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Summary
Across species, offspring of related individuals often exhibit significant reduction in fitness-related traits, known as inbreeding depres-

sion (ID), yet the genetic and molecular basis for ID remains elusive. Here, we develop a method to quantify enrichment of ID within

specific genomic annotations and apply it to human data. We analyzed the phenomes and genomes of �350,000 unrelated participants

of the UK Biobank and found, on average of over 11 traits, significant enrichment of ID within genomic regions with high recombina-

tion rates (>21-fold; p < 10�5), with conserved function across species (>19-fold; p < 10�4), and within regulatory elements such as

DNase I hypersensitive sites (�5-fold; p ¼ 8.9 3 10�7). We also quantified enrichment of ID within trait-associated regions and found

suggestive evidence that genomic regions contributing to additive genetic variance in the population are enriched for ID signal. We find

strong correlations between functional enrichment of SNP-based heritability and that of ID (r ¼ 0.8, standard error: 0.1). These findings

provide empirical evidence that ID is most likely due to many partially recessive deleterious alleles in low linkage disequilibrium regions

of the genome. Our study suggests that functional characterization of ID may further elucidate the genetic architectures and biological

mechanisms underlying complex traits and diseases.
Introduction

Mating between genetically related individuals, i.e.,

inbreeding, has detrimental phenotypic consequences in

resulting offspring.1–8 This phenomenon, known as

inbreeding depression (ID), has been reported for multiple

human traits, such as stature, intelligence, lung function,

and fertility.5–7,9 Inbreeding results in increased homozy-

gosity across the genome and ID can be explained by the

increased homozygosity of (partially) recessive deleterious

alleles, thereby exposing their detrimental effects on

fitness and fitness-related traits. Detecting ID and quanti-

fying its strength in human populations is particularly

challenging because inbreeding is less common and less

extreme and the effective population is larger in humans

than in some other animal species.10,11 As a consequence,

sample sizes of 100,000s or more participants are required

to obtain reliable estimates of ID.12 Over recent years, the

advent of large scale biobanks such as the UK Biobank

(UKB) has allowed detection and quantification of ID in

a wide variety of traits, including hip-to-waist ratio, heart

rate, facial aging, or hemoglobin levels, which previously

were not known to be associated with inbreeding.7

Despite a growing catalog of traits associated with

inbreeding, the genetic basis of ID in humans remains

elusive. Notably, genes, biological pathways, or functions

involved in ID are still largely unknown. Previous studies

have attempted to identify genes involved in ID by testing
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the association between runs of homozygosity (ROHs)13

and traits or diseases.14 Although the latter studies have

not robustly identified such genes in humans,15,16 the

approach has been more powerful in other animal species

with smaller effective population sizes, such as cattle.17,18

In addition, studies in Drosophila19–21 have tested the asso-

ciation between inbreeding coefficients (F) and gene

expression and have thereby identified genes implicated

or affected by inbreeding. Overall, contrasting findings

from human and non-human studies highlight the limited

statistical power to dissect ID in humans and thus calls for

larger sample sizes and new analytical methods to over-

come this challenge.

Here, we develop amethod to detect and quantify ID at a

finer scale by breaking its effects down to genomic regions

with specific annotations. An enrichment of ID within a

given genomic regionmeans that homozygosity in that re-

gion (or regions sharing the same annotation) has a dispro-

portional effect on themean value of a trait as compared to

the effect of homozygosity at any equally sized, randomly

selected genomic region. We chose genomic annotations

as a higher-level unit (as opposed to lower-level units,

such as genes, for example) in order to measure the func-

tional impact on traits of homozygosity at particular types

of variants. Using this method, we analyzed genetic and

phenotypic data from a large sample of �350,000 unre-

lated participants of the UKB. Our method utilizes (but is

not restricted to) functional annotations introduced in
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Finucane et al.,22 Gazal et al.,23 and Hujoel et al.,24

covering diverse properties of the human genome. We spe-

cifically quantify the degree to which variants located

within these functional genomic regions contribute to ID

across 11 traits. These 11 traits were selected on the basis

of prior evidence of ID11 and are height, hip-to-waist ratio,

handgrip strength (average of left and right hand), lung

function measured as the peak expiratory flow, visual acu-

ity, auditory acuity, number of years of education, fluid in-

telligence score, cognitive function measured as the mean

time to correctly identify matches, fertility measured as the

number of offspring, and overall health measured as the

number of diseases diagnosed in an individual. We use

our method to quantify the enrichment of ID within

trait-associated genomic regions identified through

genome-wide association studies (GWASs) and finally

compare functional enrichments of heritability with that

of ID.
Material and methods

Quantification of the enrichment of ID via individual-

level data
Model definition

Let y denote a quantitative trait subject to ID. We assume an infin-

itesimal model where all SNPs contribute to ID. We can therefore

write y as

y¼
XM
j¼1

bjFj þ e; (Equation 1)

where Fj denotes an estimator of the inbreeding coefficient based

on genotypes at SNP j (j ¼ 1;.;M), bj the contribution of SNP j to

ID, and e a residual term capturing all other effects, including ad-

ditive genetic and environmental effects.

Estimation of ID from inbreeding measures based on genome-

wide average homozygosity (as opposed to runs of homozygosity

[ROHs]) relies on the assumption that bj is random and has a con-

stant expectation E½bj� ¼ b=M, where b denotes the genome-wide

ID. Other inbreeding measures, such as the excess of homozygos-

ity measure, rely on the assumption that E½bj� is proportional to

mean heterozygosity hj ¼ 2pjð1 � pjÞ, where pj is the minor allele

frequency (MAF) at SNP j in the population. We previously intro-

duced a flexible MAF and linkage disequilibrium (LD)-stratified

method to estimate ID, which we showed to yield unbiased esti-

mation of ID even when the relationship between E½bj� and hj is

misspecified.9 Here, we further extend this approach by allowing

SNPs within different genomic annotations to have a specific

contribution to ID. We propose the following model:

E
�
bj

�¼ b0
M

þ
XK
k¼1

�
zjk

�
bk
mk

�
þ �1� zjk

�� b� bk

M �mk

�	
; (Equation 2)

where b denotes the genome-wide ID parameter, b0 ¼ � ðK � 1Þb,
zjk. the indicator of membership of SNP j to annotation k (k ¼
1.K), bk the contribution of annotation k to ID, and mk. (1%

mk%M)he number of SNPs in annotation k. We hereafter denote

pk ¼ mk=M as the proportion of SNPs in annotation k. Under the

null hypothesis that each SNP contributes equally to ID, each

genomic annotation is expected to contribute proportionally to
The American
the number of SNPs it contains. Therefore, we can define the

enrichment of ID in annotation k, hereter denoted dk, as the ratio

between the contribution of annotation k to ID that is bk over the

expected contribution of annotation k to ID that is pkb, i.e., dk ¼
bk=ðpkbÞ.
Combining Equation 1 and Equation 2 leads to (Appendix A)

y¼ bFg þ
XK
k¼1

�
bk

pk

� b

	��
pk

1� pk

	�
Fk � Fg

	�
þ e; (Equation 3)

where Fk denotes the average inbreeding coefficient across SNPs in

annotation k, Fg denotes the average inbreeding coefficient across

all M SNPs, and e the residual term from Equation 1.

Estimation of model parameters

Equation 3 implies that tk ¼ bk=pk � b can be directly estimated by

performing a multivariate regression of y onto Fg and the

ðDFk ¼ pkðFk �FgÞ=ð1�pkÞÞ terms. Therefore, enrichment of ID in

annotation k can be detected with standard regression p values

quantifying the statistical significance of tk. We use the latter

approach in all analyses.

It is important to note, as with methods for partitioning herita-

bility,22 that certain combinations of annotations cannot be fitted

jointly with Equation 3. Indeed, in some cases, overlap between

annotations can induce a strong collinearity between inbreeding

measures, which can make estimates unstable. For example,

when the annotation is defined by chromosome number, fitting

Fg as well as all chromosome-specific inbreeding measures will

lead to identifiability issues. In the latter case, a simple solution

is to choose one class of the annotation as a reference (e.g., chro-

mosome 1) and therefore remove it from the model.

One of the challenges of our model is to provide estimates that

can be interpreted in terms of enrichment (or depletion) of ID.

However, enrichment is often intuitively conceptualized on amul-

tiplicative scale, whereas the inference in our model is done on an

additive scale (linear regression). Parameters tk and dk ¼ 1þ tk=b

measure the same information, but tk is on an additive scale and

is directly estimated, while dk is on a multiplicative scale (the

scaled used for interpretation) and derived from estimated param-

eters. Previous studies aiming at partitioning additive genetic vari-

ance (e.g., Finucane et al.22) faced similar challenges and addressed

them in the same way by using two scales for their model param-

eters. However, the parameterization chosen in our study leads to

a much simpler relationship between tk and dk, thereby allowing

for the use of the p value of dk, which is readily available from

fitting the model to test the significance of dk for tk.

Average ID enrichment across traits

The significance of the average ID enrichment across traits (i.e., dk)

is determined by that of the average estimate of tk’s across traits,

hereafter denoted tk. Given that tk is a linear combination of ordi-

nary-least-squares (OLS) estimators, its asymptotic distribution is

also Gaussian and its sampling variance defined as

var

�
tk

	
¼ 1

T2

XT
t¼1

XT
t 0¼1

rt;t 0
�
varðtk;tÞvar

�
tk;t 0
��1=2

; (Equation 4)

where varðtk;tÞ is the sampling variance of the OLS estimator of tk
for trait t and rt;t 0 the correlation between OLS estimators of tk;t
and tk;t 0 . In practice, we propose to approximate rt;t 0 with the sam-

ple correlation between traits, which is a valid approximation

given that OLS estimators are linear transformations of the pheno-

types. Therefore, we test the significance of tk by using the

following test statistic, t2k=varðtkÞ, which follows a chi-square
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distribution with 1 degree of freedom under the null. Finally, we

consistently define the average ID enrichment across traits as

dk ¼ 1 þ tk=b, where b is the average ID across traits.

ID enrichment within continuous annotations

We analyzed continuous genomic annotations defined by non-

negative values (e.g., recombination rate or posterior causal prob-

ability). We scaled these annotations by the largest value observed

across the genome such that each SNP is assigned a value ~zjk be-

tween 0 and 1. We then defined ~pk as the mean of the ~zjk’s across

the genome (which is equivalent to the proportion of annotated

SNPs when genomic annotations are binary variables) and used

that value as our reference to calculate enrichments of ID for

continuous annotations. Note that the use of another statistic

from the distribution of ~zjk’s (e.g., the median) would not change

statistical significance but will influence the magnitude of the esti-

mated ID enrichment.

When reporting results for continuous annotations, we used

terms such as ‘‘high’’ or ‘‘low’’ (e.g., ‘‘high recombination rates’’

or ‘‘low nucleotide diversity’’) only to indicate the direction of

the effect but not to imply that the annotation was discretized

in any way.

Depletion of ID enrichment

In some cases, we observed that estimates of tk can lead to negative

values of the enrichment statistic dk, which are difficult to inter-

pret. We refer to this situation as ‘‘depletion of ID signal’’ and

report instead the estimate �dk ¼ 1� pkðdk �1Þ=ð1�pkÞ correspond-
ing to a transformed annotation defined by (1-zjk) or (1-~zjk).

Inbreeding measures

Tomaximize power to detect ID enrichment across a wide range of

causal allele frequencies, we use two inbreeding measures in our

analyses. The first is the correlation between uniting gametes1,2

(FUNI) and the second is the proportion, FROH, of SNPs contained

in >1.5 Mb-long runs. Note that our definition of FROH is slightly

different from the widely used definition of FROH, which is the pro-

portion of an individual genome that is covered by their ROHs.We

chose this alternative definition because it offers more flexibility

for partitioning analyses while still retaining the same amount

of information (correlation > 0.99; Figure S1). FUNI was previously

shown to be more powerful to detect ID caused by well-tagged

causal variants (e.g., SNPs with a minor allele frequency [MAF] >

1%),9,25 while FROH can perform better when alleles causing ID

are rarer and therefore poorly imputed via current imputation

reference panels andmethods.12,26We re-assessed the relative frac-

tion of ID captured with either inbreeding measure and show that

common and rare alleles both contribute to ID and that their rela-

tive contribution is trait specific (Figure 1).

For ROH-based analyses, the null hypothesis is defined such that

each SNP has an equal probability of being covered by identical-

by-descent genomic segments, which we approximate in this

study by using long ROHs.We show in the supplemental methods

section that violation of this assumption because of non-uniform

genomic distribution of ROHs has little impact on our results.

We used PLINK 1.9 with the –ibc command to estimate FUNI for

each UKB participant. For continuous annotations, we used a

custom Cþþ program (see data and code availability and web re-

sources) that calculates weighted sums of per-SNP estimates of

FUNI with weights proportional to the value of the annotation. For

binary annotations, we calculated FUNI by only using SNPs assigned

to those annotations. ROHs were called with the following PLINK

command: –maf 0.05–homozyg–homozyg-density 50–homozyg-

gap 1000–homozyg-kb 1500–homozyg-snp 50–homozyg-window-

het 1–homozyg-window-missing 5–homozyg-window-snp 50. We
1490 The American Journal of Human Genetics 108, 1488–1501, Aug
then used 19,476,620 imputed SNPs with MAF > 0.1%, which

were annotated to 187 functional categories (web resources) and

defined FROH as the proportion of these SNPs contained in a ROH.

Similarly, annotation-specific inbreeding measures were calculated

as the (weighted) proportionof SNPs assigned to a given annotation

that is contained in a ROH.
SNP genotyping
We used allele counts at 44,741,804 SNPs genotyped and

imputed in 487,409 participants of the UK Biobank27,28 (UKB).

Although an extensive description of our dataset was given pre-

viously,29 we briefly summarize the main steps of data prepara-

tion. We identified 456,414 UKB participants of European

ancestry by using projected principal components based on

sequenced participants of the 1000 Genomes Projects with

known ancestry.29 We then restricted our analyses to a subset

of these participants that contains 348,501 conventionally unre-

lated participants, i.e., whose estimated pairwise SNP-based

genomic relationships are <0.05. Genomic relationships were

estimated with 1,124,803 common (MAF R 1%) HapMap330

SNPs via GCTA (v.1.9).31 Imputed SNPs included in our

FUNI-based analyses were selected on the basis of the following

criteria: MAF > 1%, p value from the Hardy-Weinberg equilib-

rium test > 10�6, and imputation quality r2INFO statistic > 0.3. Af-

ter quality control, 9,326,198 imputed SNPs were included in our

analyses. Genotyped SNPs used to call ROH were selected, as pre-

viously described,11 via the following criteria: missingness rate <

1%, MAF > 5%, and Hardy-Weinberg equilibrium test p value >

0.0001. Quality control was performed with PLINK 1.932

(v.1.90b6.13 64 bit from November 30, 2019).
Association between levels of inbreeding and

phenotypes measured in the UKB
We tested the association between FUNI or FROH and traits by using

linear regression adjusted for age at recruitment (UKB field 21022-

0.0), sex, assessment center (UKB field 54-0.0), genotyping chip

and batch, year of birth (UKB field 34-0.0), year of birth square,

and the top ten genetic principal components calculated via

PLINK 2.0. For each trait, we excluded phenotypic values larger

than 4 standard deviations and then pre-adjusted trait values for

the covariates listed above. Residuals obtained from these pre-

adjustment analyses were then inverse normally transformed

and used as focal traits. UKB identifiers for our 11 focal traits are

height (UKB field 50-0.0), hip-to-waist ratio (ratio of UKB field

49-0.0 over UKB field 48-0.0), handgrip strength (average of UKB

fields 46-0.0 and 47-0.0), lung functionmeasured as the peak expi-

ratory flow (UKB field 3064-0.0), visual acuity measured on log

MAR scale (average between UKB field 5201-0.0 and UKB field

5208-0.0), auditory acuity measured as the speech reception

threshold (average between UKB field 20019-0.0 and UKB field

20021-0.0), number of years of education (EA), fluid intelligence

score (UKB field 20016-0.0), cognitive function measured as the

mean time to correctly identify picture card matches (UKB field

20023-0.0), fertilitymeasured as the number of children (for males

UKB field 2405-0.0 and for females UKB field 2734-0.0), and num-

ber of diseases diagnosed estimated as the number International

Classification of Diseases, Tenth Revision (ICD10) codes reported

for UKB participants (release prior to December 2020). The North

West Multi-Centre Research Ethics Committee (MREC) approved

the study, and all participants in the UKB study analyzed here pro-

vided written informed consent.
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Figure 1. Partitioning of inbreeding
depression (ID) between FROH and FUNI

Left shows marginal analyses where ID is
estimated with either FROH and FUNI. Right
shows estimates of ID obtained from fitting
FROH and FUNI jointly. Error bars represents
95% confidence intervals. Highlighted in
red font: two traits (number of children
and reaction time) for which ID is mostly
captured by FROH. SD, standard deviation.
Genomic annotations used in individual-level analyses
We used genomic annotations previously compiled and processed

by Finucane et al.,22 Gazal et al.,23 and Hujoel et al.24 The 44

genomic annotations analyzed in our study were derived from

187 annotations downloaded from the LD score regression repos-

itory (baselineLF_v2.2.UKB model; web resources).

Binary annotations include putative evolutionary old enhancers

and promoters (referred to in Hujoel et al.24 as ancient sequence

age: 3 2 annotations); flanking bivalent transcription start sites

or enhancers from the RoadmapEpigenomics Project;33 coding; in-

tronic; promoter; 30 UTR and 50 UTR genomic regions from the

UCSCGenomeBrowser34 (post-processedbyGusevet al.35); synon-

ymous and non-synonymous; conserved genomic regions across

mammals, primates, and vertebrates (phastCons 46-way24); CTCF

(annotation from Hoffman et al.36); digital genomic footprint

(DGF data from ENCODE37 and post-processed by Gusev et al.35);

DNase-I hypersensitive sites (ENCODE and Roadmap Epigenomics

data post-processed by Trynka et al.38 and also merged with fetal

DHS annotation); enhancers (merged 3 2 annotations: from An-

dersson et al.39 and Hoffman et al.36); histone marks (merged

H3K27ac annotations from Hnisz et al.40 and Kundaje et al.33

post-processed by PGC2,41 H3K4me1,38 H3K4me3,38 and

H3K9ac38); enhancers andpromoters fromVillar et al.;42 promoters

of loss-of-function-intolerant genes from ExAC (annotation from

Hujoel et al.24); promoter flanking;36 repressed genomic re-

gions;36 super enhancers;40 transcription factor binding sites;37

transcribed genomic regions;36 transcription start sites;36 weak en-

hancers;36 and >4 rejected substitution from GERPþþ score.43

Continuous annotations include maximum posterior probabil-

ity from fine-mapping of molecular QTL44 (expression, methyl-

ation, H3K4me1, and H3K27ac), background selection statistic

(McVicker B statistic),45 predicted allele age,46 time to most recent

common ancestor,47 nucleotide diversitywithin 10 kb, recombina-

tion rate (within 10 kb) based on theOxford recombinationmap,48

CpGcontentwithin50 kb,GERPþþ score (number of substitution;

referred to as GERP NS), and number of species sharing a given pu-

tative enhancer.24We also analyzed LD score with 1Mb chi-square

association test-statistic with a given trait or level of heterozygosity

(i.e., MAF3 (1 �MAF)) as continuous annotations.

Enrichment of heritability and ID from GWAS summary

statistics
Enrichment of ID in trait-associated genomic regions

We first performed a standard GWAS of each of the 11 traits

included in our analyses. We tested association between SNPs
The American Journal of Human Genet
and traits by using an additive model

(hereafter referred to as additive GWAS)

where allele counts are directly correlated

with traits. We then used resulting chi-

square association test statistics as a
continuous annotation and estimated its corresponding ID

enrichment by using the method described above.

Estimation of heritability and ID enrichment via stratified LD score

regression

We quantified the enrichment of SNP-based heritability in the 44

genomic annotations described above by using stratified LD score

regression22 (SLDSC). In brief, the SLDSCmethod, as implemented

in this study, was based upon the following regression model:

E
h
c2
j

i
¼1þNah2 þN

XK
k¼1

qk;h2

�
[ jk

Mk

	
; (Equation 5)

where ah2 measures the level of confounding (e.g., due to uncor-

rected population stratification) in the GWAS, c2
j the chi-square as-

sociation statistic of SNP j, N the GWAS sample size, qk;h2 the effect

size of annotation k on trait heritability (h2), [jk (the annotation-

weighted LD score), and Mk defined as

[ jk ¼
XM
i¼1

zikr
2
ij and Mk ¼

XM
l¼1

zik; (Equation 6)

where r2ij is the squared correlation of allele counts between SNP i

and SNP j.

We used publicly available annotation-weighted LD scores of

1,190,321 sequenced HapMap 3 SNPs from Finucane et al.,22 Gazal

et al.,23 and Hujoel et al.24 (web resources), which were calculated

against a larger set of 9,997,231 sequenced SNPs with MAF > 0.5%

in a European ancestry sample from the 1000 Genomes Project. LD

scores of duplicated annotations were averaged. We analyzed each

annotation independently and included the standard LD score

([j0 ¼ PM
i¼1

r2ij ) and ten MAF-class-specific LD scores (i.e., LD score

with SNPswithin a givenMAF class only) as covariates.23 Parameters

were estimatedviaweighted least-squareswithweights proportional

to 1=[j0.

Next,were-tested theassociationbetweenSNPsandtraits byusing

amodelfittingbothallele countsand the indicatorofheterozygosity,

which estimates dominance deviation at each SNP. We refer to the

latter analysis as additive-dominance GWAS.We show in Appendix

B that the LD score regressionmethodology can be extended to esti-

mate ID from summary statistics of an additive-dominance GWAS

and further extend it below toquantify enrichmentof ID ingenomic

annotations by using the following regression model:

E
��Zd;j

�¼ ab þ
ffiffiffiffi
N

p XK
k¼1

qk;b

�
[ jk

Mk

	
; (Equation 7)
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where Zd;j is the Z scores of estimates of dominance deviation at

SNP j, ab the intercept term measuring confounding effects, and

qk;b the effect size of annotation k on ID. Standard errors for qk;h2,

qk;b as well as their correlation across multiple annotations were

estimated with a block-jackknife (leave one block out) procedure

based on 240 �10 Mb-long genomic segments used as blocks.
Results

The relative contribution of rare variants to ID varies

across human traits

Clark et al.16 previously claimed that ID is predominantly

caused by rare, recessive variants made homozygous in

long ROH and not by homozygosity at variants that are

in LD with common SNPs. To reach that conclusion, their

study compared the magnitude of conditional estimates of

ID from a bivariate linear regression model fitting FUNI

(referred to as FGRM in their study) and FROH jointly. Clark

et al. restricted their calculation of FUNI to SNPs with an

MAF > 5% across diverse studies in which participants

were genotyped with different arrays. We show that the

same analysis performed in a homogeneous and large sam-

ple like the UKB leads to a different and trait-specific

conclusion regarding the contribution of rare variants to

ID. As described in Clark et al., we calculated both FUNI

and FROH by using 301,412 quality-controlled genotyped

SNPs (as described in Yengo et al.11) with MAF > 5% and

also used the same definition of ROH. For this analysis,

FROH was defined as in Clark et al., i.e., the cumulated

length of ROH in Mb divided by 3,000.

We found that the relative fraction of ID captured by

each inbreeding measure varies between traits (Figure 1).

For example, the estimated effects of FUNI on the number

of children and on the mean time to identify matches (re-

action time) both became not statistically significant (p <

0.05) once conditioned on FROH. This observation is consis-

tent with Clark et al.’s claims and suggests a larger relative

contribution of rare variants to ID in these traits. However,

we find that ID in hip-to-waist ratio as well as on fluid in-

telligence is mostly captured by FUNI. Finally, for height

and peak expiratory flow, the conditional effects FROH

and FUNI are of similar magnitudes, suggesting that both

low frequency variants and more common partially reces-

sive alleles are causal of ID in these traits. On average across

traits, we found that the conditional effects of FUNI and

FROH were not statistically different from each another.

Altogether, our results imply that alleles causing ID span

a larger spectrum of the frequencies (from rare to common,

e.g., >5%) and that the relative contribution of rare vari-

ants is trait specific.

Enrichment of IDwithin functional genomic annotations

We analyzed 44 genomic annotations (including 12

continuous annotations; material and methods), which

cover �98% of the autosome (Figure S2). In total, our anal-

ysis involves 11 traits, 44 annotations, and 2 inbreeding

measures (i.e., 113 443 2¼ 968 trait-annotation-measure
1492 The American Journal of Human Genetics 108, 1488–1501, Aug
triplets). Therefore, statistical significance accounting for

multiple testing (Bonferroni correction) was set to 0.05/

968 z 5.2 3 10�5. We also quantified the average ID

enrichment across traits, in which case statistical signifi-

cance was set to 0.05/(44 3 2) z 5.7 3 10�4. Note that

Bonferroni correction is most likely too conservative

because the overlap between genomic annotations

(Figure S3) induces a positive correlation across statistical

tests. Therefore, we also report enrichments detected at a

false discovery rate (FDR) threshold of 5%.

On average across traits, we detected significant enrich-

ment of ID within 8 annotations (Figure 2; Table S1).

Importantly, the largest enrichment was detected with

both inbreeding measures within genomic regions with

high recombination rates (dFROH
�33.5, p ¼ 3.2 3 10�4;

and dFUNI
�21.9, p ¼ 1.5 3 10�6). Other significant enrich-

ments were detected within conserved genomic regions

across mammals (dFUNI
�20.9, p ¼ 7.8 3 10�5) and primates

(dFUNI
�19.1, p ¼ 1.9 3 10�4); DNase I hypersensitive re-

gions (DHS: dFUNI
�5.7, p ¼ 2.3 3 10�7); chromatin acces-

sible regions identified through digital genomic foot print-

ing (DGF: dFUNI
�5.3, p ¼ 2.1 3 10�5); regions with large

GERPþþ score,43 which measures the strength of

purifying selection at a locus (dFUNI
�3.9, p ¼ 4.5 3 10�6);

genomic regions with low nucleotide diversity (dFROH
�3.0,

p ¼ 1.8 3 10�4); and H3K4me1 histone marks (dFUNI
�1.9,

p ¼ 4.3 3 10�5).

Previous studies have shown that nucleotide diversity

and linkage disequilibrium (LD) can influence ROH detec-

tion.49,50 Therefore, errors in ROH calling due to these two

annotations could potentially confound our results. Using

data from the UKB and from an independent sample from

the UK10K Project,51 we show in the supplemental

methods section (Figures S4–S6) that ROH genomic den-

sity as well as errors in ROH calling cannot explain the

enrichment of ID in low nucleotide diversity regions nor

that in high recombination rate regions. Importantly, ID

enrichment in high recombination rate regions is also de-

tected via FUNI, which minimizes the likelihood of this

finding’s being caused by errors in ROH calling. However,

we found that exclusion of the major histocompatibil-

ity complex (MHC) locus (hg19: chr6: 25,000,000–

35,000,000) from our analyses has a strong impact on

the significance of dFROH
in low nucleotide diversity regions

(without MHC: dFROH
�2.0, p ¼ 0.29; Table S8). Given that

ROH genomic density alone cannot explain that observa-

tion, we further investigated whether population stratifica-

tion of rare variants may confound our results. The latter

hypothesis is justified by the fact that enrichment in low

nucleotide diversity is detected with FROH, but not with

FUNI, which suggests a signal (or a confounding effect)

coming from low frequency variants. To test this hypothe-

sis, we used birth coordinates as proxies for geographically

localized rare variants and fitted those as covariates in our

analyses. To account for non-linear effects of rare variants

stratification, we used a k-means clustering approach to

create 100 geographical clusters from participants’ birth
ust 5, 2021



Figure 2. Significant inbreeding depression (ID) enrichment within eight genomic annotations
(A and B) Estimates of ID enrichment on average across 11 traits obtained via FUNI and FROH. Statistical significance was set at p < 0.05/
(44 3 2) z 5.7 3 10�4. Recombination rate and nucleotide diversity were analyzed as continuous annotations. ‘‘High recombination
rate’’ denotes that recombination rate is positively correlated with ID, and ‘‘low nucleotide diversity’’ denotes that nucleotide diversity
is negatively correlated with ID. Data underlying this figure are reported in Table S1. DHS, DNA-se I hypersensitive sites; DGF, chromatin
accessible regions from digital genomic footprint; GERP (NS), GERPþþ score number of substitution; H3K4Me1, histone mark (binary
annotation). Error bars represent standard errors (SEs).
coordinates and fitted those as categorical covariates.

Although these additional analyses were based on a

slightly reduced number of participants who reported their

birth location in the UK, we still found a significant enrich-

ment of ID within low nucleotide diversity regions

(adjusted for 20 PCs þ 100 birth coordinates clusters and

including MHC: dFROH
�3.3, p ¼ 1.4 3 10�4), consistent

with our main analysis. Altogether, our results show that

the MHC locus disproportionately contributes to the

enrichment of ID in low nucleotide diversity regions,

which is not explained by higher ROH frequency at this lo-

cus nor by uncorrected population stratification.

Recognizing that the Bonferonni correction is conserva-

tive, at FDR < 5%, we detected 16 additional annotations,

which include other regulatory elements (e.g., transcrip-

tion factor binding sites: dFUNI
�4.0) and conservation anno-

tations (e.g., promoters containing evolutionary old DNA

sequences: dFUNI
�27.0) as shown in Table S1.

Next,we assessed the independencebetweensignificantly

enriched annotations by fitting them jointly. On average

across traits, only ID enrichment within genomic regions

with low nucleotide diversity remained significant at

our initial Bonferroni threshold (dFROH
�3.1, p ¼ 3.0 3 10�4;

Table S2).

Moreover, we detected significant enrichment of ID in

height within transcribed genomic regions (dFROH
�8.0, p ¼

4.93 10�5) as well as in genomic regions with a low nucle-

otide diversity (dFROH
�7.6, p¼ 4.83 10�9) and those with a

shorter time to most recent common ancestor (TMRCA:
The American
dFROH
�5.8, p ¼ 7.6 3 10�6). Note that alleles with a shorter

TMRCA aremore likely to have arisen recently in the popu-

lation. Therefore, the latter result suggests a larger contribu-

tion of recent alleles to ID, consistent with previous

findings.7,52 Importantly, these three genomic annotations

were detected with FROH but did not pass statistical signifi-

cance when quantified via FUNI (p > 0.27), which suggests

that rare variants within (or with large values of) these an-

notations couldbe themaindrivers of our results forheight.

Interestingly, we also detected a significant depletion of ID

signal (material and methods) for height within transcrip-

tion start sites (enrichment outside TSS: dFROH
�2.0, p ¼

3.2 3 10�5; Table S3). Furthermore, we detected suggestive

ID enrichment at FDR< 5% for themajority of traits except

for fertility and visual and auditory acuity (Table S3).

Among these additional associations, we highlight the

strong enrichment of ID in height and cognitive function

within promoters of loss-of-function-intolerant genes

from the Exome Aggregation Consortium53 (>84 and p <

0.001 with both inbreeding measures; Table S3). We also

highlight suggestive enrichment of ID in peak expiratory

flow within DGF (dUNI�7.2, p ¼ 5.5 3 10�5), where �13%

common SNPs contribute �90% of the genome-wide ID

for that trait.

ID enrichment within GWAS-associated genomic

regions

Our analyses based on FUNI show interesting similarities

between functional enrichment of ID and that of additive
Journal of Human Genetics 108, 1488–1501, August 5, 2021 1493



Figure 3. Correlation between functional enrichment of SNP-
based heritability and inbreeding depression (ID) estimated
from GWAS summary statistics
Enrichment statistics for heritability (x axis: qk;h2 ) and ID (y axis:
qk;b) were estimated with stratified LD score regression (SLDSC)
as described in the material and methods section. Enrichments
statistics were averaged over 11 traits. Each dot represents a
genomic annotation, and errors bars represent standard errors
(SEs) calculated with a block-jackknife procedure. Annotations
highlighted in coral font show a statistically significant ID enrich-
ment at p < 0.05/88. DHS, DNA-se I hypersensitive sites; GERP
(NS), GERPþþ score number of substitution; LoF, loss of function.
Data underlying this figure are reported in Table S5.
genetic variance as reported previously.22 In both cases, we

see a strong enrichment of ID and SNP-based heritability

within genomic regions with conserved functions across

species as well as within regulatory elements such as pro-

moters, enhancers, and DHSs and a much smaller enrich-

ment within transcriptionally repressed or transcribed

regions.

To further explore these similarities, we sought to

directly quantify ID enrichment within trait-associated

loci identified through GWASs. Therefore, we performed

GWASs of all 11 traits in our sample of �350,000 unrelated

UKB participants (material and methods) and used chi-

square association statistics of each SNP to define a new

continuous annotation. Thus, we calculated 11 trait-spe-

cific inbreeding measures derived from FUNI such that

each SNP is weighted proportionally to the strength of its

association with the target trait. We then tested the ID

enrichment of these 11 GWAS-derived annotations. Given

that stronger association is expected at SNPs with large LD

scores,54 each analysis was also conditioned on another

continuous annotation defined by the LD score of each

SNP. On average across traits, we found marginally signifi-

cant evidence that genomic regions with large chi-square

association statistics, independently of LD, are enriched

for ID signal (dFUNI
�10.6, p ¼ 0.03; Table S4).

In addition, we sought to estimate the correlation be-

tween functional enrichment of heritability and that of

ID across the 44 genomic annotations analyzed previously.
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To ensure a fair comparison, we used stratified LD score

regression (SLDSC) as a unified framework to assess enrich-

ment of SNP-based heritability and that of ID. We denote

qk;h2 and qk;b as the SLDSC effect size of annotation k on

heritability and ID, respectively. We provide a

theoretical justification for using LD score regression to

estimate ID by highlighting its direct connection with

FUNI (Appendix B). Consistently, the mean correlation be-

tween Z scores of tk (i.e., our individual-level data-based

statistic to quantify enrichment of ID: tk ¼ bðdk � 1Þ; ma-

terial and methods) and qk;b is �0.7 (range: 0.5 up to 0.8)

across traits, which shows that both enrichment measures

largely capture the same information (Figure S7).

On average across traits, we find a significant positive

correlation between qk;h2 and qk;bof �0.77 with a block

jack-knife standard error (b.s.e.) of �0.13 (Figure 3). We

also detect a significant (p < 0.05/11) correlation between

qk;h2 and qk;b for specific traits (Figure S8; Table S6), such as

handgrip strength (r ¼ 0.91; b.s.e. ¼ 0.07), cognitive

function (r ¼ 0.82; b.s.e. ¼ 0.14), and peak expiratory

flow (r ¼ 0.93; b.s.e. ¼ 0.05). We show in the supplemental

methods section and Figure S9, through theory and simu-

lations, that a large positive correlation between enrich-

ments of heritability and ID in fitness could be expected

if the distribution of fitness effects of mutations causing

ID is moderately skewed, i.e., if the proportion of muta-

tions with large fitness effect is small. However, given

that this distribution is largely unknown, our theoretical

results therefore only provide a set of sufficient, but not

necessary, conditions that can explain our observations.

Furthermore, we performed additional simulations to

show that the correlation between enrichments of ID

and heritability is not due to an artifact in our methods,

which would systematically induce such a correlation

(supplemental methods, Figure S10).

Despite an overall large correlation between enrichments

of heritability and ID, we find that the effect of recombina-

tion rate on ID and on heritability are in opposite directions

(Figure 3). To further explore what could explain this obser-

vation, we performed extensive forward-time evolutionary

simulations by using SLiM355 (Supplemental Methods) to

quantify the effect of recombination rate on both heritabili-

ty and ID enrichments. In these simulations, we considered

various combinations of selection (s) and dominance (h)

coefficients for mutations causing ID and additive genetic

variance in fitness (material and methods). Using 1,000

simulation replicates (for each scenario),wefind that recom-

bination rate affects the enrichment of heritability and ID in

a non-linear fashion that is modulated by the strength of

both selection and dominance (Figures S11 and S12). More

specifically, our simulations show a strong enrichment of

ID in high recombination rate regions (>2 cM/Mb) only

when ID is caused by partially recessive (h ¼ 0:1) near-

neutral mutations, i.e., when s is between � 1=ð2NeÞ and

� 2=Ne;whereNe denotes the effective population size. Un-

der the same scenarios, heritability was either slightly

enriched or even depleted in high recombination regions.
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However, for large selectioncoefficients (s > 2=Ne) andlarge

dominance coefficients (h > 0:3), enrichments of heritabil-

ity and ID behave consistently, and both monotonically

decrease with recombination rate.

In summary, our findings imply that functional enrich-

ments of ID and additive genetic variance in the popula-

tion are most likely caused by similar mechanisms, such

as variable recombination rates between genomic regions

and disruption of evolutionary old regulatory elements

(e.g., older than the split between marsupial and placental

mammals �160 million years ago).56 However, although

co-localized, variants causing these two phenomena may

only partially overlap, while variants causing ID may

tend to be more recessive than those causing additive ge-

netic variance.
Discussion

In this study, we introduce a method to detect and quantify

the enrichment of ID within a wide range of binary and

continuous genomic annotations and applied it to analyze

11 traits with prior evidence of ID. We show that ID is inde-

pendently enriched within regions with high recombina-

tion rates, consistent with prior evidence in potatoes,57

and also, to a lesser extent, within regions with a low nucle-

otide diversity, a marker of high functional importance of

DNA sequences.58,59 Interestingly, we find that theMHC lo-

cus contributes disproportionately to the enrichment of ID

in low nucleotide diversity regions, even when analyses are

adjusted for population stratification (genetic principal

components þ geographical birth coordinates). An enrich-

ment of ID in low nucleotide diversity regions and in

high recombination rate regionsmay seem counterintuitive

given the negative correlation between these two annota-

tions (r � �0.2; Figure S3), which translates the fact that

higher recombination rates are associated with higher

nucleotide diversity. However, high recombination rates

also contribute to minimize the strength of background se-

lection60 (i.e., purging of neutral and near-neutral alleles in

LD with deleterious mutations) and selective sweeps,

thereby contributing to increase diversity of slightly delete-

rious alleles.61 Consistent with reduced selection efficiency,

recombination rate and strength of background selection

annotations show a larger negative correlation (r � �0.3;

Figure S3). Another potential explanation for the enrich-

ment of ID within genomic regions with high recombina-

tion rates is because frequency of deleterious de novo muta-

tion is increased in those regions.62,63 However, the

relatively small variance in de novo mutations explained

by recombination rate (R2 � 5%, in Kessler et al.62) implies

that variation in mutation rates most likely contributes a

second order effect to our observations.

Using estimated coalescence times, we confirm that

recent alleles contribute more to ID and also show that ho-

mozygosity in DNA sequences that are conserved across

mammal and primate species contribute �20-fold more
The American
ID than any random equally sized portion of the genome.

In humans, inbreeding between close relatives often man-

ifests as severe Mendelian syndromes caused by homozy-

gous loss-of-function mutations.8 Consistent with this

observation, our study shows a large ID enrichment (d >

30; Table S1) within promoters of loss-of-function-intol-

erant genes. It is noteworthy that ID enrichment within

coding regions was comparatively smaller (d between 1

and 7.1, p > 0.15; Table S1) and did not survive any of

our corrections for multiple testing. The latter observation

emphasizes that impairment of essential genes, as opposed

to genes in general, is a key contributor to ID. Finally, our

study shows a strong ID enrichment within multiple regu-

latory elements, which opens interesting avenues to quan-

tify the effect of homozygosity on gene and protein expres-

sion in humans.

The genetic basis of ID is predicated on two hypothe-

ses.1 The first one, the ‘‘dominance hypothesis,’’ stipu-

lates that ID is caused by directional dominance effects

of partially recessive deleterious alleles. On the other

hand, the ‘‘overdominance hypothesis’’ assumes that

the genetic architecture of traits subjected to ID is such

that heterozygotes express better phenotypes than both

homozygotes, for example due to balancing selection.

Although major progress has been made in model spe-

cies,1 disentangling these two explanations remains a

challenge in natural populations. One possibility to

address it could be by leveraging the distinct evolu-

tionary consequences of these two hypotheses. The

‘‘dominance hypothesis’’ predicts a larger contribution

to ID from loci where mutation rate is higher than

average, while the ‘‘overdominance hypothesis’’ predicts

a larger ID from loci where balancing selection is stron-

ger.64 Our study shows patterns of ID enrichment that

are consistent with both hypotheses. However, we found

a much larger magnitude of ID enrichment from annota-

tions that are correlated with mutation rates (e.g., recom-

bination rates62,63 or CpG content;23 Table S1) as

compared to those correlated with strength of selection

(e.g., GERPþþ score or background selection; Table S1).

Altogether, our results imply that both hypotheses prob-

ably contribute to explain ID in human traits, but over-

dominance does so to a lesser extent.

We also revisited previous claims7 regarding the contri-

bution of common variants to ID. We provide new evi-

dence that variants with an MAF > 1% substantially

contribute to ID in height and educational attainment

(Figure 1), while their contribution to ID in fertility re-

mains limited. While some of the traits analyzed in this

study have been shown to drive assortative mating in the

population, we do not think that assortment based on

polygenic traits (e.g., height) would implicitly create an

enrichment of ID within any specific part of the genome,

as reported here. In fact, the increased homozygosity at

trait-associated loci that is induced by assortative mating

is inversely proportional to the number of causal variants

and therefore negligible for highly polygenic traits.65,66
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Appendix A: Derivation of Equation 3

Equation 3 is derived from combining Equation 1 and

Equation 2 recalled below:

y¼
XM
j¼1

bjFj þ e; (Equation A1)

E
�
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�¼ b0
M

þ
XK
k¼1

�
zjk

�
bk
mk

�
þ �1� zjk

�� b� bk
M �mk

�	
:

(Equation A2)

Note that Equation 1 is the same as Equation A1 and that

Equation 2 the same as Equation A2.

We write bj ¼ E½bj� þ εj then replace E½bj�with its expres-

sion from Equation 2. We get

y¼
XM
j¼1

bjFj þ e ¼
XM
j¼1

E
�
bj

�
Fj þ e0; (Equation A3)

where e0 ¼ eþPM
j¼1

εjFj and such as E½e0� ¼ 0.

Besides, we can rewrite Equation 2 from the main text

(methods section) as
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(Equation A4)

where pk ¼ mk=M: If we denote Fk and Fg as

Fk ¼ 1

mk

XM
k¼1

zjkFj and Fg ¼ 1

M

XK
k¼1

Fj

Then, combining Equation A3 and Equation A4 leads to
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	#
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�
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Finally, our results also contribute to illuminating the di-

rection of causality between homozygosity and traits.

Indeed, differential contribution of genomic regions to

ID would not be expected if traits of parents (e.g., intelli-

gence or socio-economic status) were causally associated

with the phenotypes in their children and only inciden-

tally associated with their relatedness, i.e., with offspring

homozygosity. Note that the latter configuration has

been shown to induce biases in estimates of ID, as sug-

gested previously.67

Our study has a number of limitations. First, we lacked

statistical power to detect more trait-specific patterns of ID

enrichment beyond height. Similarly, we also lacked power

to estimate conditional enrichment across multiple func-

tional annotations. Therefore, estimates of ID enrichment

reported here may reflect overlap between annotations

(e.g., the correlation between DHS and DGF is �0.5;

Figure S3), including ones not observed in our study. A sec-

ond limitation of our study is that estimates of ID obtained

via our extension of the LD score regression method have

too large standard errors to be efficiently used for partition-

ing analyses (Table S7; Figure S13). However, we emphasize

that such methods remain valid and can still be used when

sample size is sufficiently large (e.g., n� 1,000,000, which is

becoming more common in human studies).

A third limitation of our study is that our method as-

sumes a linear relationship between ID and continuous

annotations (Equation 2), while this relationship may be

more complex in reality. For example, our forward-time

evolutionary simulations showed a non-linear relation-

ship between the recombination rate and enrichment of

ID (and that of additive genetic variance), which is modu-

lated by the distribution of selection coefficients of delete-

rious alleles, as well as their dominance coefficients

(Figures S11 and S12). Note that such a non-linear rela-

tionship has also been reported in previous studies23,68

that investigated the functional enrichment of trait heri-

tability, although these studies did not emphasize that

observation. As an alternative to assuming a linear rela-

tionship between continuous annotations and ID, we

recommend discretizing the annotations into quantiles

or testing the significance of the conditional effects of

the annotation and its squared value. We show in

Figure S14 that the empirical relationship between ID

enrichment and recombination rate is largely monotonic,

which suggests that the linear assumption made here

would have a limited impact on our conclusions regarding

this annotation.

In conclusion, we have proposed in this study a refined

characterization of the functional effects of variants

contributing to ID. Beyond conceptual parallels between

estimation of ID and that of heritability established previ-

ously,9 our study demonstrates that functional mecha-

nisms involved in ID are also relevant for characterizing ge-

netic variance and genetic risk in the population. We

foresee that the application of the different methods devel-

oped here to large collections of whole-genome or whole-
1496 The American Journal of Human Genetics 108, 1488–1501, Aug
exome sequencing data available in the near future will

lead to major discoveries regarding the genetic basis of ID.
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(Equation A5)

QED.

Appendix B: Enrichment of ID from additive-

dominance GWAS summary statistics

We assume the following model

y¼
XM
j¼1

264 xj � 2pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1� pj

� #
b
ðdÞ
j
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(Equation B1)

where xj denotes the minor allele counts (xj ¼ 0; 1; or

2) at SNP j, pj the minor allele frequency in the popula-

tion, b
ðaÞ
j and b

ðdÞ
j additive and dominance effects at

SNP j; respectively, and e a residual term. This model is

the same as in Zhu et al.69 (Equation 3) and Yengo

et al. (Equations S6 and S7).9 Zhu et al. further assumed

that E½bðaÞj � ¼ E½bðdÞj � ¼ 0 and that var½bðaÞj � ¼ h2
a= M,

var½bðdÞj � ¼ h2
d=M; and var½bðaÞj � ¼ 1� h2

a � h2
d. However, in

order to account for ID, Equation B1 must be generalized

to model the directionality of dominance effects. For

that, we assume E½bðdÞj � ¼ � b=M, where b is the

genome-wide ID.

Now we denote zj ¼ ðxj �2pjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjð1� pjÞ

p
and Fj ¼

½x2j � ð1þ2pjÞxj � 2p2j �=½2pjð1 � pjÞ�. We note that Fj is

exactly FUNI at SNP j. Therefore, Equation B1 can be

rewritten as
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zjb
ðaÞ
j � Fjb

ðdÞ
j þ e ¼ b

 
1

M

XM
j¼1

Fj

!
þ ga þ gd þ e;

(Equation B2)

where E½ga� ¼ E½gd� ¼ 0.

In an additive-dominance GWAS, the association be-

tween SNP i and y is tested by fitting simultaneously

both additive (ai) and dominance (di) effects, i.e., by fitting

the following model

y¼ aixi þ diHi þ residual; (Equation B3)

where Hi ¼ xið2�xiÞ is the indicator of heterozygosity at

SNP i. Under the model above, we define bd as the ordinary

least-squares estimator of di and SE(bdi) as its standard error.

We then denote the Z score of bdi as Zd;i ¼ bdi=SEðbdiÞand
shows that it verifies (proof is given below)

E
h
� Zd;i

. ffiffiffiffi
N

p i
¼E

�bBi

�
¼ b cov

 
Fi;

1

M

XM
j¼1

Fj

!
z

�
b

M

	
[ i;

(Equation B4)

where [i is the LD score of SNP i and N is the GWAS sam-

ple size. Note that Equation B4 is analogous to the main

result underlying the LD score regression methodology,

which we recall below in Equation B5:

E
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� 
N
�
z

 
h2

M

!
[ i: (Equation B5)

Equation B4 and Equation B5 imply that the mean of

the bBi’s divided by the mean LD score over a given set

of SNPs is in fact a measure of the ‘‘per-SNP’’ ID just like

the mean c2 (minus 1) divided by the mean LD score is

a measure of the per-SNP heritability. Therefore, Ekðh2Þ
and EkðbÞ quantify the relative per-SNP heritability and

ID for SNPs within annotation k as compared with the

rest of the genome.

In principle, Equation B4 can be further extended to

estimate enrichment of ID as done with the stratified

LD score regression methodology. However, we

found the standard errors of estimates of ID based on

Equation B4 to be ~1.8-fold larger than that of esti-

mates obtained from individual-level data (Table S7),

which substantially reduces statistical power to detect

enrichments. Note that estimates from LD score regres-

sion with an intercept constrained to 0 have slightly

lower standard errors but also suffer large biases as

shown in Table S7.

Proof of Equation B4

The proof of Equation B4 relies on two arguments. The first

one is to note that under classical linear regression theory,

the ordinary least-squares estimate ðbai; bdiÞ of ðai; diÞ in

Equation B3 verifies that

E

0BB@baibdi

1CCA¼
 
varðxiÞ covðxi;HiÞ
covðxi;HiÞ varðHiÞ

!�1"
covðxi; yÞ
covðHi; yÞ

#
:

In particular for bd, we can write that

E
hbdi

i
¼ varðxiÞcovðHi; yÞ � covðxi;HiÞcovðxi; yÞ

varðxiÞvarðHiÞ � covðxi;HiÞ2

¼ cov

�
varðxiÞHi � covðxi;HiÞxi

varðxiÞvarðHiÞ � covðxi;HiÞ2
; y

	
:
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Similarly, we derive the standard error of bdi (under the

assumption that the phenotypic variance is equal to 1

and that each SNP explains a negligible part of the trait

variance) as

SE
hbdi

i
z

SDðyÞ
hi

ffiffiffiffi
N

p ¼ 1�
hi

ffiffiffiffi
N

p �;
where SDðyÞ denotes the standard deviation of y.

If we denote p as the minor allele frequency, then under

Hardy-Weinberg equilibrium, we can show that varðxiÞ ¼
hi ¼ 2pið1 � piÞ, varðHiÞ ¼ hið1�hiÞ; and covðxi; HiÞ ¼
hið1 � 2piÞ. Using these relationships, we can further

show that varðxiÞvarðHiÞ � covðxi;HiÞ2 ¼ h3
i and

varðxiÞHi � covðxi;HiÞxi ¼ � h2
i Fi. Therefore,

E

�bdi

�
¼ cov

��Fi
hi

; y

	
or, equivalently, E½�ðbdi =SE½bdi�Þ =

ffiffiffiffi
N

p � ¼ E½ �Zd;i =
ffiffiffiffi
N

p �z
covðFi; yÞ: Now using Equation B2, we can subsequently

write that

E

�
� Zd;iffiffiffiffi

N
p

�
¼ cov

"
Fi; b

 
1

M

XM
j¼1

Fj

!
þ ga þ gd þ e

#

¼ b

M

XM
j¼1

cov
�
Fi; Fj

�þ covðFi; ga þ gd þ eÞ:

Under the assumption that SNP effects are indepen-

dent of genotypes and that e (environment) is indepen-

dent of Fi, we have that covðFi; ga þ gd þeÞ ¼ 0: Moreover,

Yengo et al.9 previously showed that covðFi; FjÞz r2ij ,

where r2ij is the square LD correlation between SNP i

and j. Hence,

E

�
� Zd;iffiffiffiffi

N
p

�
z

�
b

M

	XM
j¼1

r2ij ¼
�
b

M

	
[ i:

Data and code availability

This study makes use of genotype and phenotype data

from the UK Biobank data under project 12505. UKB

data can be accessed upon request once a research project

has been submitted and approved by the UKB committee.

Data sources underlying all figures are provided as supple-

mental tables. Example R scripts from our pipeline to simu-

late and estimate enrichment of ID and a Cþþ code

describing the algorithm utilized to calculate annotation-

specific inbreeding measures are provided at the following

URL: https://github.com/loic-yengo/Code_for_Genomic_

Partitioning_of_Inbreeding_Depression.
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Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.06.005.
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tar.gz
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readme_baseline_versions
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Figure S1. Consistency between two definitions of 𝐹ROH. On the x-axis, 𝐹ROH is the defined as the 
cumulated length of ROH in bp divided by 2,785,774,901 that is total autosomal length covered by 
genotyped SNPs. One the y-axis, 𝐹ROH is defined as the proportion of 19,476,620 imputed SNPs with a 
minor allele frequency >0.1% with 187 functional annotations from previous studies (URLs). The 
correlation between these two definition is >0.99. 
 



 
Figure S2. Distribution genomic annotations across SNPs. Left panel shows the histogram of number of  
binary annotations per SNPs (x-axis). 97.9% of SNPs have at least 1 binary annotation. Right panel 
shows the histogram across SNPs of the average of 12 normalised continuous annotation. Continuous 
annotations were normalised by scaling them with the largest value of the annotation across the entire 
genome such that normalised values range between 0 and 1. Mean and standard deviation of average 
continuous annotation are ~0.27 and ~0.04 respectively. 
 



 
Figure S3. Correlation between genomic annotations estimated from SNPs assigned at least two (binary 
or continuous) annotations. 
 



 
Figure S4. Average enrichment of ID across 11 traits as a function of ROH length. Panel A shows 𝐹ROH-
based estimates of ID enrichment within genomic regions with low nucleotide diversity. Nucleotide 
diversity was defined, for each SNP, as the mean diversity with 10 kb. Panel B shows 𝐹ROH-based 
estimates of ID enrichment within genomic regions with high recombination rates. Recombination rates 
and nucleotide diversity was determined, for each SNP, as the mean recombination rate within 10 kb. 
Recombination rate and nucleotide diversity were analysed as continuous annotations. “High 
recombination rate” denotes that recombination rate is positively correlated with ID; and “Low 
nucleotide diversity” denotes that nucleotide diversity is negatively correlated with ID.  Error bars are 
standard errors (s.e.). 
  



 

 
Figure S5. Genomic density of ROHs and its correlation with functional genomic annotations. Panel A 
shows consistent ROH density estimated in two independent samples from the UK: the UK Biobank 
(UKB; on the x-axis) and the UK10K sample (on the y-axis). Correlation of estimated ROH density from 
these two UK samples is >0.99 (jackknife standard error <0.001). In each sample, ROH density was 
estimated over 9,309,159 genomic positions by counting the number of ROHs overlaping that position. 
Values of ROH density shown on panel a are divided by the mean density in each sample. Panel B shows 
the correlation (x-axis) between ROH density (in the UKB) and 44 genomic annotations (y-axis). ROH 
density is most largely correlated with the McVicker B statistic measuring the strength of background 
selection. Recombination rate and nucleotide diversity were analysed as continuous annotations. “High 
recombination rate” denotes that recombination rate is positively correlated with ID; and “Low 
nucleotide diversity” denotes that nucleotide diversity is negatively correlated with ID. 
 



 
Figure S6. Genomic distribution of ROHs. ROH density was estimated in 456,414 European ancestry 
participants of the UK Biobank over 9,309,159 genomic positions by counting the number of ROHs 
overlapping that position. Values of ROH density shown on y-axes of all four panels are divided by the 
mean density in a sample. In panel D, relative genomic positions were calculated by dividing each 
genomic position (in base-pair unit) by the length of their corresponding chromosome. We highlight 3 
genomic regions, where ROH frequency is >2.5% (i.e. >10 standard deviations above the mean ROH 
frequency across the genome): the Major Histocompatibility Complex (MHC) locus (hg19: 
chr6:25,000,000-35,000,000), the lactase locus (LCT; hg19:chr2:134,000,000-139,000,000) and the 
centromere region on chromosome 11 (hg19:chr11:46,000,000-57,000,000). The locations of the 
centromeres are depicted by a blue vertical line. 
 



 
Figure S7. Correlation between individual-level data-based (𝜏𝑘) and GWAS-based (𝜃𝑘,𝑏) estimates of ID 
enrichment statistics for 11 traits and 44 functional annotations. Each  panel represent a trait and the 
bottom right panel the average across traits. Within each panel, a dot present a genomic annotation. 
Correlation between enrichment measures for each trait is reported in the title of the figure (range of 
correlation (r): 0.5 to 0.9).  
 



 
Figure S8. Correlation (r) between GWAS-based estimates of enrichment of heritability (using the 𝜃𝑘,ℎ2   

statistic; x-axis) and ID (using the 𝜃𝑘,𝑏 statistic; y-axis) across 44 genomic annotations and 11 traits 
associated with inbreeding. Enrichment statistics were estimated using stratified LD score regression 
(SLDSC) as described in the Methods section. For each trait, r is estimated over 44 pairs of enrichment 
statistics (𝜃𝑘,ℎ2 , 𝜃𝑘,𝑏) and the corresponding standard error (shown in brackets) is obtained using 

block-jackknife. Error bars represent standard errors. Data for each trait is shown in a specific panel. 
Data underlying this figure are reported in Table S6. 
 



 
Figure S9. Expected correlation between enrichments of heritability  and ID under various assumed 
distributions of selection and dominance coefficients of fitness mutations (Supplemental Methods). 
Selection coefficients were assumed to be Gamma-distributed with a mean varying between 10−6 (weak 
selection) and 10−1 (strong selection) and a shape parameter between 1 (strong skewness) and 4 
(moderate skewness). Expected correlation were calculated using Monte Carlo approximation based 
on 1,000,000 samples of selection coefficients. 
 



 
Figure S10. Relationship between GWAS-based estimates of enrichment of heritability (𝜃𝑘,ℎ2  statistic; 

x-axis) and ID (with the 𝜃𝑘,𝑏 statistic; y-axis) in simulated data. Enrichment statistics were estimated 
using stratified LD score regression (SLDC) as described in the Methods section. Data were simulated 
using genotypes of 348,501 UK Biobank participants and such that heritability is enriched in small 
chromosomes (e.g., chromosome 22) and depleted in large chromosomes (e.g., chromosome 2), while 
assuming a uniform contribution of all chromosomes to ID. Full description of the simulations is given 
in the Supplemental Methods section. Error bars are standard errors (s.e.).  
  



 

 
Figure S11. Enrichments of heritability (h2) and inbreeding depression (ID) in various recombination 
rate regions as a function of the strength of selection (s) of fitness mutations.  Data were generated using 
forward-time evolutionary simulation (details in Supplemental Methods) assuming a fixed 
dominance coefficient and a fixed selection coefficient for all fitness mutations. In all scenarios (i.e. the 
four panels), the dominance coefficient is h=0.1 (partially recessive) and the selection coefficient varies 
between 0.0005, 0.001, 0.002 and 0.004. 
 
 



 
Figure S12. Enrichments of heritability (h2) and inbreeding depression (ID) in various recombination 
rate regions as a function of the strength of dominance (h) of fitness mutations.  Data were generated 
using forward-time evolutionary simulation (details in Supplemental Methods) assuming a fixed 
selection coefficient and a fixed dominance coefficient for all fitness mutations. In all scenarios (i.e. four 
panels), the selection coefficient is s=0.001 (nearly neutral mutation) and the dominance coefficient 
varies between 0.1, 0.2, 0.3 and 0.4. 
 



 
Figure S13. Comparison of estimates of genome-wide inbreeding depression (ID) from individual-level 
data using the FUNI inbreeding measure (x-axis) and from summary statistics (y-axis) of additive-
dominance genome-wide association study (GWAS) of 11 traits. Data underlying this figure are 
reported in Table S7. Estimation of ID from GWAS summary-statistics is based upon LD score 
regression as described in Appendix B. LD scores were calculated for 9,326,198 imputed SNPs (with 
minor allele frequency >1% and imputation accuracy >0.3, Methods) in 348,501 unrelated participants 
of the UK Biobank. Error bars are standard errors. 
 



 
Figure S14. Enrichment of ID in quintiles of the recombination rate distribution. Error bars represent 
standard errors.  
  



Supplemental Methods  
 
1. Impact of ROH calling and ROH density on the enrichment of ID in low nucleotide diversity 
and high recombination rates regions 
 
Here we evaluate how much the enrichment of ID in high recombination rate (HRR) regions and in low 
nucleotide diversity (LND) regions could be explained by potential errors and artefacts in ROH calling 
or because of the non-uniform distribution of ROHs across the genome.  
 
First, we assessed the sensitivity of our 𝐹ROH-based results to potential errors in ROH calling by re-
estimating ID enrichment using increasing lengths of ROHs (from 2 Mb to 5 Mb). Although standard 
errors expectedly increased with ROH length threshold (as fewer ROHs are included in our analyses), 
we found little change in the estimates of ID enrichment in genomic regions with LND as well as those 
with HRR (Figure S4).  
 
Next, we quantified the genomic density of ROHs in a sample of 455,414 European ancestry participants 
of the UKB.11 ROH density was defined, at a given genomic position, as the number of ROHs covering 
that position. We estimated the density of ROHs over 9.3 million genomic positions across the 
autosome. We also estimated the density of ROHs in an independent sample from the UK (N=3,781 from 
the UK10K Project68) using the same set of SNPs genotyped and quality-controlled as in the UKB and 
the same parameters to call ROHs (Method section). Given the high consistency between the two 
estimated ROH densities (r>0.99; Figure S5), we therefore hereafter focus on ROH density estimated 
in the UKB, which has the larger sample size. 
 
Consistent with previous studies, we found that ROHs genomic distribution is not uniform across the 
genome. In particular, we identified 3 genomic regions with extreme density of ROHs (Figure S6;>10 
standard deviations above the mean density), which includes the MHC locus (chr6:25,000,000-
35,000,000), the lactase locus (LCT) on chromosome 2 (chr2:134,000,000-139,000,000) and the 
centromere region on chromosome 11 (chr11:46,000,000-57,000,000). We show in Figure S6, the 
correlation between ROH density and all 44 annotations analysed in this study. ROH density was mostly 
correlated (r~0.3) with the McVicker B statistic measuring the strength of background selection. The 
second largest correlation was observed with recombination rate (r~-0.12), while nucleotide diversity 
only came at the 8th place (r~0.04) over 44 annotations tested.  
 
One of the assumptions underlying our method is that SNPs have an equal probability to fall into 
identical-by-descent (IBD) genomic segments. However, the observed genomic distribution of ROHs 
seems to violate this assumption, at least to the extent that long ROHs were used as proxies for IBD 
segments. To test the impact of that violation,  we analysed ROH density as a continuous genomic 
annotation and quantified its associated enrichment of ID. On average across traits, we found no 
significant enrichment of ID associated with ROH frequency (Enrichment=1.01,P=0.42), which overall 
implies little confounding due to ROH density. 
 
In summary, we have shown in this note that ROH density is not enriched for ID signal and therefore 
cannot confound any of our results; and also that errors in ROH calling are unlikely to explain the 
enrichment of ID in HRR and LND.   
 
 
  



2. Forward-time evolutionary simulation to quantify the effect of recombination rate on the 
enrichment of ID and on additive genetic variance 
 
Description of the simulation and enrichment metrics 
We performed a forward-time evolutionary simulation using SLIM v3.5  to quantify the effect of 
recombination rate on the genomic distribution of additive genetic variance and ID. In each simulation 
replicate, we simulated a population of fixed size 𝑁𝑒 = 1,000 individuals, whose genomes are each 
made of 9 chromosomes, each 1Mb long. Chromosomes were numbered from 1 to 9 and differed in their 
recombination rates. Recombination rate values were set to be 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2 and 5 
cM/Mb for chromosomes 1 to 9 respectively. Each simulated chromosome contains only deleterious 
mutations with a fixed selection coefficient (𝑠) and a fixed dominance coefficient (ℎ), such that the 
relative fitness (i.e. multiplicative fitness model) of an individual carrying one of those mutations is 
𝑤=1, 1 − ℎ𝑠 and 1 − 𝑠 for ancestral allele homozygotes, heterozygotes; and derived allele homozygotes, 
respectively. We performed two series of simulations. In the first one we fixed the dominance 
coefficient ℎ = 0.1 and varied 𝑠=0.0005, 0.001, 0.002 and 0.004; while in the second one, we fixed 𝑠 =
0.001 and varied ℎ between 0.1, 0.2, 0.3 and 0.4.    
 
We assumed a constant mutation rate 𝜇 = 2 × 10−7 per-bp per-generation. We simulated random 
mating for 10𝑁𝑒 = 10,000 generations then sampled simulated genotypes of 1,000 individuals in the 
last generation to quantify enrichment of ID and additive genetic variance in log fitness defined below 
as 
 

(𝑆2.1)  log(𝑤) = 𝐶 + ∑ log(𝑤𝑗)

𝑀

𝑗=1

= 𝐶 + ∑ 𝑥𝑗log(1 − 𝑠𝑗)/2 + 𝐻𝑗[log(1 − h𝑗𝑠𝑗) − log(1 − 𝑠𝑗)/2]

𝑀

𝑗=1

 

                             ≈ 𝐶 + ∑ 𝑥𝑗(−𝑠𝑗/2) + 𝐻𝑗(𝑠𝑗/2)(1 − 2ℎj)

𝑀

𝑗=1

 

where, 𝑀 is the number of segregating mutations in the last generation, 𝐶 is an arbitrary constrant, 𝑤𝑗  

is the relative fitness of carrier of mutation 𝑗, 𝑠𝑗 and ℎ𝑗 the selection and dominance coefficients of 

mutation 𝑗, 𝑥𝑗(values between 0, 1 and 2) count of mutation 𝑗 in an individual and 𝐻𝑗 = 𝑥𝑗(2 − 𝑥𝑗) the 

indicator of heterozygosity for mutation 𝑗. The approximation in Equation (S2.1) is made under the 
assumption that 𝑠𝑗 ≪ 1.  

 
Let 𝑞𝑗 denote the frequency of mutation 𝑗. Therefore, the average effect 𝛼𝑗 of mutation 𝑗 on log-fitness 

can be expressed as 
 
(𝑆2.2)  𝛼𝑗 = −𝑠𝑗/2 + (1 − 2𝑞𝑗)(𝑠𝑗/2)(1 − 2ℎj)  =  −𝑠𝑗[ℎj  +  𝑞𝑗(1 − 2ℎ𝑗)],  

 
the total ID in log fitness as 
 
(𝑆2.3)  𝑏 =  − ∑ 𝑠𝑗𝑞𝑗(1 − 𝑞𝑗)(1 − 2ℎj)

𝑀
𝑗=1 ,  

 
and the total additive genetic variance as 
 
(𝑆2.4)  𝜎𝐴

2  =  var(∑ 𝑥𝑗𝛼𝑗
𝑀
𝑗=1 ).  

 

Note that, because of linkage disequilibrium between mutations, var(∑ 𝑥𝑗𝛼𝑗
𝑀
𝑗=1 ) is not expected to be 

equal to ∑ 2𝑞𝑗(1 − 𝑞𝑗)𝛼𝑗
2𝑀

𝑗=1 , unless recombination rate is extremely large. 

 
For each simulation replicate, we analysed the log-fitness of each individual as the phenotype of interest 
and quantified enrichment of ID in each recombination rate class using the same approach defined in 
the main text. We also analysed recombination rate as a continuous annotation, which showed 



consistent results. We defined the enrichment of additive genetic variance in for each recombination 

rate class 𝑘 (hereafter denoted Enr[𝜎𝐴,𝑘
2 ]) as the ratio of additive genetic variance due to SNPs in that 

class (𝜎𝐴,𝑘
2 ) over the total additive genetic variance (𝜎𝐴

2) multiplied by the proportion 𝜋𝑘  of SNP in that 

class, i.e. Enr[𝜎𝐴,𝑘
2 ] = 𝜎𝐴,𝑘

2 (𝜋𝑘𝜎𝐴
2)⁄ .  

 
Correlation between enrichment of additive genetic variance and that of ID  
In this section, we show under classical assumptions that a large correlation between enrichment of ID 
and that of additive genetic variance, as reported in this study, is not unexpected. Using Equation (S2.3), 
we define the relative contribution of mutation 𝑗 to ID as 
 

(𝑆2.5)  Enr[𝐼𝐷𝑗] =
𝑠𝑗𝑞𝑗(1 − 𝑞𝑗)(1 − 2ℎj)

∑ 𝑠𝑘𝑞𝑘(1 − 𝑞𝑘)(1 − 2ℎk)𝑀
𝑘=1

 

 
Similarly, and assuming independence between mutations, we can define the relative contribution  
mutation 𝑗 to 𝜎𝐴

2 as 
 

(𝑆2.6)  Enr[𝜎𝐴,𝑗
2 ] =

𝑞𝑗(1 − 𝑞𝑗)𝛼𝑗
2

∑ 𝑞𝑘(1 − 𝑞𝑘)𝛼𝑘
2𝑀

𝑘=1

 

 
Under a mutation-drift-selection equilibrium the frequency (𝑞) of the derived allele is expected to reach 

a value 𝑞 ∗= 𝜇/ℎ𝑠 if ℎ>0 (or 𝑞 ∗= √𝜇/𝑠 if ℎ = 0, i.e. fully recessive; Crow & Kimura 1970), where 𝜇 is 
the mutation rate at the locus. Replacing 𝑞 with its equilibrium frequency in equations (S2.5) and (S2.6) 
and assuming a constant  mutation rate across the genome leads to express the locus contribution to 
both ID and 𝜎𝐴

2 only as a function of (h, s). However, determining the theoretical correlation between 

Enr[IDj] and Enr[σA,j
2 ] remains intractable because the joint distribution of (h, s) is unknown. 

Nevertheless, we can show numerically that a large correlation between Enr[IDj] and Enr[σA,j
2 ] is 

expected under various assumed distributions for (h, s).  
 
For example, we fixed h and varied its value between 0.1 and 0.4, while modelling the distribution of s 
using an Gamma distribution with a mean between 10−6 (weak selection) and 10−1 (strong selection) 
and a shape parameter between 1 (strong skewness) and 4 (moderate skewness).  
 
We found that the correlation between enrichment of ID and that of 𝜎𝐴

2 decreases with the mean 
selection coefficient and with the dominance coefficient of the derived allele. However, we found that 
moderately skewed distribution of fitness effects (i.e. such that the proportion of mutations with strong 
fitness effect is low) can yield large correlations between enrichment of ID and that of 𝜎𝐴

2 as shown in 
Figure S9. Consistently, we also report large positive correlations between enrichments of ID and that 
of additive genetic variance in our forward-time evolutionary simulations (Figure S11-S12). 
 
Overall, this analysis highlights a few sufficient (but not necessary) conditions that can lead to a positive 
and large correlation between enrichment of ID and that of 𝜎𝐴

2. We acknowledge that this is a simplified 
model, which nonetheless demonstrates the plausibility of our observations.  
 
Furthermore, we sought to test the observed correlation between enrichments of ID and heritability 
reported in Figure 3 could be due to an artefact in our method such that an enrichment of heritability 
(which has been previously reported) would systematically induce an enrichment of ID. To test this 
hypothesis, we performed a series of simulations in which heritability is enriched in specific 
chromosomes, while the per-SNP contribution to ID is uniform across the genome. We used genotypes 
of all 348,501 unrelated participants of the UKB included in our study to simulate a trait (y) controlled 
by 11,000 causal variants, i.e. 500 on each of the 22 autosomes. Such a simulation setting generates an 
enrichment of heritability in smaller chromosomes (e.g., chromosomes 10 to 22) and a depletion in 
larger ones (e.g., chromosomes 1 to 6). The simulated trait was defined as y = bF + g + e, where g is the 



additive genetic value, F the genome-wide inbreeding coefficient (FUNI) and e an environmental value. 
We simulated a genome-wide ID b=-5 trait standard deviation for 100% inbreeding and a heritability 
h2=0.5. 
 
On average over 100 simulation replicates, we found a significant enrichment of heritability in smaller 
chromosomes and a significant depletion of heritability signal in larger chromosomes (both expected). 
However, we found no enrichment of ID in any of the 22 chromosomes (Figure S10). Altogether, this 
simulation demonstrates that the correlation between enrichment of heritability and that of ID is not 
likely to be an artefact of our method. 
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