Developmental Cell, Volume 56

Supplemental information

Proliferative stem cells maintain

quiescence of their niche by secreting

the Activin inhibitor Follistatin

Salvador C. Herrera, Diego Sainz de la Maza, Lydia Grmai, Shally Margolis, Rebecca Plessel, Michael Burel, Michael O'Connor, Marc Amoyel, and Erika A. Bach

#	Figure	Genotype	Treatment	Average	SE	n	р
1	11	tj > +	10 days	11.83	±0.53	18	
2	11	tj > Dp-RNAi (Vienna), GFP	10 days	2.10	±0.43	31	1e ⁻¹⁶ (vs #1)
3	11	tj > Dp-RNAi (TRiP)	10 days	9.14	±0.96	14	0.0232 (vs #1)
4	11	tj > Dp-RNAi, Dp	10 days	4.93	±0.86	15	0.0075 (vs #2)
5	11	tj > E2f1-RNAi	10 days	7.29	±0.64	17	5e ⁻⁶ (vs #1)
6	11	tj > Rbf ²⁸⁰	10 days	5.00	±1.50	12	0.0008 (vs #1)
7	1J	<i>tj, hh-GAL80</i> [™] > +	10 days	10.56	±0.32	27	. ,
8	1J	tj, hh-GAL80 ^{⊤s} > Dp- RNAi, LacZ	10 days	4.00	±0.76	8	2e ⁻⁵ (vs #7)
9	1J	tj, hh-GAL80 ^{⊤s} > Dp- RNAi, Dp	10 days	8.36	±0.35	33	0.0004 (vs #8)
10	2D	tj > LacZ, LacZ	0 days	10.92	±0.30	49	
11	2D	tj > LacZ, LacZ	14 days	9.69	±0.54	22	
12	2D	tj > Fs-RNAi, LacZ	0 days	6.06	±0.48	32	
13	2D	tj > Fs-RNAi, LacZ	14 days	1.11	±0.28	28	2e ⁻¹⁵ (vs #11)
14	2D	tj > Fs-RNAi, Fs	0 days	7.52	±0.71	31	, , , , , , , , , , , , , , , , , , ,
15	2D	tj > Fs-RNAi, Fs	14 days	4.56	±0.68	34	3e ⁻⁵ (vs #13)
16	2D	tj > LacZ, Fs	0 days	10.49	±0.30	37	· /
17	2D	tj > LacZ, Fs	14 days	10.58	±0.43	31	0.20 (vs #11)
18	2E	Fs ^{null} -/-	0 days	9.39	±0.85	18	
19	2E	Fs ^{null} -/-	4 weeks	2.16	±0.63	31	6e ⁻⁸ (vs #18)
20	2J	<i>tj, hh-GAL80</i> ™ > +	10 days	10.56	±0.32	27	
21	2J	tj, hh-GAL80 ^{⊤s} > Dp- RNAi, LacZ	10 days	4.00	±0.76	8	2e ⁻⁵ (vs #20)
22	2J	tj, hh-GAL80 ^{⊤s} > Dp- RNAi, Fs	10 days	10.88	±0.45	17	4e⁻⁰ (vs #21)
23	3B	upd ^{TS} > +	0 days	11.17	±0.74	23	
24	3B	upd ^{TS} > +	1 week	10.33	±0.73	15	
25	3B	upd ^{TS} > +	2 weeks	10.62	±0.58	13	
26	3B	upd ^{TS} > +	3 weeks	10.13	±0.85	8	
27	3B	upd ^{TS} > +	4 weeks	7.68	±0.38	84	
28	3B	upd ^{TS} > babo ^{QD}	0 days	9.88	±0.68	16	0.2032 (vs #23)
29	3B	upd ^{TS} > babo ^{QD}	1 week	6.25	±0.62	16	0.0002 (vs #24)
30	3B	upd ^{TS} > babo ^{QD}	2 weeks	5.18	±0.47	28	8e ⁻⁸ (vs #25)
31	3B	upd ^{TS} > babo ^{QD}	3 weeks	2.69	±0.47	35	7e ⁻⁶ (vs #26)
32	3B	upd ^{TS} > babo ^{QD}	4 weeks	0.60	±0.28	30	7e ⁻²⁸ (vs #27)
33	4E	upd ^{⊤s} > NLAP	4 weeks	7.68	±0.48	41	
34	4E	upd ^{TS} > esg ^{NLAP}	4 weeks	10.24	±0.50	38	0.0004 (vs #33)
41	5D	tj > LacZ	0 days	10.92	±0.30	49	·
42	5D	tj > LacZ	4 weeks	9.14	±0.27	66	
43	5D	tj > Fs	0 days	10.49	±0.30	37	
44	5D	tj > Fs	4 weeks	10.45	±0.38	42	0.0058 (vs #42)

Table S1: Hub cell number in the analyzed genotypes, Related to Figures 1-5 and STAR methods

45	5E	upd ^{⊤s} > LacZ	0 days	10.64	±0.42	45	
46	5E	upd ^{⊤s} > LacZ	4 weeks	7.56	±0.34	84	
47	5E	upd ^{⊤s} > smox-RNAi	0 days	11.79	±0.40	19	
48	5E	upd ^{⊤s} > smox-RNAi	4 weeks	9.45	±0.33	47	0.0007 (vs #46)
49	5E	upd ^{⊤s} > babo-RNAi	0 days	11.45	±0.45	38	
50	5E	upd ^{TS} > babo-RNAi	4 weeks	10.15	±0.58	26	0.0042 (vs #46)
51	5E	upd ^{⊤s} > daw-RNAi- HMS01110	0 days	12.97	±0.41	33	
52	5E	upd ^{⊤s} > daw-RNAi- HMS01110	4 weeks	11.13	±0.32	45	2e ⁻³⁴ (vs #46)
53	5E	upd ^{⊤s} > daw-RNAi- HMJ03135	0 days	12.24	±0.34	29	
54	5E	upd ^{⊤s} > daw-RNAi- HMJ03135	4 weeks	10.48	±0.45	46	0.0010 (vs #46)
55	S2E	$tj^{TS} > +$	0 days	11.88	±0.33	17	
56	S2E	$tj^{TS} > +$	3 days	12.05	±0.33	21	
57	S2E	$tj^{TS} > +$	7 days	11.63	±0.50	8	
58	S2E	$tj^{TS} > +$	10 days	11.69	±0.29	35	
59	S2E	$tj^{TS} > +$	20 days	10.76	±0.47	17	
60	S2E	tj ^{⊤s} > Dp-RNAi	0 days	11.18	±0.38	28	0.1686 (vs #55)
61	S2E	tj ^{⊤s} > Dp-RNAi	3 days	9.79	±0.68	14	0.0076 (vs #56)
62	S2E	tj ^{⊤s} > Dp-RNAi	7 days	5.00	±1.59	6	0.0074 (vs #57)
63	S2E	tj ^{⊤s} > Dp-RNAi	10 days	2.31	±0.47	39	6e ⁻²⁰ (vs #58)
64	S2E	tj ^{⊤s} > Dp-RNAi	20 days	0.03	±0.03	30	1e ⁻¹³ (vs #59)
65	S2E	tj [™] > E2f1-RNAi	0 days	10.61	±0.78	18	0.2699 (vs #55)
66	S2E	tj ^{⊤s} > E2f1-RNAi	3 days	9.58	±0.55	17	0.0083 (vs #56)
67	S2E	tj ^{⊤s} > E2f1-RNAi	7 days	7.00	±1.04	11	0.0013 (vs #57)
68	S2E	tj ^{⊤s} > E2f1-RNAi	10 days	4.24	±0.36	29	6e ⁻¹⁶ (vs #58)
69	S2E	tj ^{⊤s} > E2f1-RNAi	20 days	0.50	±0.33	22	2e ⁻¹⁷ (vs #59)
70	S2F	eyaA3 > +	10 days	11.25	±0.33	32	
71	S2F	eyaA3 > Dp-RNAi	10 days	1.88	±0.33	43	7e ⁻³¹ (vs #70)
72	S2F	C587 > +	10 days	11.82	±0.27	35	
73	S2F	C587 > Dp-RNAi	10 days	0.46	±0.17	52	9e ⁻⁴² (vs #72)
74	S2F	fng [™] > +	0 days	12.50	±0.56	12	
75	S2F	fng [™] > +	10 days	12.57	±0.72	7	
76	S2F	fng [™] > +	20 days	12.62	±0.29	37	
77	S2F	fng [™] > Dp-RNAi	0 days	11.93	±0.64	14	0.6416 (vs #74)
78	S2F	fng ^{⊤s} > Dp-RNAi	10 days	7.40	±0.32	9	0.0001 (vs #75)
79	S2F	fng ^{⊤s} > Dp-RNAi	20 days	4.59	±0.60	32	9e ⁻¹⁶ (vs #76)
80	S2F	fng ^{⊤s} > E2f1-RNAi	10 days	9.00	±0.42	16	0.0015 (vs #75)

81	S2F	fng ^{⊤s} > E2f1-RNAi	20 days	7.33	±0.68	12	3e ⁻⁶ (vs #76)
82	S3F	nos > +	0 days	11.70	±0.56	10	
83	S3F	nos > +	10 days	12.83	±1.28	12	
84	S3F	nos > Fs-RNAi	0 days	11.76	±0.61	17	0.9382 (vs
							#82)
85	S3F	nos > Fs-RNAi	10 days	12.25	±0.57	24	0.9793 (vs
							#83)
86	S3H	upd ^{TS} > +, <i>Fs^{null} /</i> +	0 days	10.71	±0.41	21	
87	S3H	upd ^{TS} > +, <i>Fs^{null} /</i> +	2 weeks	10.20	±0.47	30	
88	S3H	upd ^{TS} > +, <i>Fs^{null} /</i> +	4 weeks	9.40	±0.96	10	
89	S3H	upd ^{TS} > Fs, Fs ^{null} / +	0 days	10.24	±0.38	21	
90	S3H	upd ^{TS} > Fs, Fs ^{null} / +	2 weeks	9.92	±0.58	12	
91	S3H	upd ^{TS} > Fs, Fs ^{null} / +	4 weeks	8.79	±0.35	19	
92	S3H	upd ^{TS} > +, <i>Fs</i> ^{null -/-}	0 days	9.71	±0.52	17	
93	S3H	upd ^{TS} > +, Fs ^{null -/-}	2 weeks	6.92	±0.48	38	
94	S3H	upd ^{TS} > +, Fs ^{null -/-}	4 weeks	6.20	±0.59	11	
95	S3H	upd ^{TS} > Fs, Fs ^{null -/-}	0 days	9.95	±0.60	19	
96	S3H	upd ^{TS} > Fs, Fs ^{null -/-}	2 weeks	9.71	±0.39	28	3e ⁻⁵ (vs #93)
97	S3H	upd ^{TS} > Fs, Fs ^{null -/-}	4 weeks	9.36	±0.75	19	0.0028 (vs
~~	0.01	f		o 4 4	. 1 00		#94)
98	531	$fng > +, Fs^{(0)} / +$	4 weeks	9.14	±1.09	14	
99	S31	$fng > Fs, Fs^{null} / +$	4 weeks	8.07	±0.89	14	
100	531	$fng > +, Fs^{null -2}$	4 weeks	5.00	±0.84	11	0.0004/
101	S3I	fng > ⊢s, ⊢s ^{nu} ll -/-	4 weeks	8.29	±0.53	24	0.0034 (vs #100)
102	S3J	Fs ^{GFSTF.1} / Fs ^{MI11350}	0 days	11.64	±0.48	36	
103	S3J	Fs ^{GFSTF.1} / Fs ^{MI11350}	4 weeks	11.14	±0.30	37	0.3751 (vs #102)
104	S3J	Fs ^{TG4.1} / Fs ^{MI} -GAL4	0 days	11.39	±0.37	18	,
105	S3J	Fs ^{TG4.1} / Fs ^{MI} -GAL4	4 weeks	5.64	±0.67	39	6e ⁻¹⁰ (vs
							#104)
106	S3J	Fs ^{GFSTF.1} / Fs ^{TG4.1}	0 days	10.40	±0.46	25	,
107	S3J	Fs ^{GFSTF.1} / Fs ^{TG4.1}	4 weeks	7.88	±0.76	32	0.0067 (vs #106)
108	S3J	Fs ^{GFSTF.1} / Fs ^{MI} -GAL4	0 davs	10.32	±0.58	19	·····,
109	S3J	Fs ^{GFSTF.1} / Fs ^{MI} -GAL4	4 weeks	9.55	±0.37	51	0.2744 (vs
							#108)
110	S3J	Fs ^{MI} -GAL4 / Fs ^{MI11350}	0 days	13.21	±0.40	39	
111	S3J	Fs ^{MI} -GAL4 / Fs ^{MI11350}	4 weeks	11.48	±0.79	25	0.0576 (vs #110)
112	S3J	Fs ^{TG4.1} / Fs ^{MI11350}	0 days	11.47	±0.63	15	,
113	S3J	Fs ^{TG4.1} / Fs ^{MI11350}	4 weeks	3.41	±0.43	66	2e ⁻¹¹ (vs #112)

Figure 1A,I *yw / Y; tj-GAL4 / +;* tj > +1B,1 *yw / Y; tj-GAL4 / UAS-Dp-RNAi (GD 12722);* $t_i > Dp-RNAi$ 1C.E.G yw, hs-Flp, tub>GAL4, UAS-nlsGFP / Y; FRT^{42D} Control clones tub>GAL80 / FRT^{42D}; *Dp*^{a3} clones 1D,F,H yw, hs-Flp, tub>GAL4, UAS-nlsGFP / Y; FRT^{42D} tub>GAL80 /FRT^{42D} Dp^{a3}; 11 yw / Y; tj-GAL4 / UAS-Dp-RNAi (GD 12722); UAStj > Dp-RNAi (GD), GFP GFP/+ 11 yw / Y; tj-GAL4 / +; UAS-Dp-RNAi (TRiP JF02519) / tj> Dp-RNAi (TRiP) yw / Y; tj-GAL4 / UAS-Dp-RNAi (GD 12722); UAS-11 tj > Dp-RNAi (GD), Dp Dp / + 11 *tj* > *E2f1-RNAi* yw / Y; tj-GAL4 / +: UAS-E2f1-RNAi / + 11 yw / Y; tj-GAL4 / +: UAS-Rbf²⁸⁰ / + $tj > Rbf^{280}$ 1J yw / Y; tj-GAL4 / +: hh-GAL80 / + *tj*, *hh-GAL80* > + 1J yw / Y; tj-GAL4 / UAS-Dp-RNAi (GD 12722); hhtj, hh-GAL80 > Dp-RNAi,GAL80 / UAS-LacZ LacZ 1J yw / Y; tj-GAL4 / UAS-Dp-RNAi (GD 12722); hhtj, hh-GAL80 > Dp-RNAi, GAL80 / UAS-Dp Dp tj > LacZ, LacZ 2B,D w / Y; tj-GAL4 / UAS-LacZ; UAS-LacZ / UAS-Dicer-2 2C.D w / Y; tj-GAL4 / UAS-LacZ; UAS-Fs-RNAi / UAStj > Fs-RNAi, LacZ Dicer-2 2D w / Y; tj-GAL4 / UAS-Fs; UAS-Fs-RNAi / UAS-Dicertj > Fs-RNAi, Fs 2 2D w /Y; tj-GAL4 / UAS-Fs; UAS-LacZ / UAS-Dicer-2 ti > LacZ. Fs Fs^{null} -/-2E.F w /Y: Fs^{null} / Fs^{null} 2F Oregon-R wt 2G,I w / Y; Fs-GAL4 / UAS-LacZ; UAS-GFP / + Fs > GFP, LacZ2H,I w / Y; Fs-GAL4 / UAS-Dp-RNAi; UAS-GFP / + Fs > GFP, Dp-RNAi 2J yw / Y; tj-GAL4 / +; hh-GAL80 / + *tj*, *hh-GAL80* > + 2J yw / Y; tj-GAL4 / UAS-Dp-RNAi (GD 12722); hhtj, hh-GAL80 > Dp-RNAi, GAL80 / UAS-LacZ LacZ 2J yw/Y; tj-GAL4/UAS-Dp-RNAi (GD 12722); hhtj, hh-GAL80 > Dp-RNAi, Fs GAL80 / UAS-Fs w / Y; ; babo^{fTRG00444.sfGFP-TVPTBF} 3A babo-GFP $upd^{TS} > +$ 3B upd-GAL4, tub-GAL80^{TS} / Y upd-GAL4, tub-GAL80^{TS} / Y;; UAS-babo^{QD} / + $upd^{TS} > babo^{QD}$ 3B,C 3D.F upd-GAL4, tub-GAL80^{TS} / Y; ubiP63E-FRT-STOPupd^{TS} > lineage FRT-GFP, UAS-Flp / +; + 3E,F upd-GAL4, tub-GAL80^{TS} / Y: ubiP63E-FRT-STOP $upd^{TS} > babo^{QD}$, lineage

Abbreviation used in

c587 > +, hh > lineage

Table S2: Genotypes, Related to Figures 1-5

Full genotype

Figure

4B,D

FRT-GFP, UAS-Flp / +: UAS-babo^{QD} / +

86Fb, 13XlexAop2-myr::GFP / hh-QF

C587-GAL4 / Y; QUAS-Flp / +; act>y[+]>LHV2-

4C,D	C587-GAL4 / Y; QUAS-Flp /UAS-Dp-RNAi (GD 12722); act>y[+]>LHV2-86Fb, 13XlexAop2- myr::GFP / hh-QF	c587 > Dp-RNAi, hh > lineage
4E	upd-GAL4, tub-GAL80 ^{TS} / Y; UAS-NLAP / + ; UAS- babo ^{QD} / +	NLAP (control)
4E	upd-GAL4, tub-GAL80 ^{TS} / Y; UAS-esg ^{NLAP} / + ; UAS- babo ^{QD} / +	esg ^{NLAP}
5A,B,C	w / Y; Fs-GAL4 / + ; UAS-GFP / +	Fs > GFP
5D	w / Y; tj-GAL4 / UAS-LacZ; UAS-Dicer-2 / +	tj-GAL4 > LacZ
5D	w / Y; tj-GAL4 / UAS-Fs; UAS-Dicer-2 / +	tj-GAL4 > Fs
5E	upd-GAL4, tub-GAL80 ^{TS} / Y; UAS-LacZ / +	upd ^{TS} > LacZ
5E	upd-GAL4, tub-GAL80 ^{TS} / Y; UAS-smox-RNAi / +	upd ^{TS} > smox-RNAi
5E	upd-GAL4, tub-GAL80 [™] / Y; UAS-babo-RNAi / +	upd [™] > babo-RNAi
5E	upd-GAL4, tub-GAL80 ^{TS} / Y; UAS-daw-RNAi ^{HMS01110} / +	upd ^{TS} > daw-RNAi- HMS01110
5E	upd-GAL4, tub-GAL80 ^{TS} / Y; UAS-daw-RNAi ^{HMJ03135} / +	upd ^{TS} > daw-RNAi- HMJ03135
5F	vw / Y: daw ^{MI05383}	daw-GFP
5G	w / Y; daw ^{NP4661} -GAL4 / + ; UAS-GFP.nls	daw ^{NP4661} > GFP
5H	Oregon-R	wt
S1A,B	yw, hs-Flp, tub-GAL4, UAS-nlsGFP / Y; FRT ^{42D} tub- GAL80 / FRT ^{42D} Dp ^{a4}	Dp ^{a4} clones
S1B	<i>yw, hs-Flp, tub-GAL4, UAS-nlsGFP / Y; FRT</i> ^{42D} <i>tub-GAL80 / FRT</i> ^{42D} ;	FRT ^{42D} (control)
S1B,C,E	yw, hs-Flp, tub-GAL4, UAS-nlsGFP / Y; FRT ^{42D} tub- GAL80 / FRT ^{42D} Dp ^{a3} ;	Dp ^{a3} clones
S1D	yw, hs-Flp, tub-GAL4, UAS-nlsGFP / Y; UAS-Dp- RNAi (GD 12722) / +; FRT ^{82B} tub-GAL80 / FRT ^{82B}	Dp-RNAi clones
S1F	yw, hs-Flp, tub-GAL4, UAS-nlsGFP / Y; ; FRT ^{82B} tub-GAL80 / FRT ^{82B} E2f1 ⁷²⁹	E2f1 clones
S1G	yw, hs-Flp, tub-GAL4, UAS-nlsGFP / Y; ; FRT ^{82B} tub-GAL80 / FRT ^{82B}	FRT ^{82B} (control)
S2A	yw / Y; tj-GAL4 / +; hh ^{P30} / +	tj > +; hh-LacZ
S2B	upd ^{PD1} / Y; tj-GAL4 / +;	tj > +; upd-LacZ
S2C	yw / Y; tj-GAL4 / UAS-Dp-RNAi (GD 12722); hh ^{P30} / +	tj > Dp-RNAi; hh-LacZ
S2D	upd ^{PD1} / Y; tj-GAL4 / UAS-Dp-RNAi (GD 12722)	tj > Dp-RNAi; upd-LacZ
S2E	yw / Y; tj-GAL4 / +; tub-GAL80 [™] / +	$tj^{TS} > +$
S2E	yw / Y; tj-GAL4 / UAS-Dp-RNAi (GD 12722); tub- GAL80 ^{TS} / +	tj ^{⊤s} > Dp-RNAi
S2E	yw / Y; tj-GAL4 / +; tub-GAL80 ^{⊤s} / UAS-E2f1-RNAi	tj ^{⊤s} > E2f1-RNAi
S2F	yw, hs-Flp / Y; eyaA3-GAL4, M5-4-LacZ / +;	eyaA3 > +
S2F	yw, hs-Flp / Y; eyaA3-GAL4, M5-4-LacZ / UAS-Dp- RNAi (GD 12722);	eyaA3 > Dp-RNAi
S2F	C587-GAL4 / Y; ; Chd64-GFP / +	C587 > +
S2F	C587-GAL4 / Y; UAS-Dp-RNAi (GD 12722) / +; Chd64-GFP / +	C587 > Dp-RNAi
S2F	yw, hs-Flp / Y;	$fng^{TS} > +$
S2F	yw, hs-Flp / Y; tub-GAL80 ^{TS} / UAS-Dp-RNAi (GD 12722): fng-GAL4 / +	fng ^{⊤s} > Dp-RNAi

S2F	yw, hs-Flp / Y; tub-GAL80 ^{тs} / +; fng-GAL4 / UAS- E2f1 RNAi	fng ^{⊤s} > E2f1-RNAi
S3B,C,E	w / Y; tj-GAL4 / + ; UAS-Fs-RNAi / UAS-Dicer-2	tj > Fs-RNAi
S3E	w / Y; tj-GAL4 / + ; UAS-Dicer-2 / +	$t_j > +$
S3E	Oregon-R	wt
S3E,G	w / Y; Fs ^{null} / Fs ^{null}	Fs ^{null -/-}
S3F	w / Y; nos-GAL4-VP16 / + ; +	nos > +
S3F	w / Y; nos-GAL4-VP16 / + ; UAS-Fs-RNAi / +	nos > Fs-RNAi
S3H	upd-GAL4. tub-GAL80 ^{TS} / Y; Fs ^{null} / + ; +	upd ^{TS} > +, Fs ^{null} / +
S3H	upd-GAL4. tub-GAL80 ^{TS} /Y; Fs ^{null} /+; UAS-Fs/+	$upd^{TS} > Fs. Fs^{null} / +$
S3H	upd-GAL4. tub-GAL80 ^{TS} / Y; Fs ^{null} / Fs ^{null} ; +	upd ^{TS} > +, Fs^{null} -/-
S3H	upd-GAL4, tub-GAL80 ^{TS} / Y; Fs ^{null} / Fs ^{null} ; UAS-Fs / +	upd ^{TS} > Fs, Fs ^{null -/-}
S3I	w / Y: Fs ^{null} / + : fng-GAL4 / +	fng > +, Fs ^{null} / +
S3I	w / Y; Fs ^{null} / + ; fng-GAL4 / UAS-Fs	fng > Fs. Fs^{null} / +
S3I	w/Y: Fs ^{null} / Fs ^{null} : fng-GAL4 / +	$fng > +, Fs^{null -/-}$
S3I	w / Y; Fs ^{null} / Fs ^{null} ; fng-GAL4 / UAS-Fs	fng > Fs. Fs ^{null -/-}
S3J	w / Y: Fs ^{GFSTF.1} / Fs ^{MI11350}	FS ^{GFSTF.1} / FS ^{MI11350}
S3J	w / Y: Fs ^{TG4.1} / Fs ^{MI} -GAL4	Fs ^{TG4.1} / Fs ^{MI} -GAL4
S3J	w / Y; Fs ^{GFSTF.1} / Fs ^{TG4.1}	Fs ^{GFSTF.1} / Fs ^{TG4.1}
S3J	w / Y; Fs ^{GFSTF.1} / Fs ^{MI} -GAL4	Fs ^{GFSTF.1} / Fs ^{MI} -GAL4
S3J	w / Y; Fs ^{MI} -GAL4 / Fs ^{MI11350}	Fs ^{MI} -GAL4 / Fs ^{MI11350}
S3J	w / Y; Fs ^{TG4.1} / Fs ^{MI11350}	Fs ^{TG4.1} / Fs ^{MI11350}
S4A,C	yw / Y; tj-GAL4/Fs ^{MI04308-GFSTF.1 (Fs-GFP)} ;	tj > +
S4B,C	yw / Y; tj-GAL4/ Fs ^{MI04308-GFSTF.1 (Fs-GFP)} ; UAS-E2f1- RNAi / +	tj > E2f1-RNAi
S5B,C	C587-GAL4 / Y;	+ (in B)
	STOP-FRT-GFP / hh-QF	C587 > +, hh > lineage (GTRACE) (in C)
S5B,D	C587-GAL4 / Y; QUAS-Flp / UAS-Dp-RNAi (GD	<i>Dp-RNAi</i> (in b)
	12722);	C587 > Dp-RNAi, hh > lineage (GTRACE) (in D)
S5E	C587-GAL4 / Y; QUAS-Flp / +; act>y[+]>LHV2- 86Fb, 13xlexAop2-myr::GFP / hh-QF	C587 > +, hh > lineage (FlexAmp)
S5F,G	C587-GAL4 / Y; QUAS-Flp / UAS-Dp-RNAi (GD	C587 > Dp-RNAi, hh >
	12722); act>y[+]>LHV2-86Fb, 13xlexAop2- myr::GFP / hh-QF	lineage (FlexAmp)
S6A	w / Y; daw ^{NP6274} -GAL4, UAS-LacZ / + ; UAS-GFPnls	daw ^{NP6274} > GFP
S6B	w / Y; ; babo ^{fTRG00444.sfGFP-TVPTBF}	babo-GFP
S6C	w / Y; ; Actβ-GAL4 / UAS-GFPnls	Actβ-GAL4 > GFP
S6D	w / Y; ; Actβ ^{fTRG00506.sfGFP-TVPTBF}	Actβ-GFP
S6E	w / Y; myo-GAL4 / UAS-GFPnIs	myo-GAL4 > GFP
S6F	w / Y; ; myo ^{fTRG00161.sfGFP-TVPTBF}	myo-GFP
S6G	W / Y; ; put ^{fTRG00910.sfGFP-TVPTBF}	put-GFP

Figure S1: CySCs lacking *Dp* can self-renew and produce daughter cells that differentiate, Related to Fig. 1

(**A**) CySC clones (green) mutant for *Dp*^{a4} can remain in the niche for at least 7 days after clone induction (dpci). Arrowheads mark the CySC clones and the open arrowhead a CySC clone positive for EdU (red, A'). Tj (blue, A") labels CySCs and early cyst cells.

(**B**) Graph indicating the clone recovery rates at 2, 7 and 14 dpci for control clones (labeled FRT^{42D} , gray bars, n=26, 22, 18, respectively), Dp^{a3} mutant clones (blue bars, n=28, 32, 22, respectively), and Dp^{a4} mutant clones (purple bars, n=28, 25 respectively). ns = not significant, assessed by Fisher's exact test. Error bars represent SEM.

(**C**) A *Dp*^{a3} mutant clone (green, C') at 7 dpci, labeled with an antibody against Dp protein (red, C"). Mutant CySCs (closed arrowheads) lack detectable Dp. Neighboring wild type CySCs, marked with open arrowheads, express Dp protein (C").

(**D**) CySC clones expressing the same RNAi construct targeting Dp as in Fig. 1 (arrowheads) can be recovered at 7 dpci. GFP (green) marks the clones. Tj (blue) marks CySCs and early cyst cell. Vasa (red) labels the germline.

(E) A Dp^{a3} mutant clone (green) at 14 dpci labeled with EdU. The clone contains several Zfh1positive (blue, D"), EdU-positive (red, D') CySCs (arrowhead shows one such CySC). (F) CySC clones (green) mutant for *E2f1* can be recovered after 7 days. (The arrowheads show two such CySCs). Zfh1 (blue) marks CySCs and early cyst cells. N-Cad (red) marks the hub. (G) Graph indicating the clone recovery rates at 2 and 7 dpci for control clones (labeled *FRT*^{82B}, gray bars, n=35 and 80, respectively) and *E2f1* mutant clones (blue bars, n=41 and 32, respectively). ns = not significant, assessed by Fisher's exact test. Error bars represent SEM. The hub is shown with an asterisk in A, C, D, E, F. Scale bar = 20 μ M.

(**A-D**) Hub cells in control tj > + testes (A,B) express *hh-LacZ* and *upd-LacZ*, but the number of cells expressing these markers is greatly reduced in tj > Dp-RNA*i* testes (C,D) after 10 and 3 days at 29°C, respectively.

(E) Graph of the number of hub cells in tj^{TS} > + (gray bars, n=17, 21, 8, 35, 17 at 0, 3, 7, 10, 20 days, respectively), tj^{TS} > *Dp-RNAi* (purple bars, n=28, 14, 6, 39, 30 at 0, 3, 7, 10, 20 days, respectively); tj^{TS} > *E2f1-RNAi* (pink bars, n=18, 17, 11, 29, 22 at 0, 3, 7, 10, 20 days, respectively). Flies were reared at 18°C until eclosion and then reared at 29°C for the indicated time periods.

(**F**) Graph of the number of hub cells in control testes (gray bars, n=32 for *eyaA3* > +, n=35 for C587 > +, n=12, 7, and 37 for fng^{TS} > + at 0, 10 and 20 days, respectively), or in testes with knockdown of Dp (purple bars, n=43 for *eyaA3* > Dp-RNAi, n=52 for C857 > Dp-RNAi, n=14, 9, 32 for fng^{TS} > Dp-RNAi at 0, 10, and 20 days, respectively) or E2f1-RNAi (pink bars, n=16 and 12 for fng^{TS} > E2f1-RNAi at 10 and 20 days, respectively) in *eya* >, C587 >, or fng^{TS} > at the indicated time periods.

Error bars represent the data range. **** P < 0.0001; *** P < 0.001; ** P < 0.01; ns = not significant, as assessed by Student's t-test. See Supplementary Table 1 for exact P values. Scale bar = 10μ M.

(**A**) Schematic of the screen performed to identify secreted factors from CySCs influencing hub fate. Briefly, we cross-referenced genes enriched in testis stem cells with the list of *Drosophila* secreted proteins. We obtained flies carrying RNAi lines targeting the resulting 44 genes and crossed them to a *tj*-*GAL4* line, and scored for phenotypes on hub cells.

(**B**, **C**) Representative confocal images of testes from tj > Fs-RNAi at 2 weeks of adulthood. Note the absence of Fas3-positive hub cells in both images. Arrowhead in (B) indicates a differentiating 16-cell spermatogonia. Arrowhead in (C) indicates canoe stage spermatids that normally are located basally. Due to the absence of any mitotic cells, these differentiated cells are observed more apically. Vasa (magenta) labels germ cells in (B); Fas3 (green) marks hub cells and Topro (white) marks DNA.

(**D**) Model of the *Fs* genomic locus and the two predicted *Fs* isoforms (*Fs-RA* and *Fs-RB*). The first line below the genomic locus shows the approximate extent of the deletion spanning coding exons 1-4 in the Fs^{null} allele created with gDNAs in the positions shown with red arrows. The location of the primers used for qPCR and the sequence targeted by the RNAi is shown below. Gray boxes represent non-coding exons and black boxes the coding exons.

(E) Left panel: expression of *Fs* mRNA in control tj > + (gray bar) and tj > Fs-RNAi (blue bar) as measured by qRT-PCR (n=4). Right panel: expression of *Fs* mRNA in wild (wt) type testes (gray bar) and *Fs*^{null} mutant testes (blue bar) as measured by qRT-PCR (n=4).

(F) Number of hub cells in control nos > + (gray bar, n=10 and 12 at 0 and 10 days,

respectively) *and nos > Fs-RNAi* (blue bar, n=12 and 17 at 0 and 10 days, respectively) at 0 and 10 days of adulthood.

(**G**) Representative confocal image of a *Fs^{null}* testis at 4 weeks of adulthood. Fas3 (green) staining reveals only one hub cell (arrow) remaining in these testes. Topro (magenta) marks DNA.

(H) Graph of number of hub cells at different time points of adulthood in testes carrying the hub cell driver *upd-GAL4* in an heterozygous Fs^{null} + (light gray bars) or homozygous Fs^{null}/Fs^{null} (blue bars) background; or in testes in which *upd-GAL4* drives *UAS-Fs* in an heterozygous Fs^{null} + (dark gray bars) or homozygous Fs^{null}/Fs^{null} (purple bars) background. See Supplementary Table 1 for n values.

(I) Graph of number of hub cells at different time points of adulthood in testes carrying the somatic cell driver *fng-GAL4* in a heterozygous Fs^{null} + (light gray bar, n=14) or homozygous Fs^{null}/Fs^{null} (dark gray bar, n=11) background; or in testes in which *fng-GAL4* drives *UAS-Fs* in a heterozygous Fs^{null}/Fs^{null} (brown bar, n=14) or homozygous Fs^{null}/Fs^{null} (yellow bar, n=24) background.

(J) Graph of number of hub cells at 0 and 4 weeks of adulthood in heteroalleic combinations of the indicated *Fs* hypomorphic mutant alleles. See Supplementary Table 1 for n values. Error bars represent the data range. **** P < 0.0001; *** P < 0.001; ** P < 0.01; ns = not significant, assessed by Student's t-test. Scale bar = 50 μ M.

12

Figure S4: Depletion of *E2f1* from the cyst lineage causes a significant decrease in Fs protein in the testis stem cell microenvironment, Related to Fig. 2.

(**A**, **B**) Representative confocal images of the expression pattern of a Fs protein trap (Fs^{GFP} in green) in control tj > + testis (A) and a tj > E2f1-RNAi testis in which E2f1 was depleted from the cyst cell lineage for 7 days (B). Tj (red) marks CySCs and early cyst cells and Fas3 (blue) marks hub cells. Dashed blue line indicates cluster of hub cells. Red dashed line indicates CySCs within 1 cell diameter of the hub.

(**C**) Graph of relative GFP intensity in tj > + testes (gray bars, n=15) or tj > E2f1-RNAi testes (blue bars, n=23) of CySCs (i.e., the area between the dashed blue and red lines in A,B) and in cyst cells (i.e., the area basal to the red dashed line in A,B).

Error bars represent the data range. * P < 0.05; ns = not significant, assessed by Student's t-test.

Scale bar = $10 \mu M$.

Figure S5: Depletion of *Dp* from the cyst lineage causes transdifferentiation of hub cells into CySCs, Related to Fig 4.

(A) Model indicating the alternative experimental design (referred to as "hh > lineage

(GTRACE)") to deplete Dp from CySCs while concomitantly lineage tracing hub cells using

independent binary expression systems, complementary to the design shown in Figure 4A (referred to as "hh > lineage (FlexAmp)"). Experimental data are shown in (B). To trace the lineage of hub cells, we used *hh-QF*, which is expressed in only hub cells, to induce *QUAS-FLP*. In turn, FLP recombines *FRT* sites in the *ubi>STOP>GFP* GTRACE transgene. This leads to the labeling of hub cells and their lineage with nuclear GFP. At the same time, *C587-GAL4* drives expression of a *Dp-RNAi* transgene, which depletes Dp from CySCs but not from hub cells.

(**B**) Graph showing the percentage of testes with hub lineage-positive CySCs in C587 > + (gray bar, n=67) and C587 > Dp-RNAi (blue bar, n=48) testes, using the experimental design indicated in (A).

(**C**, **D**) Example images of *C587* > + (C) and *C587* > *Dp-RNAi* (D) testes, using the experimental design indicated in (A). Only in the latter genotype can GFP (green)-positive cells from the hub lineage (D, arrowheads) be found outside the hub. Zfh1 (red) marks CySCs; Fas3 (blue) marks hub cells. A red dashed line outlines the hub.

(E-G) There are GFP (green)-positive cells lacking the hub cell marker Fas3 (red) (F-F''', arrowhead) located outside the cluster of hub cells in a *C587* > *Dp-RNAi; hh* > *lineage* (*FLEXAMP*) testis but not in a control *C587* > +; *hh* > *lineage* (*FLEXAMP*) testis (E), following the experimental design indicated in **Fig. 4A**. These GFP-positive cells also incorporate EdU, showing that they undergo DNA replication (F''', arrowhead) and differentiate into cyst cells, which express Eya and have thin, long membranes wrapping differentiating germ cell cysts (G-G'', arrowhead). A red dashed line outlines the hub. The *hh* lineage is green in (E-G). EdU is blue and Fas3 is red in (E,G). Fas and Eya are red and Zfh1 is blue in (G). Error bars represent SEM. **** P < 0.0001, assessed by Fisher's exact test. Scale bar = 10 μ M.

(A) A *daw-GAL4* enhancer trap driving *UAS-GFP* (GFP). The *GAL4* insertions drives GFP expression in Fas3-positive hub cells and Zfh1-positive CySCs. GFP is green; Fas3 is blue; Zfh1 is red; DAPI (white) marks DNA.

(B) Babo, as assessed by a fosmid *babo-GFP* transgene, is present at the surface of hub cells, CySCs and cyst cells and early germ cells. GFP is green; Vasa is red and Topro, which marks DNA, is blue.

(C) *Actβ-GAL4* driving expression of *UAS-GFP*. GFP is not detected in any cells of the testis stem cell niche. GFP is green; Vasa is red; Fas3 and Zfh1 are both blue.

(D) Act β , as assessed by a fosmid *Act\beta-GFP* transgene, is not detected in any cells in the testis stem cell niche. GFP is green; Vasa is red; and Fas3 is blue.

(E) *myo-GAL4* driving expression of *UAS-GFP*. GFP is not detected in any cells of the testis stem cell niche. GFP is green; Vasa is red; Fas3 is blue.

(F) Myo, as assessed by a fosmid *myo-GFP* transgene, is not detected in any cells in the testis stem cell niche. GFP is green; Vasa is red; and Fas3 is blue.

(G) The type II receptor Put is not detected in hub cells in the testis stem cell niche, as assessed by a fosmid *put-GFP* transgene. GFP is green; Vasa is red; and Fas3 is blue. Scale bar = 10 μM.