The American Journal of Human Genetics, Volume 108

Supplemental information

Beyond factor H: The impact of genetic-risk variants

for age-related macular degeneration on circulating

factor-H-like 1 and factor-H-related protein concentrations

Valentina Cipriani, Anna Tierney, John R. Griffiths, Verena Zuber, Panagiotis I. Sergouniotis, John R.W. Yates, Anthony T. Moore, Paul N. Bishop, Simon J. Clark, and Richard D. Unwin

Figure S1. Gene expression of *CFHR1*, *CFHR2*, *CFHR3*, *CFHR4* and *CFHR5* is restricted to liver.

RNA sequencing of 54 human tissue samples from the Genotype-Tissue Expression (GTEx) project¹ (<u>https://gtexportal.org/home/multiGeneQueryPage</u>; dataset dbGaP accession number phs000424.v8.p2) detected *CFHR1* (B), *CFHR2* (C), *CFHR3* (D), *CFHR4* (E) and *CFHR5* (F) expression exclusively in the liver, whereas *CFH* (A) expression was more widespread.

(continued on the next page)

Figure S2. MS/MS fragmentation spectra of all proteotypic peptides used for quantification of FH, FHL-1 and FHR-1 to FHR-5 proteins in human samples.

a) VTYKcFE (FH), b) NGWSPTPRcIRVSFTL (FHL-1), c) ATFcDFPKINHGILYDEE (FHR-1), d) AMFcDFPKINHGILYDEE (FHR-2), e) VAcHPGYGLPKAQTTVTcTE (FHR-3), f) YQcQSYYE (FHR-4), and g) RGWSTPPIcSFTKGE (FHR-5).

Figure S3. Overlay of endogenous and stable isotope-labelled standard peptide SRM signals.

To confirm assay specificity, stable isotope-labelled peptides were spiked into plasma and the elution profiles of each of the heavy:light pairs was compared to confirm specificity of the individual SRMs for each peptide. Upper panel shows signals from endogenous peptides, while the lower panel shows the equivalent SIS peptide.

Figure S4. Levy-Jennings graphs to monitor between-batch stability of the whole process across the course of the study.

Measured concentrations for each protein in two replicate analyses of the same sample included in each batch were monitored. Green line = mean concentration, Yellow line = $\pm -2x$ s.d., Red line = $\pm -3x$ s.d.

Figure S5. Correlation between measured concentrations of FH using the LS-MS based assay and immunoassay.

Immunoassay-derived concentrations were normalised to match the median concentration calculated by the SRM. In most case ELISA measurements are within 20% of the SRM measurement.

Figure S6. GWASs of circulating FHR-1, FHR-2, FHR-3, FHR-4, FHR-5 protein concentrations in 252 controls from the Cambridge AMD cohort reveal a strong genome-wide significant signal spanning the AMD-associated *CFH* locus on chromosome 1q31.3.

Manhattan plot together with quantile-quantile (QQ) plot (upper right-hand side of each panel) for the GWAS of FHR-1 (A), FHR-2 (B), FHR-3 (C), FHR-4 (D), FHR-5 (E), FH (F) and FHL-1 (G) protein concentrations. Manhattan plots illustrate P-values for each single variant tested for association with the protein concentrations. Observed $-\log_{10}(P-values)$ are plotted against the genomic position of each variant on chromosomes 1–22. The horizontal red line indicates the threshold considered for genome-wide significance (P-value $\leq 5 \times 10^{-8}$). QQ plots compare the distribution of the observed test statistics with its expected distribution under the null hypothesis of no association. Genomic control values (λ)

calculated based on the 50th percentile (and 1/10th of a percentile) were equal to 1.010 (1.004), 1.014 (1.026), 0.983 (1.074), 1.012 (1.025), 0.994 (1.014), 0.991 (1.018) and 0.995 (0.998) for FHR-1, FHR-2, FHR-3, FHR-4, FHR-5, FH and FHL-1, respectively.

(continued on the next page)

Chromosome

(continued on the next page)

(continued on the next page)

(continued on the next page)

(continued on the next page)

10

Ε

50 -

F

(continued on the next page)

Parameter	Value
Gas Temp	210 °C
Gas Flow	15 l/min
Nebuliser	30 psi
Sheath Gas Temp	250 °C
Sheath Gas Flow	12 l/min
Capillary Voltage	2650 V
Nozzle Voltage	1000 V
High Pressure RF	200 V
Low Pressure RF	110 V

 Table S1. Liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM-MS) instrument parameters.

Protein	Peptide Sequence	Precursor	Product ions m/z	Collision	Dwell time, ms	
		ion m/z		energy, eV		
FH	VTY K cFE (Light)	473.7	583.3, 847.4, 746.3	16, 16, 16	400, 200, 150	
	VTY K cFE (Heavy)	477.7	591.3, 855.4, 754.3	16, 16, 16	400, 200, 150	
	NGWSPTP R CIRVSFTL				150, 200, 100	
FHL-1	(Light)	631.2	723.9, 860.5, 767.4	19, 19, 19		
	NGWSPTP R cIRVSFTL				150, 200, 100	
	(Heavy)	634.3	728.9, 865.5, 772.4	19, 19, 19		
	ATFcD F PKINHGILYDEE				400, 200, 200	
FHR-1	(Light)	724.2	925.6, 1011.9, 947.1	20, 16, 20		
	ATFcD F PKINHGILYDEE				400, 200, 200	
	(Heavy)	727.2	930.6, 1016.9, 952.1	20, 16, 20		
	AMFcD F PKINHGILYDEE				150, 125, 100	
FHR-2	(Light)	734.0	999.5, 925.9, 1027	18,22,18		
	AMFcD F PKINHGILYDEE				150, 125, 100	
	(Heavy)	737.3	1004.5, 930.9, 1032	18,22,18		
	VAcHPG Y GLP K AQTTVTcTE					
FHR-3	(Light)	730.7	1022.4, 971.7	16, 18	350, 400	
	VAcHPG Y GLP K AQTTVTcTE					
	(Heavy)	736.7	1031.4, 980.7	16, 18	350, 400	
FHR-4	Y QcQSYYE (Light)	570.7	830.3, 993.1, 311.1	11, 10, 14	250, 250, 250	
	Y QcQSYYE (Heavy)	575.7	840.3, 1003.1, 311.1	11, 10, 14	250, 250, 250	
	R GWSTPPIcSFT K GE				200, 350, 200	
FHR-5	(Light)	575.2	828.4, 895.5, 588.3	16, 15, 20		
	R GWSTPPIcSFT K GE				200, 350, 200	
	(Heavy)	581.2	836.4, 905.5, 598.3	16, 15, 20		

Table S2. SRM transition parameters.

Protein	Instrumental variable (IV) dbSNP ID (Chr:Position) ^a Non effect allele/Effect allele	cis / trans pQTL	IV strength (R ²) ^b	Association with protein concentrations in 252 Cambridge AMD study ^{2; 3} controls		Association with AMD in the Cambridge AMD GWAS ^{2; 3} (845 AMD cases and 419 controls)		Association with AMD in the IAMDGC GWAS ⁴ (16,144 AMD cases and 17,832 controls)					
				Beta	SE	P-value	Beta	SE	P-value	Beta	SE	P-value	Minor Allele Frequency
FHR-2	rs79351096 1:196918741_G/A (CFHR2 nonsynonymous)	cis	0.09	-1.81	0.36	1.2 x 10 ⁻⁶	-0.37	0.29	0.207	-0.46	0.06	1.0 x 10 ⁻¹³	0.019
FHR-3	rs16840522 1:196710916_T/C (CFH intronic)	cis	0.35	-1.79	0.16	6.1 x 10 ⁻²⁴	-0.74	0.125	4.6 x 10 ⁻⁹	-0.86	0.025	5.6 x 10 ⁻²⁹²	0.158
FHR-4	rs34538561 1:196534406_C/G (<i>KCNT2</i> intronic)	cis	0.12	-1.63	0.28	2.5 x 10 ⁻⁸	0.56	0.14	4.0 x 10 ⁻⁵	0.51	0.03	7.8 x 10 ⁻⁹²	0.132

Table S7. Additional instrumental variables (IVs) for FHR-2, FHR-3 and FHR-4 identified at the *CFH* locus using the GCTA-COJO⁵ approach.

^aChromosomal position is given according to the NCBI RefSeq hg19 human genome reference assembly; ^bThe strength of each IV was evaluated

using R^2 as the proportion of the variance of the protein explained by the genetic variant (function *get_r_from_pn* from R package *TwoSampleMR*,

version 0.5.5).

The GCTA-COJO⁵ approach was applied with default settings; the available individual-level genotype data from the entire control set in the Cambridge AMD study,^{2; 3} n = 419, was used as a reference sample to estimate LD among genetic variants.

AMD = Age-Related macular degeneration; GWAS = Genome-wide association study; IAMDGC = International Age-Related Macular Degeneration Genomics Consortium; pQTL = protein quantitative trait locus.

Supplemental Note

List of the International Age-related Macular Degeneration Genomics Consortium (IAMDGC) members

The list reflects the author list of the previous IAMDGC publication by Fritsche et al., 2016.⁴

Lars G Fritsche¹, Wilmar Igl², Jessica N Cooke Bailey³, Felix Grassmann⁴, Sebanti Sengupta¹, Jennifer L Bragg-Gresham^{1,5}, Kathryn P Burdon⁶, Scott J Hebbring⁷, Cindy Wen⁸, Mathias Gorski², Ivana K Kim⁹, David Cho¹⁰, Donald Zack¹¹⁻¹⁵, Eric Souied¹⁶, Hendrik P N Scholl^{11,17}, Elisa Bala¹⁸, Kristine E Lee¹⁹, David J Hunter^{20,21}, Rebecca J Sardell²², Paul Mitchell²³, Joanna E Merriam²⁴, Valentina Cipriani^{25,26}, Joshua D Hoffman²⁷, Tina Schick²⁸, Yara T E Lechanteur²⁹, Robyn H Guymer³⁰, Matthew P Johnson³¹, Yingda Jiang³², Chloe M Stanton³³, Gabriëlle H S Buitendijk^{34,35}, Xiaowei Zhan^{1,36,37}, Alan M Kwong¹, Alexis Boleda³⁸, Matthew Brooks³⁸, Linn Gieser³⁸, Rinki Ratnapriya³⁸, Kari E Branham³⁹, Johanna R Foerster¹, John R Heckenlively³⁹, Mohammad I Othman³⁹, Brendan J Vote⁶, Helena Hai Liang³⁰, Emmanuelle Souzeau⁴⁰, Ian L McAllister⁴¹, Timothy Isaacs⁴¹, Janette Hall⁴⁰, Stewart Lake⁴⁰, David A Mackey^{6,30,41}, Ian J Constable⁴¹, Jamie E Craig⁴⁰, Terrie E Kitchner⁷, Zhenglin Yang^{42,43}, Zhiguang Su⁴⁴, Hongrong Luo⁸, Daniel Chen⁸, Hong Ouyang⁸, Ken Flagg⁸, Danni Lin⁸, Guanping Mao⁸, Henry Ferreyra⁸, Klaus Stark², Claudia N von Strachwitz⁴⁵, Armin Wolf⁴⁶, Caroline Brandl^{2,4,47}, Guenther Rudolph⁴⁶, Matthias Olden², Margaux A Morrison⁴⁸, Denise J Morgan⁴⁸, Matthew Schu⁴⁹⁻⁵³, Jeeyun Ahn⁵⁴, Giuliana Silvestri⁵⁵, Evangelia E Tsironi⁵⁶, Kyu Hyung Park⁵⁷, Lindsay A Farrer⁴⁹⁻⁵³, Anton Orlin⁵⁸, Alexander Brucker⁵⁹, Mingyao Li⁶⁰, Christine A Curcio⁶¹, Saddek Mohand-Saïd⁶²⁻⁶⁵, José-Alain Sahel^{25,62-67}, Isabelle Audo^{62-64,68}, Mustapha Benchaboune⁶⁵, Angela J Cree⁶⁹, Christina A Rennie⁷⁰, Srinivas V Goverdhan⁶⁹, Michelle Grunin⁷¹, Shira Hagbi-Levi⁷¹, Peter Campochiaro^{11,13}, Nicholas Katsanis⁷²⁻⁷⁴, Frank G Holz¹⁷, Frédéric Blond⁶²⁻⁶⁴, Hélène Blanché⁷⁵, Jean-François Deleuze^{75,76}, Robert P Igo Jr³, Barbara Truitt³, Neal S Peachey^{18,77}, Stacy M Meuer¹⁹, Chelsea E Myers¹⁹, Emily L Moore¹⁹, Ronald Klein¹⁹, Michael A Hauser⁷⁸⁻⁸⁰, Eric A Postel⁷⁸, Monique D Courtenay²², Stephen G Schwartz⁸¹, Jaclyn L Kovach⁸¹, William K Scott²², Gerald Liew²³, Ava G Tan²³, Bamini Gopinath²³, John C Merriam²⁴, R Theodore Smith^{24,82}, Jane C Khan^{41,83,84}, Humma Shahid^{84,85}, Anthony T Moore^{25,26,86}, J Allie McGrath²⁷, Reneé Laux³, Milam A Brantley Jr⁸⁷, Anita Agarwal⁸⁷, Lebriz Ersoy²⁸, Albert Caramoy²⁸, Thomas Langmann²⁸, Nicole T M Saksens²⁹, Eiko K de Jong²⁹, Carel B Hoyng²⁹, Melinda S Cain³⁰, Andrea J Richardson³⁰, Tammy M Martin⁸⁸, John Blangero³¹, Daniel E Weeks^{32,89}, Bal Dhillon⁹⁰, Cornelia M van Duijn³⁵, Kimberly F Doheny⁹¹, Jane Romm⁹¹, Caroline C W Klaver^{34,35}, Caroline Hayward³³, Michael B Gorin^{92,93}, Michael L Klein⁸⁸, Paul N Baird³⁰, Anneke I den Hollander^{29,94}, Sascha Fauser²⁸, John R W Yates^{25,26,84}, Rando Allikmets^{24,95}, Jie Jin Wang²³, Debra A Schaumberg^{20,96,97}, Barbara E K Klein¹⁹, Stephanie A Hagstrom⁷⁷, Itay Chowers⁷¹, Andrew J Lotery⁶⁹, Thierry Léveillard⁶²⁻⁶⁴, Kang Zhang^{8,44}, Murray H Brilliant⁷, Alex W Hewitt^{6,30,41}, Anand Swaroop³⁸, Emily Y Chew⁹⁸, Margaret A Pericak-Vance²², Margaret DeAngelis⁴⁸, Dwight Stambolian¹⁰, Jonathan L Haines^{3,99}, Sudha K Iyengar³, Bernhard H F Weber⁴, Gonçalo R Abecasis¹ & Iris M Heid²

IAMDGC members' affiliations

¹Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA. ²Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany. ³Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA. ⁴Institute of Human Genetics, University of Regensburg, Regensburg, Germany. ⁵Kidney Epidemiology and Cost Center, Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA. ⁶School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia. ⁷Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, USA. ⁸Department of Ophthalmology, University of California, San Diego and Veterans Affairs San Diego Health System, La Jolla, California, USA. ⁹Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA. ¹⁰Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. ¹¹Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.¹²Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. ¹³Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. ¹⁴Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. ¹⁵Institue de la Vision, Université Pierre et Marie Curie, Paris, France. ¹⁶Hôpital Intercommunal de Créteil, Hôpital Henri Mondor, Université Paris Est Créteil,

Créteil, France. ¹⁷Department of Ophthalmology, University of Bonn, Bonn, Germany. ¹⁸Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA. ¹⁹Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, USA. ²⁰Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. ²¹Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA. ²²John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, USA. ²³Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia. ²⁴Department of Ophthalmology, Columbia University, New York, New York, USA. ²⁵University College London Institute of Ophthalmology, University College London, London, UK. ²⁶Moorfields Eye Hospital, London, UK. ²⁷Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA. ²⁸Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany.²⁹Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, the Netherlands. ³⁰Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia. ³¹South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas, USA. ³²Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. ³³Medical Research Council (MRC) Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. ³⁴Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands. ³⁵Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands. ³⁶Quantitative Biomedical Research Center, Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas, USA. ³⁷Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas, USA. ³⁸Neurobiology, Neurodegeneration and Repair Laboratory (N-NRL), National Eye Institute, US National Institutes of Health, Bethesda, Maryland, USA. ³⁹Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan, USA. ⁴⁰Department of Ophthalmology, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia. ⁴¹Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia. ⁴²Sichuan Provincial Key Laboratory for Human Disease Gene Study, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, China. ⁴³Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China. ⁴⁴Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China. ⁴⁵EyeCentre Southwest, Stuttgart, Germany. ⁴⁶University Eye Clinic, Ludwig Maximilians University, Munich, Germany. ⁴⁷Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany. ⁴⁸Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, USA. ⁴⁹Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA. ⁵⁰Department of Ophthalmology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA. ⁵¹Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA. ⁵²Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA. ⁵³Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA. ⁵⁴Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea. ⁵⁵Centre for Experimental Medicine, Queen's University, Belfast, UK. ⁵⁶Department of Ophthalmology, University of Thessaly, School of Medicine, Larissa, Greece. ⁵⁷Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea. ⁵⁸Department of Ophthalmology, Weill Cornell Medical College, New York, New York, USA. ⁵⁹Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA. ⁶⁰Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA. ⁶¹Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, USA. ⁶²INSERM, Paris, France. ⁶³Institut de la Vision, Department of Genetics, Paris, France. ⁶⁴Centre National de la Recherche Scientifique (CNRS), Paris, France. ⁶⁵Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France. ⁶⁶Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.⁶⁷Académie des Sciences–Institut de France, Paris, France. ⁶⁸Department of Molecular Genetics, Institute of Ophthalmology, London, UK. ⁶⁹Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK. ⁷⁰University Hospital Southampton, Southampton, UK. ⁷¹Department of Ophthalmology, Hadassah Hebrew University Medical Center, Jerusalem, Israel. ⁷²Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA. ⁷³Department of Cell Biology, Duke University, Durham, North Carolina, USA. ⁷⁴Department of Pediatrics, Duke University, Durham, North Carolina, USA. ⁷⁵Centre d'Etude du Polymorphisme Humain (CEPH) Fondation Jean Dausset, Paris, France. ⁷⁶Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Génomique, Centre National de Génotypage, Evry, France. ⁷⁷Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA. ⁷⁸Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA. ⁷⁹Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA. ⁸⁰Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, USA.⁸¹Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Naples, Florida, USA. ⁸²Department of Ophthalmology, New York University School of Medicine, New York, New York, USA.⁸³Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia.⁸⁴Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. ⁸⁵Department of Ophthalmology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK. ⁸⁶Department of Ophthalmology, University of California San Francisco Medical School, San Francisco, California, USA. ⁸⁷Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, USA. ⁸⁸Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA. ⁸⁹Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. ⁹⁰School of Clinical Sciences, University of Edinburgh, Edinburgh, UK. ⁹¹Center for Inherited Disease Research (CIDR) Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. ⁹²Department of Ophthalmology, David Geffen School of Medicine, Stein Eye Institute, University of California, Los Angeles, Los Angeles, California, USA. ⁹³Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA. ⁹⁴Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands. ⁹⁵Department of Pathology and Cell Biology, Columbia University, New York, New York, USA. ⁹⁶Center for Translational Medicine, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA. ⁹⁷Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. ⁹⁸Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute, US National Institutes of Health, Bethesda, Maryland, USA. ⁹⁹Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.

Supplemental References

- 1. Consortium, G.T. (2015). Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648-660.
- Cipriani, V., Leung, H.T., Plagnol, V., Bunce, C., Khan, J.C., Shahid, H., Moore, A.T., Harding, S.P., Bishop, P.N., Hayward, C., et al. (2012). Genome-wide association study of age-related macular degeneration identifies associated variants in the TNXB-FKBPL-NOTCH4 region of chromosome 6p21.3. Hum Mol Genet 21, 4138-4150.
- Yates, J.R.W., Sepp, T., Matharu, B.K., Khan, J.C., Thurlby, D.A., Shahid, H., Clayton, D.G., Hayward, C., Morgan, J., Wright, A.F., et al. (2007). Complement C3 variant and the risk of age-related macular degeneration. New Engl J Med 357, 553-561.
- 4. Fritsche, L.G., Igl, W., Bailey, J.N.C., Grassmann, F., Sengupta, S., Bragg-Gresham, J.L., Burdon, K.P., Hebbring, S.J., Wen, C., Gorski, M., et al. (2016). A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics 48, 134-143.
- 5. Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., Madden, P.A.F., Heath, A.C., Martin, N.G., Montgomery, G.W., Weedon, M.N., Loos, R.J., et al. (2012). Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Genetics 44, 369-U170.