial state
relaxes to a given target value A∗ under a given Hamiltonian H. The
Hamiltonian H and the target value A∗ are inputs for this decision
problem, and we need to solve the above decision problem for all H
and A∗.

If there exists a procedure to solve this decision problem for allH and A∗, this
decision problem is decidable. If there is no procedure to solve this decision
problem for all H and A∗, this decision problem is undecidable. To prove
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undecidability, it suffices to show that this decision problem is undecidable
for a particular form of H and A∗. This is what we did in our manuscript.

We regret that our previous manuscript left this important point ambigu-
ous. In the revised manuscript, we have explicitly stated these points above
Theorem 1 in the main article and in Sec. 4 in the Supplementary material.

Referee 3: (2) A lemma, like a theorem, is meant to be an essentially self-
contained statement of a result. The Lemma presented at the end of page 2
fails in this respect and is pretty much incomprehensible. Let me go through
it sentence by sentence from the perspective of a reader.

–”Set the dimension of the local Hilbert space d to be sufficiently large.” I
won’t be able to do this, because I am given no instructions what ”sufficiently
large” is. Can this be avoided, as is done in many mathematical proofs, in
the form ”...then there exists a finite d0 such that for all local dimensions
d > d0 the following holds true:”???

We agree that our previous presentation on the dimension of the local
Hilbert space is unclear. However, at the same time, if we employ “there
exists ∼ such that” syntax, the statement of the lemma contains so many
sentences in this type, which also makes our manuscript unreadable. Since
the size of a dimension is not so important in our context, we have moved the
description on the dimension to the beginning of Statement of main results
in the main article.

Referee 3: –”Given ... we fix a universal reversible Turing machine (URTM).”
Reading this, I must assume that I can fix ANY universal reversible Turing
machine that I like, because no specificities are given. This is of course not
true. A very specific construction is used. To meet the standards of a lemma,
this construction must be described in an equally rigorous way, which should
maybe be stated as a separate Lemma, such that it can then be referenced.

Honest to say, we are a little confused by this comment. In our proof,
for a given URTM on a 01 bit tape, we construct a classical TM (called
generalized RTM in the Supplementary material) which emulates any given
URTM as TM2. The generalized RTM, which consists of TM1, TM2, and
TM3, takes a specific construction, while we can implement any URTM in
this generalized RTM as TM2.

In the revised manuscript, we have clarified the difference between the
implemented URTM (which is arbitrary) and the generalized RTM (which
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employs a specific form) above Lemma and the beginning of Classical ma-
chines in the main article.

Referee 3: –Next the operators Vx are mentioned and x is called the input,
but one has no chance to understand where this input comes from, nor how
Vx depends on the input. Sure, I can find this out by working through the
proofs, but this is not how it is supposed to work. This is frustrating to read
and leaves one puzzled.

We thank Referee 3 for pointing out our insufficient explanation. We
regret that we introduce Vx before introducing the input code x. (In the
revised manuscript, the symbol for the input code is changed to u.) In the
revised manuscript, we have modified the description.

Referee 3: (Minor remark: the exponent in Eq. (1) must be ⊗(L− 1), I
presume?)

As correctly presumed by Referee 3, it is our typo. We have fixed it.

Referee 3: Short summary: I consider the lemma entirely incomprehensible
and hence useless.

We hope that the revised version of Lemma now becomes readable.

Referee 3: (3) Page 3, Classical machines: ”TM3 is a simple TM, which
flips the state of A-cells if and only if TM2 halts.” This is mentioned just
like this, only that A-cells haven’t been introduced so far. This may be a
minor example, but this is what makes this paper so frustrating to read.
Congratulations to anyone who can follow the rest of the section, I can’t.

We again regret that we used the term A-cells before introducing it. In
the revised manuscript, we introduce A-cells and M-cells at the beginning of
the section entitled Classical machines.

Referee 3: (4) Fig. 2 uses the symbols a1, a2, qu, r, and β, none of which
have been introduced. How is one supposed to understand the figure then?

In the revised manuscript, we have put the explanation on a1, a2, and
β in the main text and in the caption of Fig.2. Since qu is an example of
the internal state of TM2, we have explained qu (and r, which is the unique
internal state of TM3) only in the caption of Fig.2.

15



Referee 3: At this point, the confusing an imprecise presentation had dis-
couraged me to an extent that I stopped working through the paper in full
detail. I believe it is not the reader’s job to decipher things, but the authors’
job to explain them as precisely and lucidly as possible. This, in my opinion,
Shiraishi and Matsumoto have not achieved to do.

To summarize, I am still intrigued by the paper. I would love to see
the paper written in a form such that it can be seriously considered for
publication in Nature Communications. Unfortunately I can’t recommend
the present version to any reader.

We apologize for our insufficient and unreadable explanation. At the same
time, we are grateful that Referee 3 sees the potential value of our results
despite our bad presentation.

Referee 3: (5) Page 1: ”The ETH claims that all the energy eigenstates of
a given Hamiltonian are thermal, that is, indistinguishable from the equilib-
rium state, as long as we observe macroscopic observables.”

We are afraid that Referee 3 forgot to write a comment on this sentence.

Referee 3: (6) Fig. 1a: This illustration may give the incorrect impres-
sion that ”equilibrium” is one kind of spin configuration (microstate) and
”nonequilibrium” is some other kind of spin configuration, whereas these are
in fact huge sets of microstates.

To avoid this confusion, following their advice, we draw two microscopic
states corresponding to equilibrium and nonequilibrium, which suggests the
existence of other various numbers of equilibrium and nonequilibrium mi-
crostates.

Referee 3: (7) Fig. 1b: This illustration seems to suggest that, for equi-
libration to occur according to the definition of the paper, ⟨A⟩(t) has to
remain in a narrow interval around A∗, which is not the case. In fact, the
definition of equilibration via the long-time average allows for huge fluctua-
tions of ⟨A⟩(t). Presumably the axis label is just incorrect and should be the
long-time average of ⟨A⟩(t), not ⟨A⟩(t) itself.

What we actually plot is an instantaneous value ⟨ψ(t)|AL|ψ(t)⟩ at time
t, where AL is the density of A: AL := 1

L

∑L
i=1Ai. The density has no

fluctuation in the thermodynamic limit.
At the same time, we understand that it is highly confusing to use the

same symbol A to represent both an observable on a single site and its spatial
average. To avoid this confusion, we denote the spatial average of A by
calligraphy A.
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

With the revised version of their work, the 

authors succeeded to overcome my main concerns. 

 

Also in view of the other reports, I must 

conclude that the presentation of the original 

paper was rather poor. My own mistake was to 

think that the authors take the thermodynamic 

limit first, and only then consider the 

long time average of the already infinitely 

large system. In fact, this misunderstanding 

is still suggested by the key Fig. 1b, and 

also at some places in the text. 

 

But since the paper actually considers the 

long-time limit first and only then takes 

the thermodynamic limit, I agree that the 

obtained results are of high interest. 

 

I still feel that the presentation is quite 

far from optimal. But I do not consider it 

to be my duty to take the quite substantial 

effort which is probably necessary to 

significantly improve the situation. 

 

In conclusion, I think that content wise the 

paper is now recommendable for publication 

in Nature Communications, while the presentation 

still amounts to a borderline case. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have addressed the issues I had raised in a very satisfactory manner. I think the 

quality of the exposition after the first round of review has increased noticeably, and the 

ambiguous definitions have been corrected. 

 

In particular, I had some very fundamental questions about the impact of their result on the 

problem of thermalization, based on 1. the possibility of modifying the thermal average of the 

observable and 2. the need of fixing both initial state and observable for their result to hold. Both 

of these are now discussed very nicely in the paper, and my objections no longer apply. 

 

I recommend the paper to the published. 

 

 

 



Response to reviewers

Summary of changes

• We have explicitly stated the fact that we first take the long-time limit
and then take the thermodynamic limit in both the first paragraph of
Statement of the main result and the legend of Fig.1.

• We have modified the symbol in Fig.1(b) from ⟨ψ(t)|A|ψ(t)⟩ to ⟨ψ(t)|AL|ψ(t)⟩
in order to avoid confusion.

• We have added the section of Data Availability.

• We have removed some italics and underlines.
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Response to Referee 1

Referee 1: With the revised version of their work, the authors succeeded to
overcome my main concerns.

Also in view of the other reports, I must conclude that the presentation
of the original paper was rather poor. My own mistake was to think that
the authors take the thermodynamic limit first, and only then consider the
long time average of the already infinitely large system. In fact, this misun-
derstanding is still suggested by the key Fig. 1b, and also at some places in
the text.

But since the paper actually considers the long-time limit first and only
then takes the thermodynamic limit, I agree that the obtained results are of
high interest.

I still feel that the presentation is quite far from optimal. But I do not
consider it to be my duty to take the quite substantial effort which is probably
necessary to significantly improve the situation.

In conclusion, I think that content wise the paper is now recommend-
able for publication in Nature Communications, while the presentation still
amounts to a borderline case.

We sincerely appreciate Referee 1’s recommendation to publish our manuscript
in Nature Communications.

At the same time, we notice what point Referee 1 was confused. To avoid
such confusion, in the revised manuscript we have explained explicitly the
fact that we first take the ling-time limit and then take the thermodynamic
limit, to the bottom of the first paragraph of Statement of the results and
the legend of Fig.1(b). We have also modified the symbol in Fig.1(b) from
⟨ψ(t)|A|ψ(t)⟩ to ⟨ψ(t)|AL|ψ(t)⟩.
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Response to Referee 2

Referee 2: The authors have addressed the issues I had raised in a very
satisfactory manner. I think the quality of the exposition after the first round
of review has increased noticeably, and the ambiguous definitions have been
corrected.

In particular, I had some very fundamental questions about the impact
of their result on the problem of thermalization, based on 1. the possibility
of modifying the thermal average of the observable and 2. the need of fixing
both initial state and observable for their result to hold. Both of these are
now discussed very nicely in the paper, and my objections no longer apply.

I recommend the paper to the published.

We thank Referee 2 for recommending our manuscript to publish.
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