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Supplementary Text 
 

1. Theoretical Framework for Quantitative Traits 
We begin by describing the framework for quantitative traits These are traits that can 

take on a continuum of values (e.g., height). This is in contrast to clinical outcomes, which are 
binary (e.g., type 1 diabetes). Our simulations are based on an additive model for a polygenic 
trait within families: 

 
𝑦! = 𝑎! + 𝜀! , 

 
where 𝑦!  is the potential value of the trait for some individual (or embryo) 𝑖, 𝑎!  is the additive 
genetic factor for the trait, and 𝜀!  is the residual. By construction of the additive genetic factor, 
𝜀!  is uncorrelated with 𝑎!. Without loss of generality, we standardize 𝑦!  to have variance one. 
We assume that there is no non-additive genetic factor for the trait (i.e., no dominance or 
epistasis). (For educational attainment, the additive model in fact provides a reasonably good 
fit to observed correlations between relatives; see Rietveld et al.,1 SOM section 2a). Therefore, 
the within-family broad-sense heritability of the trait coincides with the within-family narrow-
sense heritability and equals ℎ" ≡ Var(𝑎!). 
 Note that the value of 𝑦!  would not be observed for most embryos. It corresponds to 
the phenotypic value of the embryo if it were the embryo chosen to transfer and if the embryo 
survived until the time that the phenotype could be measured. Though this can’t be observed in 
real data, we are able to simulate this value to assess the theoretical consequences of choosing 
one embryo over another. 
 We define 𝑐!  to be the common component of the non-genetic factor 𝜀!  for all embryos 
who share the same parents. We can then decompose the non-genetic factor as 𝜀! = 𝑐! + 𝑢!, 
where 𝑢!  is the non-genetic component that is unique to the embryo. 

In our framework, 𝑐!  and 𝑢!  are analogous to the shared and non-shared environment 
components in a standard twin model, but they are unlikely to be equal to those components. 
The reason is that twins co-exist as siblings, while the embryos replace each other as potential 
children. As a result, we expect 𝑐!  to be larger and 𝑢!  to be smaller than their analogs in a twin 
model. For example, twins may be assigned to different classrooms or be assigned to sit near 
different peers. In our setting, however, the embryo that is selected could be assigned to 
exactly the same environments as the other would be if it had been selected. 
 We define 𝑔!  as the best linear predictor of 𝑎!  using the measured SNPs. Thus, 𝑎! =
𝑔! + 𝜉!, where 𝜉!  is the residual and is uncorrelated with 𝑔!  (and 𝜀!) by construction. We can 
therefore write ℎ" = Var(𝑔!) + Var(𝜉!).  Moreover, the trait’s within-family SNP heritability is 
ℎ#$%" ≡ Var(𝑔!). 

We assume that 𝑦!  is polygenic in both the part of the genetic component captured by 
measured SNPs, 𝑔!, and the part not captured by measured SNPs, 𝜉!. Consequently, both 𝑔!  and 
𝜉!  can be well approximated as normally distributed in the population.  

Thus, the maternal components of the additive genetic factor, 𝑔&,!  and 𝜉&,!, and the 
paternal components of the additive genetic factor, 𝑔(,!  and 𝜉(,!, are distributed as: 

 
 𝑔&,!~𝑁(0, ℎ#$%" ) (1) 
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 𝑔(,!~𝑁(0, ℎ#$%" ) (2) 
 𝜉&,!~𝑁(0, ℎ" − ℎ#$%" ) (3) 
 𝜉(,!~𝑁(0, ℎ" − ℎ#$%" ). (4) 
 
We assume random mating so that the maternal and paternal genetic components are 
independent. This implies that, conditional on the parental genetic components, the genetic 
components of each embryo are independently and identically distributed as 
 

 𝑔!|𝑔&,! , 𝑔(,!~𝑁 9
)!,#*)$,#

"
, +%&'

(

"
: (5) 

 𝜉!|𝜉&,! , 𝜉(,!~𝑁 9
,!,#*,$,#

"
, +

(-+%&'
(

"
:. (6) 

 
Assortative mating would reduce the within-family variance of 𝑔!  and 𝜉!  (that is, with 
assortative mating, Var;𝑔!<𝑔&,! , 𝑔(,!= < ℎ#$%" /2 and Var;𝑔!<𝑔&,! , 𝑔(,!= < (ℎ#$%" − ℎ")/2). This 
would, in turn, reduce the expected gain from embryo selection. Therefore, as pointed out by 
Karavani et al.2, these calculations represent upper bounds on the expected gain from embryo 
selection. 

All of the calculations and simulations in this paper are independent of the distribution 
of 𝑐!, so we make no assumptions about it. We do, however, make the strong assumption that 
variation in 𝑢!  is negligible between embryos conceived by the same parents. As discussed 
below (in the section “Comparison to Framework in Karavani et al.2”), assumptions about 𝑢!  are 
irrelevant for the expected gain from embryo selection. Our assumption implies that our 
calculation of the amount of unpredictable variation is a lower bound for the true amount of 
unpredictable variation. 

We model an embryo’s polygenic score, 𝑔A!, as: 
 

 𝑔A! ≡ 𝑔! + 𝑒! , (7) 
 
where 𝑒!  has mean zero and is independent of 𝑔!. (The error 𝑒!  comes from the estimation 
error in the SNP weights used for constructing the polygenic score. The variance of this error 
shrinks with the sample size of the GWAS from which the weights are estimated.) We denote 
the variance of 𝑒!  by 𝜎." ≡ Var(𝑒!). 

Daetwyler et al.3 showed that the predictive power of the polygenic score, as measured 
by 𝑅", can be approximated as 

 

𝑅" =
(ℎ#$%" )"

ℎ#$%" + 𝜎."
. 

 
Rearranging, this implies that for a polygenic score with predictive power 𝑅", 
 

𝜎." =
ℎ#$%" (ℎ#$%" − 𝑅")

𝑅" . 
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Since we have estimates of ℎ#$%"  and 𝑅", we will use this formula to obtain our estimate of 𝜎.", 
as we discuss below in the section “Parameter Values.” 
 
2. Theoretical Framework for Binary Traits 

Our framework for binary traits is an extension of the continuous framework described 
above using a liability-scale model. Let  𝑦!⋆ ∈ {0,1} denote an indicator variable for whether 
embryo 𝑖 would have the corresponding condition during their life if it were selected. We 
assume that there is an unobservable factor 𝑦!  corresponding to 𝑦!⋆ such that 

 

 𝑦!⋆ = I0 if	𝑦! ≤ 𝑐0
1 otherwise.

 (8) 

 
where 𝑐0 is a constant that is fixed by the lifetime risk of 𝑦!⋆ in the population. In this way, 𝑦!  is a 
quantitative trait and it can follow the same framework described in Section 1 of this Appendix. 
 
3. Comparison to Framework in Karavani et al.2 
 The model for quantitative traits above differs from that of Karavani et al.2 in one way. 
Recall that the polygenic score only captures some of the variation in the phenotype, the 
amount denoted 𝑅". Karavani et al. assume that the residual variation beyond what is captured 
by the polygenic score, the amount of which is 1 − 𝑅", is uncorrelated between embryos. This 
implicitly assumes two things. First, it implies that the polygenic score captures all of the 
additive genetic variation; if it didn’t, the residual genetic variation would each have a 
correlation of ½ within a family, not 1. Second, Karavani et al.’s assumption also requires that 
𝑐!, the common-environment component of 𝜀!, be zero, whereas as we argued above, this 
component is likely to be substantial in an embryo selection setting (at least, larger than the 
“shared environment” component estimated in a twin study). 
 That said, these differences do not affect the calculations for the expected gain from 
embryo selection. As shown in Karavani et al., the only parameters that matter for this 
calculation are the predictive power of the polygenic score and the number of embryos tested. 
However, the differences matter for the calculation of the amount of unpredictable variation. 
Allowing for correlation between pairs of embryos (as we do) shrinks the prediction interval for 
embryo selection. For this reason, in our simulation we assume that 𝑢! = 0 for all embryos 
because that minimizes the unexplained variation in the phenotype within a family. Thus, our 
prediction intervals represent a lower bound on the unpredictable variation in the gain from 
embryo selection. 
 Our framework also contains a number of features that are extensions of Karavani et al. 
For example, we directly model the imperfect genetic correlation between the environment 
faced by embryos and the environment of GWAS participants. We also derive a simple 
extension of their model for binary traits. Finally, in the following section, we derive a 
framework to model the effect of ESPS on pleiotropic phenotypes. 
 
4. Pleiotropy 
 We also would like to model the effect of embryo selection for trait 𝑦!  on some 
pleiotropic trait 𝑧!. Analogously to above, we assume that, within a family, 
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𝑧! = 𝑔1,! + 𝜉1,! + 𝑐1,! + 𝑢1,!  

 
where 𝑔1,!  is the portion of the additive genetic factor captured by SNPs, 𝜉1,!  is the residual 
additive genetic factor, 𝑐1,!  is the common environmental component, and 𝑢1,!  is the unique 
environmental component. We make the corresponding assumptions for 𝑔1,!, 𝜉1,!, 𝑐1,!, and 𝑢1,!  
that we make for 𝑔!, 𝜉!, 𝑐!, and 𝑢!. Specifically, 𝑐1,! = 𝑐1,2  when embryos 𝑖 and 𝑗 have the same 
parents (and hence 𝑢1,! = 0), and our assumptions imply that 𝑔1,!, 𝜉1,!, 𝑐1,!, and 𝑢1,!  are 
pairwise uncorrelated. We also assume that 𝑧!  has been standardized to be mean zero and 
variance one. This means that 
 

𝑔1,!~𝑁(0, ℎ1,#$%" ) 
 
and 
 

𝜉1,!~𝑁;0, ℎ1" − ℎ1,#$%" =, 
 
where ℎ1" is the within-family broad-sense (and narrow-sense) heritability and ℎ1,#$%"  is the 
within-family SNP heritability of 𝑧!. 
 To model the pleiotropy between 𝑦!  and 𝑧!, we assume that Corr;𝑔! , 𝑔1,!= = 𝑟) and that 
Corr;𝜉! , 𝜉1,!= = 𝑟, . We assume that 𝑟) = 𝑟, . Thus, by the properties of bivariate normal 
distributions,  
 

 ;𝑔1,! + 𝜉1,!=|(𝑔! + 𝜉!)~𝑁 X𝑟)Y
+)(

+(
𝑔! , ℎ1";1 − 𝑟)"=Z. (8) 

 
5. Simulation Framework 
 For quantitative traits, we begin by simulating independent genetic components for 𝑁 
parent pairs according to equations (1)-(4). Next, for each parent pair, we simulate genetic 
components for 𝑀 embryos according to equations (5)-(6) and the embryos’ polygenic scores 
using equation (7). For the pleiotropy analysis, we calculate the additive genetic factor for the 
secondary trait using equation (8). 

To calculate the likelihood that a single set of parents would have at least one embryo 
with a polygenic score in the top decile of the polygenic score distribution and at least one 
embryo with a polygenic score in the bottom decile, we simply evaluate the fraction of such 
parents in the simulation. To obtain a conservative estimate of this fraction, we also restrict the 
simulation to parents who have a mean polygenic score of zero. Doing so maximizes the above 
probability. 

To calculate the expected gain from embryo selection, we identify the embryo with the 
highest polygenic score as the one that would be chosen under embryo selection. (An 
alternative approach that has been shown to have smaller gains is to omit a certain number of 
embryos with the smallest polygenic scores and to choose randomly among the remaining 
embryos.4) We also choose one embryo uniformly at random to be the embryo that would be 
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chosen if there were no embryo selection. This embryo may be the same as the embryo with 
the maximum polygenic score. For all variables corresponding to these embryos, we use the 
subscripts “max” and “rand,” respectively. 
 The gain from embryo selection for a specific parent pair is 
 

𝑔𝑎𝑖𝑛 = 𝑔345 + 𝜉345 + 𝜀345 − 𝑔6478 − 𝜉6478 − 𝜀6478 
= 𝑔345 + 𝜉345 − 𝑔6478 − 𝜉6478 

 
since 𝑢345 = 𝑢6478 = 0  and therefore 𝜀345 = 𝜀6478. To calculate the expected gain, we take 
the average gain across all 𝑀 parent pairs. To assess the unpredictable variation in the gain 
from embryo selection, we also calculate and report the 2.5th and 97.5th percentile of the gain 
across all simulated parent pairs. 
 To estimate the expected effect of pleiotropy on embryo selection, we evaluate the 
change in the second phenotype for each family as 
 

𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑔9,345 + 𝜉9,345 + 𝜀9,345 − 𝑔9,6478 − 𝜉9,6478 − 𝜀9,6478 
= 𝑔9,345 + 𝜉9,345 − 𝑔9,6478 − 𝜉9,6478, 

 
where the “max” subscript does not correspond to the embryo with the maximum polygenic 
score for 𝑧!  but rather the embryo that has the maximum polygenic score for 𝑦!. We then take 
the mean change across families to calculate the expected change in the secondary trait for 
parents using embryo selection on the primary trait. 
 For traits where 𝑧!  is on the liability scale, we must convert 𝑧!  into the probability that 
the individual will have the binary trait. To do this, we convert our simulated value of 𝑧!  for 
each embryo into the potentially observed phenotype 𝑧!⋆ using 
 

𝑧!⋆ = ]0 if	𝑧! ≤ Φ-:(1 − 𝑝)
1 otherwise,  

 
where 𝑝 is the prevalence of trait 𝑧!⋆ in a population without embryo selection. We then can 
measure the prevalence of 𝑧!⋆ in the set of embryos that have the maximum polygenic score of 
𝑦!. 

For binary traits, we follow the same simulation procedure described above for 
quantitative traits to simulate the latent variable, 𝑦!⋆. We then use (8) to convert 𝑦!⋆ into the 
value of the trait for the embryo if it were selected. The value of 𝑐0 is set such that the 
expected value of 𝑦!⋆ is fixed at some level. For the results reported in Table 1, we fix 𝑐0 such 
that the expected lifetime risk for a randomly selected embryo is equal to the US lifetime 
reported risk for the condition. For the results reported in Figure 2 and S1-S8, we vary 𝑐0 to 
obtain estimates of the expected effect of ESPS for parent pairs with different lifetime risk of 
the clinical trait (e.g., due to environmental differences). 

To calculate the absolute risk reduction due to ESPS, we calculate select one embryo at 
random from each parent pair and calculate the mean value of 𝑦!⋆ across the parent pairs. We 
use 𝑦6478⋆  to denote this value. We then select the embryo with the lowest polygenic score for 
the phenotype from each parent pair and calculate the mean value of  𝑦!⋆ across the parent 
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pairs. We use 𝑦3;7⋆  to denote this value. The absolute risk reduction with ESPS is therefore 
𝑦6478⋆ − 𝑦3;7⋆ . The relative risk reduction is (𝑦6478⋆ − 𝑦3;7⋆ )/𝑦6478⋆ .   
 
6. Between-Family Simulation 
 To create a between-family benchmark for the within-family “expected gain,” we 
imagine taking 𝑀 unrelated European-ancestry individuals from the population and measuring 
the expected difference in the phenotype between the individuals with the largest polygenic 
score and a randomly chosen individual from that group. More precisely, we first simulate an 
additive genetic factor explained by SNPs for each set of 𝑀 individuals and the residual: 
 

𝑔<=,!~𝑁;0, ℎ<=,#$%" = 
𝜀<=,!~𝑁;0,1 − ℎ<=,#$%" =. 

 
These will differ from the additive genetic factor in the within-family framework in two ways. 
First, the between-family SNP heritability will be larger than the within-family SNP heritability 
since, between families, the polygenic score captures indirect effects from parents and siblings. 
Second, individuals within a group have uncorrelated non-genetic factors because they are 
unrelated. Note that we have not separately simulated the component of the additive genetic 
factor that is unexplained by SNPs. Because the members of each group are unrelated, this 
term is drawn independently across individuals and can therefore be ignored. 
 Phenotypes 𝑦<=,!  and polygenic scores 𝑔A<=,!	 for each individual are constructed in a 
parallel way as in the within-family framework: 
 

𝑦<=,! = 𝑔<=# + 𝜀<=,!  
𝑔A<=,!	 = 𝑔<=,! + 𝑒<=,! , 

 
where 
 

𝑒<=,!~𝑁;0, 𝜎<=,." =. 
 

Analogously to the within-family framework, we set 𝜎<=,." = +*+,%&'
( ?+*+,%&'

( -@*+
( A

@*+
(  assuming some 

value of 𝑅<="  (as described in the next section, “Parameter Values”). 
 
7. Parameter Values 

We simulate 𝑁 = 1,000,000 parent pairs. For Type 1 Diabetes we simulated 10,000,000 
parent pairs because the lifetime risk is so low. Following Karavani et al.2, we assume each 
parent pair is selecting among 𝑀 = 10 viable embryos. 

We assume that the between-family broad-sense (and narrow-sense) heritability of 
educational attainment is ℎ" = 0.4, which is consistent with evidence reviewed in Branigan et 
al.5. For the five largest cohorts (𝑁 ≥ 3000) with the most precise measures of educational 
attainment (each of which has 20 categories of educational attainment), Lee et al.6 estimate the 
mean SNP heritability to be 0.2. Thus, we set ℎ<=,#$%" = 0.2. We use this estimate of SNP 
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heritability in the between-family simulation, but this estimate is biased upward in a within-
family framework due to indirect effects from parents. For the within-family SNP heritability 
parameter in parents with European ancestries, we assume ℎ#$%" = 0.10. This number is based 
on Kong et al.7, who find that roughly half of the SNP heritability for educational attainment is 
due to direct effects. 

Next, we calibrate 𝜎." such that predictive power is half of the SNP heritability, giving us 
a between-family 𝑅" of 0.1, which is used in the between-family simulation, and a within-family 
𝑅" of 0.05. This is consistent with the relative size of SNP heritability and predictive power in 
Lee et al.6 

For the calculations of all the solid bars in Figure 1, we further attenuate the predictive 
power of the polygenic score by 0.872 to account for potential imperfect genetic correlation 
between the GWAS sample population and the population from which parents are drawn, as 
per the formula derived by de Vlaming et al.8 The parameter 0.87 is the estimated genetic 
correlation between the two largest cohorts in Lee et al.6, the UK Biobank and 23andMe. This 
leaves us with a within-family 𝑅" for parents with European ancestries of 0.038. 

For the clinical traits considered other than idiopathic short stature and intellectual 
disability, we begin with the within-family area-under-the-curve (AUC) estimates for polygenic 
scores from Lello et al.9 We can convert these AUC estimates into 𝑅" estimates on the liability 
scale if we have an estimate of the lifetime risk of the clinical outcome in the same 
population.10 Because these AUC estimates correspond to a sample of individuals with 
European ancestries, we use the lifetime risk for each clinical outcome for the U.S. White, non-
Hispanic population.11 While the population of individuals with European ancestries and the 
White, non-Hispanic population are not the same group, they were as close an approximation 
we could find with reliable current information on the lifetime risk of the clinical outcomes we 
considered. To obtain an estimate of the lifetime risk of type 2 diabetes, we subtracted the 
lifetime risk of type 1 diabetes12 from the lifetime risk for all types of diabetes.13 For coronary 
artery disease, hypercholesterolemia, and hypertension, we could not identify estimates of the 
lifetime risk, so population prevalence was used instead.14 In these simulations, we defined 
idiopathic short stature and intellectual disability as having a height or cognitive performance, 
respectively, two standard deviations below the mean.15,16 

In the cases of idiopathic short stature and intellectual disability, we use estimates of 
the within-family 𝑅" of the polygenic score for their underlying continuous outcomes (height 
and cognitive performance, respectively). For height, Lloyd-Jones et al.17 report a between-
family 𝑅" of the most recent polygenic score of 34.2% in the Health and Retirement Study and 
of 35.2% in the Estonian Biobank. We use 35.2% to obtains an upper bound risk reduction of 
idiopathic short stature. Selzam et al.18 find that the coefficient associated with the polygenic 
score in a within-family analysis is 94.9% as large as the coefficient from an analysis of 
unrelated individuals. This implies that the within-family 𝑅" is 31.7%= 35.2% × 0.949". For 
cognitive performance, Lee et al.6 report a between family 𝑅" for cognitive performance of 
6.9% in the Add Health Cohort19 and 9.7% in the Wisconsin Longitudinal Study.20 As with 
idiopathic short stature, we use 9.7% to obtain an upper bound risk reduction of intellectual 
disability. Selzam et al.18 find that the coefficient associated with the polygenic score in a 
within-family analysis is 73.3% as large as the coefficient from an analysis of unrelated 
individuals. This implies that the within-family 𝑅" is 5.2% = 9.7% × 0.733". 
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Finally, because all of these polygenic scores were trained on individuals with European 
ancestries, the predictive power of the polygenic score will be smaller for those with non-
European ancestries. Therefore, for parents with AMR, EAS, or AFR ancestries, we reduce the 
predictive power of the polygenic score by a factor of 1.6, 2, or 4.5, respectively, which are the 
average degrees of attenuation as estimated across multiple traits by Martin et al.21 

To obtain the upper and lower bounds of the confidence intervals reported in Table 1, 
we follow the same simulation procedure, but this time using the upper and lower bound of the 
within-family predictive power estimates. For all the traits except idiopathic short stature and 
intellectual disability, we take the upper and lower bounds of the AUC from Lello et al.9 and 
convert them to into within-family 𝑅" using the same procedure as above. For intellectual 
disability, we use the confidence bounds for the between-family 𝑅" reported in Lee et al.6 and 
shrink those estimates by a factor of 0.733" (as above) to obtain approximate bounds of the 
within-family predictive power. For idiopathic short stature, Lloyd-Jones et al.17 do not report 
confidence intervals on their between-family 𝑅" estimates. However, their 𝑅" estimate is based 
on a sample of 32,594 individuals. The sampling variance of a squared-correlation estimate is 
Var;𝑅h"= = 4𝑅"(1 − 𝑅")"/𝑁.22,23 Using the sample estimates of 𝑅" and the known sample size, 
we can therefore obtain standard errors of the between-family 𝑅". We shrink these standard 
errors by a factor of 0.949" (as above) to obtain standard errors for our within-family predictive 
power estimates. As our 95% confidence interval, we therefore use 𝑅hB=

" ± 1.96	SE;𝑅hB=
" =, 

where 𝑅hB=
"  is the within-family predictive power. 

For the pleiotropy analysis for bipolar disorder, we use a between-family, liability-scale, 
broad-sense heritability of 0.75, based on the twin estimates found in Sullivan et al.24 We use a 
prevalence of 1%, reported in the same paper. For the genetic correlation between educational 
attainment and liability to bipolar disorder, we use 0.25, reported in Okbay et al.25 
 
8. Code 
 On publication, Python code implementing the above simulations can be found 
https://github.com/JonJala/ESPS_sim. 
 
9. Ancestry Group Labels 

In this manuscript, we refer to four continental ancestry groups and the labels for each 
of them used by the 1000 Genomes Project: European (EUR), Admixed American (AMR), East 
Asian (EAS), and African (AFR). In the 1000 Genome Project data, the EUR sample consists of 
five groups: Utah residents with Northern and Western European ancestry, British in England 
and Scotland, Iberian populations in Spain, Finnish in Finland, and Toscani in Italy. The AMR 
population consists of four groups: Puerto Rican in Puerto Rico; Colombian in Medellin, 
Columbia; Peruvian in Lima, Peru; and Mexican ancestry in Los Angeles, California. The EAS 
population consists of five groups: Han Chinese South; Kinh in Ho Chi Minh City, Vietnam; Han 
Chinese in Beijing, China; Japanese in Tokyo, Japan; and Chinese Dai in Xishuangbanna, China. 
The AFR population consists of seven groups: African Caribbean in Barbados; African Ancestry in 
Southwest US; Gambian in Western Division, The Gambia (Wolof, Mandinka, Fula, and Jola); 
Mende in Sierra Leone; Esan in Nigeria; Yoruba in Ibadan, Nigeria; and Luhya in Webuye, Kenya.  
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Supplementary Figures 

 
Figure S1. Absolute and relative risk reductions from ESPS for type 1 diabetes among different 
ancestry groups and for groups of embryos with levels of baseline risk due to family history or 
environmental conditions. The lifetime risk in the US for type 1 diabetes is marked with a 
vertical dashed line.12 The calculations underlying these figures are found in the Supplementary 
Note of this appendix. 
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Figure S2. Absolute and relative risk reductions from ESPS for breast cancer in women among 
different ancestry groups and for groups of embryos with levels of baseline risk due to family 
history or environmental conditions. The lifetime risk for women in the US for breast cancer is 
marked with a vertical dashed line.11 The calculations underlying these figures are found in the 
Supplementary Note of this appendix. 
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Figure S3. Absolute and relative risk reductions from ESPS for prostate cancer in men among 
different ancestry groups and for groups of embryos with levels of baseline risk due to family 
history or environmental conditions. The lifetime risk for men in the US for prostate cancer is 
marked with a vertical dashed line.11 The calculations underlying these figures are found in the 
Supplementary Note of this appendix. 
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Figure S4. Absolute and relative risk reductions from ESPS for malignant melanoma among 
different ancestry groups and for groups of embryos with levels of baseline risk due to family 
history or environmental conditions. The lifetime risk in the US for malignant melanoma is 
marked with a vertical dashed line.11 The calculations underlying these figures are found in the 
Supplementary Note of this appendix. 
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Figure S5. Absolute and relative risk reductions from ESPS for testicular cancer in men among 
different ancestry groups and for groups of embryos with levels of baseline risk due to family 
history or environmental conditions. The lifetime risk for men in the US for testicular cancer is 
marked with a vertical dashed line.11 The calculations underlying these figures are found in the 
Supplementary Note of this appendix. 
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Figure S6. Absolute and relative risk reductions from ESPS for hypercholesterolemia among 
different ancestry groups and for groups of embryos with levels of baseline risk due to family 
history or environmental conditions. The lifetime risk in the US for hypercholesterolemia is 
marked with a vertical dashed line.14 The calculations underlying these figures are found in the 
Supplementary Note of this appendix. 
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Figure S7. Absolute and relative risk reductions from ESPS for idiopathic short stature among 
different ancestry groups and for groups of embryos with levels of baseline risk due to family 
history or environmental conditions. The lifetime risk in the US for idiopathic short stature is 
marked with a vertical dashed line.15 The calculations underlying these figures are found in the 
Supplementary Note of this appendix. 
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Figure S8. Absolute and relative risk reductions from ESPS for intellectual disability among 
different ancestry groups and for groups of embryos with levels of baseline risk due to family 
history or environmental conditions. The lifetime risk in the US for intellectual disability is 
marked with a vertical dashed line.16 The calculations underlying these figures are found in the 
Supplementary Note of this appendix. 
  



 19 

Supplementary Tables 
Table S1. Within-family AUC and R2 of Polygenic Scores for Various Clinical Outcomes 

 
Note: This table reports the within-family AUC, lifetime risk/prevalence (LTR/Prev), and implied 
liability-scale, within-family R2 values for several clinical outcomes and four ancestry groups. 
AUC and LTR/Prev values were drawn from the literature, and the R2 values were inferred from 
the AUC and LTR/Prev. Because idiopathic short stature and intellectual disability correspond to 
clinical cut-offs of continuous outcomes (height and cognitive performance, respectively), we 
directly use the R2 estimates for the corresponding continuous outcome in those cases.6,18,26 
We shrink the R2 values for the AMR, EAS, and AFR populations relative to the estimates for the 
EUR population by a constant factor based on Martin et al.21 For more details on these 
calculations, see the Supplementary Note.  
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