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Passive sampling method description 

 

HLB disk passive samplers 

To generate the samples necessary for this ILS, integrative sampling at both the input and 
the output of a drinking water treatment plant (i.e. the source river water and drinking 
water, respectively) was carried out using Horizon Atlantic® HLB-L disks (Biotage AB, 
Sweden) with 47 mm diameter (further denoted as HLB disks), applied as diffusive passive 
samplers. Before exposure, HLB disks were cleaned in acetone, isopropanol,methanol and 
milliQ water, in which they were stored at 4 °C. One tested sample comprised pooled extract 
of 13 exposed HLB disks or 7 HLB disks applied as a field blank. 
 

Silicone sheets for estimation of sampled water volume 

In order to estimate the approximate volume of water sampled, silicone elastomer sheets 
SSP250 (Speciality Silicone Products, Inc.; 250µm thick) were cut into 9.5×5.5 cm, Soxhlet 
extracted in ethylacetate for 72 h and spiked according to the procedure described in 



(Smedes and Booij, 2012) with 14 performance reference compounds (PRC: IUPAC PCB 
congeners 1, 2, 3, 10, 14, 21, 30, 50, 55, 78, 104, 145 and 204) at 5–75 μg mL−1 in ethyl 
acetate was kindly provided by Deltares, Utrecht, the Netherlands. One sampler comprised 4 
sheets with an exposed surface area of 200 cm2 surface are (one sided) and a mass of 6 g. 

Dynamic sampling device 

In order to increase the sampling rate of the chemicals into the PS, the PS were exposed in a 
“dynamic” passive sampling device (DPS). The DPS device consists of a rectangular stainless-
steel plate chamber with an open grid on both sides. The different samplers were placed on 
the grid and covered by lids. One end of the chamber was connected to a submersible pump 
(approximately 9 m3 h−1) that forced water at high flow velocity (1–2 m s−1) through the 
chamber while being immersed in the water. Temperature was monitored by a submersible 
logger (Hobo Pendant, Onset, Germany) attached to the DPS device. Details of the DPS 
construction are provided in (Vrana et al., 2018). Note that the stated sampler exposure 
surface area was nominal, while in practice 80% had contact with water and ~20% was 
covered by the steel grid holding them in place inside the DPS. 

Deployment and retrieval 

Water temperature was 16.5 and 15.9°C in drinking and river water, respectively. pH of the 
sampled water was 7.85 and 7.61 in drinking water and river water, respectively. 
Samplers were always mounted in the DPS device just before exposure and retrieved 
immediately afterwards. Recovered samplers were placed back into their storage containers, 
stored at 4 °C, transported to the laboratory immediately, and stored at −20 °C until further 
processing. To estimate any contaminant uptake not associated with water exposure, field 
blank samplers were exposed to air in a stainless-steel tray during sampler's mounting and 
retrieval.  
 

Analysis of PRCs in silicone samplers 

PRC amounts in silicone samplers were analysed using thermal desorption coupled online 
with gas chromatography mass spectrometry (GC/MS). Two 5-mg pieces (app. 5 mm in 
diameter) were cut from the middle of each silicone sheet, including both exposed and 
unexposed reference sheets. Silicone piece from each sampler were then directly inserted 
into thermal desorption liners for analysis of PRCs by thermal desorption followed by GC/MS 
as described in (Vrana et al., 2016). Following the thermal desorption, exact mass of a piece 
was weighed and used for determination of initial concentration of PRCs in reference sheets 
(C 0,PRC) and PRC concentration retained in  following exposure in DPS (CPRC). 
 

Estimation of water boundary layer-controlled sampling rates of silicone samplers 

 
The sampling rate of compounds for the silicone samplers (RS,SR) was calculated from the 
fraction f of PRC concentrations retained in the sampler following exposure (CPRC/C0,PRC). 
RS,SR was modelled as a function of the molar mass (M) by the water boundary layer (WBL)-
controlled uptake model from (Rusina et al., 2010). 
 
𝑅𝑆,𝑆𝑅 = 𝐹𝑀−0.47          (1) 



 
with an exposure-specific parameter (F). The parameter F was estimated from the 
percentage of PRC dissipation from samplers during exposure using a nonlinear least squares 
method by (Booij and Smedes, 2010), considering the fractions of individual PRCs that are 
retained in the sampler after exposure as a continuous function of their sampler-water 
partition coefficient (KSR,W). The models applied for silicone samplers are described in detail 
in (Vrana et al., 2018).  

Estimation of sampled water volumes for HLB samplers 

The estimated volume of water extracted by HLB disks (Table 1) is based on the assumption 
of fully time-integrative uptake and similar WBL-controlled mass transfer coefficient of small 
organic molecules in vicinity of silicone and HLB disks, by the approach demonstrated in 
(Vrana et al., 2018).  
The sampling rates of ED samplers Rs,HLB were estimated from sampling rates derived for 
SR samplers (Rs,SR), using d the surface areas of both samplers AHLB, ASR: 
 

𝑅𝑆,𝐻𝐿𝐵 =
𝐴𝐻𝐿𝐵

𝐴𝑆𝑅
𝑅𝑆,𝑆𝑅          (2) 

 
The WBL-controlled sampling rate estimate RS,HLB obtained here should be from theory (Booij 
et al., 2007) a function of the compound's diffusion coefficient in water and can be 
estimated for any compound from its molar mass M using Eq. (1). The RS,HLB value of amodel 
compound with M = 300 g mol−1, calculated using Eq. (1), was used for estimation of WBL-
controlled sampling rates Rs,HLB using Eq. (2). Further assuming a time integrative sampling, 
approximate sampled water volumes in HLB disks (Table 1 in the main manuscript), as: 
 
𝑉𝑆,𝐻𝐿𝐵 = 𝑅𝑆,𝐻𝐿𝐵𝑡          (3) 

 
Table S1. Passive sampler performance parameters. 
 

Vial 

number 

Matrix type Sampler 

Exposure 

time 

Code Silicone 

sampling 

rate RS,SR 

(L/d) 

Estimated 

sampled 

water 

volumea 

Vial 1 River water 2 days S2 2 82 190 L 

Vial 2 River water 4 days S2 4 74 346 L 

Vial 3 Drinking water 2 days S1 2 71 160 L 

Vial 4 Drinking water 4 days S1 4 65 295 L 

 



 

 
Fig S1. Water boundary layer-controlled RS estimation from PRC dissipation from silicone 
samplers co-deployed in DPS device with HLB disks. The fraction of PRCs retained in the 
silicone sheets after exposure (Y-axis of graphs) were fitted by a continuous function of their 
KPW and molar mass M. The drawn lines represent the best nonlinear least- squares fit of the 
data. The number in the graph shows the RS,SR (L d-1) for a model compound with a molar 
mass of 300 g mol-1.  
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