1 2	Supplementary information
3	Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated
4	redirection of carbon flux
5	Lin Lin ^{1,2} , Junyu Chen ¹ , Ruchira Mitra ^{1,3} , Quanxiu Gao ¹ , Feiyue Cheng ^{1,2} , Tong Xu ¹ ,
6	Zhenqiang Zuo ¹ , Hua Xiang ^{1,2,*} & Jing Han ^{1,2,*}
-	
1	Affiliations
8	¹ State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese
9	Academy of Sciences, Beijing 100101, People's Republic of China
10	² College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing,
11	People's Republic of China
12	³ International College, University of Chinese Academy of Sciences, 100049, Beijing,
13	People's Republic of China
14	
15	Supplementary Methods
16	CR-RT-PCR (circularized RNA reverse transcription PCR)
17	The circularized RNA reverse transcription PCR (CR-RT-PCR) was used to identify
18	the transcription start site (TSS) as previously described ¹ . The cDNA was prepared by
19	reverse transcription of self-ligated RNA with random hexamer primers (Thermo
20	Fisher Scientific, USA), which was used as the PCR template. The PCR products
21	amplified with the primer pairs CR-XX-F/R (Table S2) were cloned into the pMD18-
22	T vector to determine the TSS by DNA sequencing.

Supplementary Fig. 1. The repression effects produced by three crRNAs before and after the knockout of CRISPR arrays. The gray column represents the control with no crRNA expression. The blue columns represent the inhibition before knockout of CRISPR arrays, and the red columns represent the inhibition after knock outing CRISPR arrays (CRF). Data shown for two or three biological replicates. Error bars indicate SDs, n = 3.

30

31

32 Supplementary Fig. 2. Chromosomal integration of crRNA expression cassette at the original locus of *pyrF* gene in the genome. a The inserted fragment of 33 pyrF gene. b The inserted fragment of pyrF gene and mini-CRISPR structure for 34 expressing NT. c The inserted fragment of *pyrF* gene and mini-CRISPR structure for 35 expressing citZ-t2 and gltA-t1. The transcription of crRNA and *pyrF* gene are driven 36 by P_{phaR} and P_{pyrF}, respectively. Repeats, orange diamonds; NT spacer, light blue; citZ 37 -t2, light pink; gltA-t1, pink; T8 terminator: red rectangle; Upstream and downstream 38 fragments of *pyrF*, grey rectangles. 39

47 Supplementary Table 1. PHBV accumulation by *H. mediterranei* strains with

48 citrate synthase genes repressed *via* CRISPRi by chromosomal integration crRNA

Strains	CDW (g/L) ^b	PHBV content (%) ^c	PHBV concentration (g/L)	3HV fraction (mol%)	PHBV productivity (g/L·d)
DF50 Δ EPS Δ cas3::pyrF	9.02 ± 0.39	43.11 ± 1.39	3.88 ± 0.08	11.20 ± 0.48	1.29 ± 0.03
DF50ΔEPSΔ cas3::pyrF:: NT	8.91 ± 0.20	43.12 ± 2.69	3.84 ± 0.19	10.70 ± 0.36	1.28 ± 0.06
DF50 Δ EPS Δ cas3::pyrF:: CS	9.16 ± 0.03	45.08 ± 1.18	4.13 ± 0.12	10.58 ± 0.37	1.38 ± 0.04

49 expression system^a.

^aAll data are expressed as mean ± standard deviations from three independent
experiments and strains were cultivated in MG medium for 3 days. ^bCDW, dry weight
of the cell (in grams) produced per liter of culture. ^cPHBV content, the weight percent
of PHBV in CDW.

Studing	Delevent characteristics	Source or
Strains	Relevant characteristics	reference
E. coli JM109	recA1 supE44 endA1 hsdR17 gyrA96 relA1 thi	2
E. coli JM110	<i>dam dcm</i> mutant of <i>E. coli</i> JM109	3
H. mediterranei DF50∆EPS	<i>pyrF</i> and HFX_2145-2148 deletion mutant of <i>H. mediterranei</i>	4
H. mediterranei 50B∆2549	P_{phaR} insertion and HFX_2549 deletion mutant of <i>H</i> . <i>mediterranei</i> DF50 Δ EPS	5
H. mediterranei CRF	CRISPR-free mutant of <i>H. mediterranei</i> DF50	6
H. mediterranei DF50∆EPS∆cas3	<i>cas3</i> deletion mutant of <i>H</i> . <i>mediterranei</i> DF50∆EPS	This study
H. mediterranei 50B∆2549∆cas3	<i>cas3</i> deletion mutant of <i>H</i> . <i>mediterranei</i> 50B∆2549	This study
H. mediterranei CRF∆EPS∆cas3	HFX_2145-2148 and <i>cas3</i> deletion mutant of <i>H</i> . <i>mediterranei</i> CRF	This study
H. mediterranei DF50∆EPS∆cas3∷pyrF	<i>pyrF</i> complementation mutant of DF50 Δ EPS Δ <i>cas3</i>	This study
H. mediterranei DF50∆EPS∆cas3::pyrF::NT	<i>pyrF</i> complementation mutant and mini-CRISPR (NT) insertion mutant of DF50 Δ EPS Δ cas3	This study
H. mediterranei DF50∆EPS∆cas3::pyrF::CS	<i>pyrF</i> complementation mutant and mini-CRISPR (CS) insertion mutant of DF50 Δ EPS Δ <i>cas3</i>	This study

Supplementary Table 2. Strains used in this study.

56 Supplementary References

57	1.	Kuhn, J. RT-PCR analysis of 5' to 3'-end-ligated mRNAs identifies the extremities
58		of <i>cox2</i> transcripts in pea mitochondria. Nucleic Acids Res. 30, 439-446 (2002).
59	2.	Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular cloning: a laboratory manual,
60		2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).
61	3.	Palmer, B. R. & Marinus, M. G. The dam and dcm strains of Escherichia colia
62		review. Gene. 143, 1-12 (1994).
63	4.	Zhao, D. H. et al. Improving polyhydroxyalkanoate production by knocking out the
64		genes involved in exopolysaccharide biosynthesis in Haloferax mediterranei. Appl.
65		Microbiol. Biotechnol. 97, 3027-3036 (2013).
66	5.	Zuo, Z. Q. et al. Engineering Haloferax mediterranei as an efficient platform for
67		high level production of lycopene. Front. Microbiol. 9 (2018).
68	6.	Li, M. et al. Characterization of CRISPR RNA biogenesis and Cas6 cleavage-
69		mediated inhibition of a provirus in the haloarchaeon Haloferax mediterranei. J.
70		Bacteriol. 195, 867-875 (2013).