Supplementary information

This file contains Supplementary Figures 1 to 14, Supplementary Tables 1 to 2, and uncropped gels and blots.

Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis

Xiaolong Tang^{1,2}, Guo Li³, Lei Shi², Fengting Su¹, Minxian Qian^{1,2}, Zuojun Liu^{1,2}, Yuan Meng¹, Shimin Sun¹, Ji Li³, Baohua Liu^{1,2,4*}

¹Shenzhen Key Laboratory of Systemic Aging and Intervention (SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
²Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen 518055, China
³Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
⁴Shenzhen Bay Laboratory, Shenzhen, China

*Correspondence should be addressed to Dr Baohua Liu (ppliew@szu.edu.cn).

Supplementary Fig. 1 Analysis of glucose deprivation and intermittent fasting

a–b Immunoblots showing the indicated protein levels in BT-549 and MDA-MB-468 breast cancer cells treated with various glucose concentrations, Representative results were obtained from at least three independent experiments. **c** Immunoblotting analysis of SIRT7 protein levels in tumor xenografts isolated from Fig. 1g, n = 3 mice per group. **d–e** Body weight was measured in the experimental groups shown in Figure 1g (d) and h (e); data represent means \pm SEM (d and e). Source data are provided as a Source Data file.

Supplementary Fig. 2 GSK3β interacts with SIRT7

a–b Co-immunoprecipitation (Co-IP) and immunoblotting analysis of the interaction between ectopic HA-SIRT7 and Flag-GSK3 β in HEK293 cells transfected with the indicated plasmids. **c** Immunoblotting analysis of the GST-pulldown eluate derived from incubation of recombinant GST-SIRT7 and His-GSK3 β *in vitro*. **d–e** Immunoblots showing the interaction of truncated SIRT7 with GSK3 β (d) or truncated GSK3 β with SIRT7 (e) in HEK293 cells. **f** Immunoblotting analysis of the anti-HA-SIRT7 immunoprecipitates from HEK293 cells overexpressing ectopic HA-SIRT7. Representative results were obtained from at least three independent experiments.

Supplementary Fig. 3 GSK3β phosphorylates SIRT7 at T255/S259 after priming phosphorylation at T263 by AMPK

a Peptide sequence showing potential residues (red) recognized by GSK3 β . **b** Conserved motif recognized by AMPK, highlighting SIRT7 T263 as a potential target. **c** Conserved SIRT7 motifs targeted by GSK3 β and AMPK in different species. **d–e** Lambda protein phosphatase (λ -PPase) mediated *in vitro* dephosphorylation assay (d) and immunoblotting analysis of cells expressing the indicated SIRT7 mutants (e), showing the specificity of the anti-p(T255/ S259)SIRT7 (p-SIRT7) antibody.

Supplementary Fig. 4 GSK3β plays critical roles in SIRT7 stabilization

a–**b** Immunoblotting and quantitative PCR analysis (n = 3 biologically independent samples) of SIRT7 levels in breast cancer MCF-7 cells treated with $GSK3\beta$ siRNA or LiCl (10 mM). **c** Immunoblotting analysis (c) of SIRT7 protein expression in BT549 breast cancer cells with or without $GSK3\beta$ knockdown and the related quantification (d) was based on four biologically independent samples. **e** Immunoblotts showing the levels of SIRT7 in 4T1 cells treated with $GSK3\beta$ siRNAs or not. **f** Immunoblotting analysis of SIRT7 stability determined by CHX (50 µg/ml) chase assay in HeLa cells treated with or without $GSK3\beta$ siRNA. **g** Immunoblotting analysis of SIRT7 protein stability determined by CHX (50 µg/ml) chase assay in HeLa cells treated with or without $GSK3\beta$ siRNA. **g** Immunoblotting analysis of SIRT7 protein stability determined by CHX (50 µg/ml) chase assay in HeLa cells treated with $GSK3\alpha$ siRNA or not. **h** Immunoblots showing SIRT7 levels in HeLa cells treated

with GSK3 α or GSK3 β siRNA. **i-j** Immunoblotting analysis (i) of SIRT7 WT, 263A and T263D protein stability determined by CHX (50 µg/ml) chase assay in HEK293 cells and (j) showing the related quantification from three biologically independent samples. **k** SIRT7 expression was evaluated by quantitative PCR (upper, n = 3 samples) and immunoblotting analysis (below) in MDA-231 breast cancer cells. **l** Immunoblots showing the cytoplasmic or nuclear SIRT7 levels in cells exposed to LiCl or not. **m** Immunoblotting analysis of acetylated H3K18 levels in cells expressing indicated SIRT7 mutants. **n** Immunoblots showing the endogenous SIRT7 expression in the presence of LiCl (10 mM) for the indicated time. **o** Immunoblotting analysis of the stability of cytoplasmic or nuclear SIRT7 using CHX chase assay in cells with or without LiCl treatment (10 mM). Data represent means ± SEM (b, d, j and k). *P*-values were determined by two-tailed Student's *t*-test (b, d and k) or two-way ANOVA analysis (j), *** *P* = 0.0000007. Representative results were obtained from at least three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 5 UBR5 contributes to SIRT7 degradation

a–b Immunoblotting of immunoprecipitates showing the interaction between ectopic HA-SIRT7 and FLAG-UBR5 in HEK293 cells. **c** Ubiquitinated SIRT7 levels were analyzed in HEK293 cells with or without overexpression of UBR5. **d** Immunoblots showing SIRT7 levels in HeLa cells treated with siRNA or LiCl (10 mM). **e** Immunoblots showing SIRT7 levels in HeLa cells treated with *GSK3β* and/or *UBR5* siRNA. **f** Quantitative PCR analysis (n = 3 biologically independent samples) of *SIRT7* mRNA levels (related to e). **g–i** SIRT7 protein stability determined by CHX (50 µg/ml) chase assay of HeLa cells transfected with Scramble or *UBR5* siRNAs (si*UBR5*) and treated with LiCl (10 mM) (g–h) or GSK3β siRNA (i) as indicated; quantification (h) was derived from three independent experiments. **j–k** Evaluation of GSK3β protein stability by CHX (50 µg/ml) chase assays in MDA-231 cells with *UBR5* knockdown (j) or overexpression (k). I Immunoblotting of immunoprecipitates showing binding of endogenous SIRT7 and UBR5 in HEK293 cells following GSK3β knockdown or treatment with LiCl (10 mM). **m** Immunoblotting analysis of anti-HA-SIRT7 immunoprecipitation eluate derived from HEK293 cells transfected with the plasmids, GSK3β-CA (constitutively active), GSK3β-KD (kinase dead, GSK3β-K85M/K86I) or GSK3β-R96A (specific recognition of the non-priming phosphorylation substrates) as indicated. Data represent means ± SEM (f and h). *P*-values were determined by two-tailed Student's *t*-test (f) or two-way ANOVA analysis (h), *** *P* = 0.00000000003. Representative results were obtained from at least three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 6 SIRT7 suppresses EGF-driven AKT activation

a Immunoblots showing AKT phosphorylation levels in HEK293 cells transfected with empty vector (EV), SIRT7-WT, SIRT7-2E and SIRT7-2A. **b–d** AKT activation assessed in MDA-231 (b) and BT-549 (c and d) breast cancer cells as indicated (EGF, 5 ng/ml). **e** AKT activation was assessed in BT-549 breast cancer cells with UBR5 or SIRT7 knockdown in the presence of insulin (10 μ g/ml). **f** FKBP51 acetylation was detected by anti-pan-ack antibody in the

anti-FLAG-FKBP51 immunoprecipitates of from lysates of HEK 293 cells expressing the indicated proteins. g Immunoblotting analysis of ubiquitinated AKT by probing with anti-K63 ubiquitin antibody. h Immunoblots detecting AKT activation in MDA-231 breast cancer cells with the indicated SKP2, FKBP51 or SIRT7 knockdown in the presence or absence of EGF (5 ng/ml). i-j Quantitative PCR showing gene expression levels in MDA-231 cells treated as indicated, n = 3 biologically independent samples for each group. k-I Immunoblotting analysis of acetylated SKP2 in anti-ACK immunoprecipitates of HEK 293 cells transfected as indicated by probing with an anti-SKP2 antibody. m Analysis of SKP2 protein stability by CHX chase assays in HEK293 cells transfected with the indicated plasmids. n-o Immunoblots (n) showing protein expression levels in the lysates of MDA-231 breast cancer cells exposed to EGF (5 ng/ml) at the indicated time-points. The curve (o) represents the related quantification. p Immunoblots showing the binding of FLAG-AKT and HA-SKP2 in HEK293 cells overexpressing SIRT7-WT, SIRT7-2E and SIRT7-2A. Note: total Flag-FKBP51 and AKT in immunoprecipitates of (f and g) are shown as membrane stained with Fast Green solution. Data represent means \pm SEM (i and j). *P*-values were determined by two-tailed Student's *t*-test (i and j), *** P = 0.000001, n.s., no significance. Representative results were obtained from at least three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 7

Supplementary Fig. 7 SIRT7 inhibits SKP2-mediated AKT activation

a Immunoblotting analysis of protein levels in the anti-SKP2 immunoprecipitates derived from lysates of MDA-231 breast cancer cells subjected to GD for 30 min. **b** Immunoblot showing HIF1 α levels in MDA-231 breast cancer cells expressing empty vector (EV), SIRT7-WT, SIRT7-2E and SIRT7-2A cultured under normoxia or hypoxia (1% O₂). **c** Immunoblots showing HIF1 α levels in breast cancer MDA-231 cells with *GSK3\beta* or *SIRT7* knockdown and cultured under hypoxia. **d** Quantitative PCR showing mRNA levels of glycolytic genes in cells related to (c), n= 3 biologically independent samples. **e** Quantitative PCR analysis of glycolytic genes in breast cancer MDA-231 cells expressing SIRT7 WT or the indicated mutants under hypoxia

(1% O_2), n= 3 biologically independent samples. **f** Would-healing assay showing the collective migration ability of H1975 lung cancer cells expressing empty vector (EV), SIRT7-WT, SIRT7-2E and SIRT7-2A. **g** Transwell migration assay showing the migratory ability of MDA-231 breast cancer cells expressing empty vector (EV), SIRT7-WT, SIRT7-2E and SIRT7-2A in response to EGF (10 ng/ml) treatment. Scale bar, 200 µm. **h** Transwell migration assay of the motility of MDA-231 breast cancer cells transfected with si*UBR5* or scramble siRNA in response to EGF (10 ng/ml) treatment. Scale bar, 100 µm. Data represent means ± SEM (d and e). *P*-values were determined by two-tailed Student's *t*-test (d and e). Representative results were obtained from at least three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 8 Sirt7 insufficiency accelerates tumor progression

a–**b** Immunoblots showing Sirt7 expression in tumors of PyMT;*Sirt7*^{+/+} and PyMT;*Sirt7*^{+/-} mice (a, upper) or livers of normal *Sirt7*^{+/+} and *Sirt7*^{+/-} mice (a, lower). The related quantification is shown in b (n = 3 mice per genotype). **c** Quantitative PCR analysis (n = 3 mice per group) of *Hif1a* and *Vegfa* mRNA levels in mammary tumors isolated from mice of Figure 6b. **d** Immunoblots showing Sirt7 protein levels in mammary tumors of PyMT;WT and PyMT;*Sirt7*-TG mice (n = 6 mice per genotype). **e** Representative images of IHC staining showing SIRT7 expression in tumors of PyMT;WT and PyMT;*Sirt7*-TG mice, analyzed from n = 3 mice for each genotype. Scale bar, 50 µm. Data represent means ± SEM (b and c). *P*-values were determined by two-tailed Student's *t*-test (d and e). Source data are provided as a Source Data file.

Supplementary Fig. 9 Sirt7 insufficiency promotes skin carcinogenesis

a Representative images showing skin carcinogenesis induced in C57/BL6 mice (n = 8 mice per genotype) using the two-stage DMBA-TPA model. Both *Sirt7*^{+/+} and *Sirt7*^{+/-} mice were treated with DMBA followed by exposure of the dorsal skin to TPA for 35 weeks. Yellow arrows indicate papillomas. **b**–**c** Statistical analysis showing the average papilloma number (b) and volume (c, total papillomas) (n = 8 mice per genotype). Data represent means \pm SEM (b and c). *P*-values were determined by two-tailed Student's *t*-test (d and e). Source data are provided as a Source Data file.

Supplementary Fig. 10 Higher SIRT7 level is associated with a better prognosis in cancer patients

a Analysis of recurrence free survival (RFS) in patients based on *SIRT7* expression. **b** Representative images showing IHC staining of SIRT7 expression in samples of normal or

precancerous breast tissues (n = 9) and malignant invasive ductal breast cancers (IDCs, n = 38), scale bar, 100 μ m. **c** The association of SIRT7 expression and breast cancer progression was analyzed according to scores of the IHC staining from (b). *P*-values were determined by *Chi*-squared test, *P* = 0.0000001 for (c).

Supplementary Fig. 11 EGF regulates the GSK3β-SIRT7 axis

a–b Ubiquitinated SIRT7 levels were evaluated in HEK293 cells transfected with the indicated constructs and with or without EGF (10 ng/ml) treatment. **c** SIRT7 levels were detected in HEK293 cells with or without *UBR5* knockdown or EGF incubation (10 ng/ml). **d** Immunoblots showing p-SIRT7 levels in HEK293 cells treated as indicated, EGF (10 ng/ml), 15 min; TPA (1 μ M), 10 min. **e** Immunoblotting analysis of lysates of cells treated with the indicated inhibitors or siRNA; ERKi, MEK-ERK inhibitor U0126 (2 μ M); JNKi, JNK1-3 inhibitor SP600125 (5 μ M); PI3Ki, PI3K inhibitor wortmannin (1 μ M). **f** Immunoblotting analysis of SIRT7 levels in MDA-231 breast cancer cells treated as indicated, EGF (10 ng/ml), U0126 (2 μ M) and

wortmannin (5 μ M). **g** p-SIRT7 levels were assessed in MDA-231 cells in the presence of U0126 (+, 1 μ M; ++, 2 μ M). **h** Immunoblot showing ubiquitinated SIRT7 levels in HEK293 cells treated and transfected as indicated transfections, U0126, 2 μ M; EGF, 10 ng/ml. **i–j** SIRT7 levels were detected in cells incubated with U0126 (2 μ M) and LiCl (10 mM). Representative results were obtained from at least three independent experiments.

Supplementary Fig. 12 EGF modulates the GSK3β-SIRT7 axis via ERK2

a–b Immunoblotting analysis (a) of p-SIRT7 levels in MDA-231 breast cancer cells treated with or without EGF (5 ng/ml) and/or the indicated siRNA; bar chart (b) showing the related quantification from three biologically independent samples. **c–d** Immunoblotting analysis (c) of p-SIRT7 levels in *ERK2* knocked down MDA-231 cells treated with or without EGF (5 ng/ml); bar chart (d) showing the related quantification, n = 3 biologically independent samples. **e–f** Immunoblotting (e) analysis of SIRT7 protein stability in A549 cells transfected with the indicated siRNA, determined by CHX (50 µg/ml) chase assay; Curve (f) showing the related quantification from three biologically independent samples. **g** The binding of SIRT7 to UBR5 assessed in MDA-231 cells treated as indicated. **h** Ubiquitinated SIRT7 levels assessed in HEK293 cells transfected with the indicated siRNA and/or plasmids; U0126 (2 μ M) and EGF (10 ng/ml). Data represent means ± SEM (b, d and f). *P*-values were determined by two-tailed Student's *t*-test (b and d) or two-way ANOVA analysis (f). Representative results were observed from at least three independent experiments. Source data are provided as a Source Data file.

b а Live Dead Phase GD (hour) 0 0.5 $M_{\rm r}({\rm K})$ 3 55 p-SIRT7 ΕV 62.20±1.09 % 55 SIRT7 70 WΤ (pS473)AKT 33.70±0.37% 70 AKT 2E 0.29±10.32% GD С 2A WΤ 2A 2E d U0126 M_r(K) GD 55 IP: SIRT7 p-SIRT7 -55 SIRT7 nput p-ERK1/2 е Tram (nM) .25 62.5 25 250 M_r(K) ŝ <u>.</u> 55 SIRT7 p-ERK1/2 40 GAPDH -35

Supplementary Fig. 13

Supplementary Fig. 13 Long-term glucose deprivation inhibits GSK3β-SIRT7 signaling to promote cell survival

a Immunoblotting analysis of p-SIRT7 levels in MDA-231 breast cancer cells cultured under glucose deprivation (GD) for the indicated times. **b** Cell viability analysis of MDA-231 cells expressing empty vector (EV) or the indicated SIRT7s and cultured under glucose deprivation. Green and red fluorescence indicate dead and live cells, respectively. Scale bar, 200 μ m. **c** Representative images (upper) showing the morphology of MDA-231 cells cultured under glucose deprivation for 12 h. The remaining cells were then cultured in nutrient rich medium for 7 days and stained with crystal violet. Scale bar, 200 μ m. **d** Detection of p-SIRT7 in MDA-231 breast cancer cells cultured under glucose deprivation with or without U0126 (2 μ M). **e** Immunoblots showing SIRT7 levels in 4T1 cells incubated with the indicated doses of

trametinib (Tram). Representative results were observed from at least three independent experiments.

Supplementary Fig. 14 GSK3-SIRT7 axis underlies chemotherapy resistance

a–**b** Immunoblots showing levels of the indicated proteins in MDA-231 cells exposed to doxorubicin (DXR) for 24 h. **c**–**d** Representative images (c) showing the morphology of MDA-231 breast cancer cells expressing the indicated SIRT7s with or without DXR treatment for 48 h. Scale bar, 200 μ m. The relative cell viability was measured using the CCK8 assay as shown in (d, n = 3 biologically independent samples). **e** Representative images showing the growth of 4T1 cells treated as indicated, F, fasting; Tram, trametinib; DXR, doxorubincin. **f** Growth curves of tumors generated from Scram or *Sirt7* KD 4T1 cells treated as indicated, n = 3 mice per group; arrows indicate drug application. Representative results were observed from at least three independent experiments.

Data represent means \pm SEM (d and f). *P*-values were determined by two-way ANOVA analysis (d). Source data are provided as a Source Data file.

Supplementary Table 1 Antibodies used in this study					
	Source	Dilutions			
Antibody		(WB, Western blotting; IP,			
		immunoprecipitation)			
SIRT7	Santa Cruz (sc-365344)	WB/IP (1:3,000/1:100)			
CIDT7	EMD Millipore				
SIRT	(ABE103)	IHC (1.50)			
(pSer9)-GSK3β	CST (#9322)	WB (1:1,000)			
GSK3β	CST (#12456)	WB (1:1,000)			
GSK3α/β	CST (#5676)	WB (1:100)			
(pSer473)-AKT	CST (#4060S)	WB (1:1,000)			
(pThr308)-AKT	CST (#13038)	WB (1:1,000)			
AKT	CST (#4691)	WB (1:1,000)			
(pThr202/Tyr204)	007(#40700)				
ERK1/2	CST(#4370S)	VVB (1:1,000)			
ERK1/2	CST (#4695S)	WB (1:1,000)			
(pThr172)-AMPK	CST (#50081)	WB (1:1,000)			
ΑΜΡΚα1/2	Abcam (ab80039)	WB (1:2,000)			
(pSer79)-ACC	CST(#3661)	WB (1:1,000)			
ACC	CST (#3676)	WB (1:1,000)			
	ECM biosciences				
Phosphoserine/threonine	(PM3801)	WB (1:1,000)			
His-tag	Proteintech (66005-1)	WB/IP (1:5,000/1:500)			
	Sigma–Aldrich				
HA-tag	(H3663)	VVB (1:5,000)			
FLAG-tag	Sigma–Aldrich (F3165)	WB(1:5,000)			
α-Tubulin	Beyotime (AT819)	WB (1:5,000)			
GAPDH	Beyotime (AG019)	WB (1:5,000)			
Anti-mouse IgG	Jackson (11-035-003)	WB (1:10,000)			
Anti-rabbit IgG	Jackson (15-035-003)	WB (1:10,000)			
UBR5	CST (#65344)	WB (1:1,000)			
EDD1	Abcam (ab70311)	IP (1:500)			
	Novus Biologicals				
HIF1α	(NB100-105)	WB (1:500)			
SKP2	CST (#2652)	WB (1:1,000)			
SKP1	CST (#12248)	WB (1:1,000)			
CUL1	CST (#4995)	WB (1:1,000)			
FKBP51	CST (#12210)	WB (1:1,000)			
K63-linkage Specific	CST (#12930)	WB (1:500)			
Polyubiquitin					
K48-linkage Specific	CST (#12805) WB (1:500)				
Polyubiquitin					

Supplementary Table 2 Oligonucleotides used in this study			
Targets	Sequence (5'-3')	Purpose	
h <i>SIRT7</i>	CUCACCGUAUUUCUACUACUA	siRNA	
hGSK3β-2	GUAUUGCAGGACAAGAGAU	siRNA	
hGSK3β-1	GGACAAGAGAUUUAAGAAU	siRNA	
h <i>UBR5</i> -1	AACUUAGAUCUCCUGAA	siRNA	
h <i>UBR5</i> -2	AGACAAAUCUCGGACUUGA	siRNA	
h <i>MEK1</i>	GUGAAUAAAUGCUUAAUAA	siRNA	
h <i>MEK</i> 2	GCAUUUGCAUGGAACACAU	siRNA	
h <i>ERK1</i>	CGUCUAAUAUAUAA-AUAUA	siRNA	
h <i>ERK</i> 2	GUUCGAGUAGCUAUCAAGA	siRNA	
hGSK3a-1	GUUCAAGUUCCCUCAGAUUAA	siRNA	
hGSK3a-2	ACUAGAGGGCAGAGGUAAAU	siRNA	
m <i>Vegfa</i> -F	GGAGAGCAGAAGTCCCATGA	qRT-PCR	
m <i>Vegfa</i> -R	ACTCCAGGGCTTCATCGTTA	qRT-PCR	
h <i>Hif1α</i> -F	CCATTAGAAAGCAGTTCCGC	qRT-PCR	
h <i>Hif1α</i> -R	TGGGTAGGAGATGGAGATGC	qRT-PCR	
m <i>Hif1α</i> -F	TGGCTCCCTATATCCCAATG	qRT-PCR	
m <i>Hif1α</i> -R	GGTCTGCTGGAACCCAGTAA	qRT-PCR	
h <i>GLUT1</i> -F	CTTTGTGGCCTTCTTTGAAGT	qRT-PCR	
h <i>GLUT1</i> -R	CCACACAGTTGCTCCACAT	qRT-PCR	
h <i>β-Actin</i> -F	AGAGCTAGCTGCCTGAC	qRT-PCR	
h <i>β-Actin</i> -R	GGATGCCACAGGACTCCA	qRT-PCR	
h <i>GAPDH</i> -F	AGAAGGCTGGGGCTCATTTG	qRT-PCR	
h <i>GAPDH</i> -R	AGGGGCCATCCACAGTCTTC	qRT-PCR	
h <i>SIRT7</i> -F	ATGAGCAGAAGCTGGTGC	qRT-PCR	
h <i>SIRT7</i> -R	CTGTCTGGTGTCTGTGGA	qRT-PCR	
h <i>HK</i> 2-F	TGGAGATGGAGAATCAGA	qRT-PCR	
h <i>HK</i> 2-R	CCAGGAAACTCTCGTCTA	qRT-PCR	
h <i>PKM</i> 2-F	TCGGAGGTTTGATGAAAT	qRT-PCR	
h <i>PKM</i> 2-R	TCTCCAGCATCTGAGTAG	qRT-PCR	
SIRT7-111Ser-Ala-F	TCTACACAGGCGCGGGAATCGCCACGGCAGCGTCTATC	Site-mutation	
SIRT7-111Ser-Ala-R	GATAGACGCTGCCGTGGCGATTCCCGCGCCTGTGTAGA	Site-mutation	
SIRT7-284Thr-Ala-F	CCCACGCCTCTGGTGCATGGCCAAGCCCCCTAGCCGGC	Site-mutation	
SIRT7-284Thr-Ala-R	GCCGGCTAGGGGGCTTGGCCATGCACCAGAGGCGTGGG	Site-mutation	
SIRT7-359Ser-Ala-F	AGGCAGCCACAGTCGGAAGGCGCTGTGCAGAAGCAG	Site-mutation	
SIRT7-359Ser-Ala-R	CTGCTTCTGCACAGCGCCTTCCGACTGTGGCTGCCT	Site-mutation	
SIRT7-255Thr-Ala-F	TGGGAAGCGGCGGCCGAGGCTGCCAGCAG	Site-mutation	
SIRT7-255Thr-Ala-R	CTGCTGGCAGCCTCGGCCGCCGCTTCCCA	Site-mutation	
SIRT7-259Ser-Ala-F	CGACCGAGGCTGCCGCCAGAGCAGACACC	Site-mutation	
SIRT7-259Ser-Ala-R	GGTGTCTGCTCTGGCGGCAGCCTCGGTCG	Site-mutation	

Targets	Sequence (5'-3')	Purpose
SIRT7-263Thr-Ala-F	CCAGCAGAGCAGACGCCATCCTGTGTCTAGG	Site-mutation
SIRT7-263Thr-Ala-R	CCTAGACACAGGATGGCGTCTGCTCTGCTGG	Site-mutation
SIRT7-255Thr-Glu-F	TGGGAAGCGGCGGAAGAGGCTGCCAGCAG	Site-mutation
SIRT7-255Thr-Glu-R	CTGCTGGCAGCCTCTTCCGCCGCTTCCCA	Site-mutation
SIRT7-259Ser-Glu-F	CGACCGAGGCTGCCGAGAGAGCAGACACC	Site-mutation
SIRT7-259Ser-Glu-R	GGTGTCTGCTCTCGGCAGCCTCGGTCG	Site-mutation
SIRT7-263Thr-Asp-F	GGCTGCCAGCAGAGCAGACGACATCCTGTGTCTAGGGTC	Site-mutation
SIRT7-263Thr-Asp-R	GACCCTAGACACAGGATGTCGTCTGCTCTGCTGGCAGCC	Site-mutation
GSK3β-9-Ser-Ala-F	GGCCCAGAACCACCGCCTTTGCGGAGAGCTG	Site-mutation
GSK3β-9-Ser-Ala-R	CAGCTCTCCGCAAAGGCGGTGGTTCTGGGCC	Site-mutation
GSK3β-96-Arg-Ala-F	CAAGAGATTTAAGAATGCAGAGCTCCAGATC	Site-mutation
GSK3β-96-Arg-Ala-R	GATCTGGAGCTCTGCATTCTTAAATCTCTTG	Site-mutation
GSK3β-K85M/K86I-F	GAACTGGTCGCCATCATGATAGTATTGCAGG	Site-mutation
GSK3β-K85M/K86I-R	CCTGCAATACTATCATGATGGCGACCAGTTC	Site-mutation