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Supplementary Note

1 Detailed description of ESCO modeling

Modeling the extrinsic variation

A. Discrete cell groups: Particularly, denote the set of DE genes as GDE, and the marker gene set {Gi}Ki=1

for k cell groups such that G1 ∪G2 · · · ∪Gk ∪ . . . GK = GDE, we let the DE factor for each DE gene g in cell
group k be

fkg =

{
hkg if g ∈ Gk;

1 otherwise,
(1)

where log hkg
iid∼ N(µk, σk).

B.Tree-structured cell groups: Specifically, given the similarity between cell groups by aK×K correlation
matrix Σ generated from the tree structure, and a set of DE genes GDE, we firstly select a small proportion of
GDE and split them into the marker genes for each group G1, G2, . . . , GK . We let the DE factor for each DE
gene g in cell group k be

fkg =

{
hkgm

k; if g ∈ Gk

hgk; otherwise
(2)

where (log h1
g, . . . , log hKg )

iid∼ N(z, diag{σ1, . . . , σK}),

with z := (z1
g , . . . , z

K
g )

iid∼ N(µ,Σ),

and mk > 1 is a scalar parameter controlling the level of the additional heterogeneity for each group.

C. Continuous cell trajectories: Particularly, for each gene in the DE gene set GDE, we simulate the DE
factor at each step t in branch b with length Tb as

for t = 1, . . . , Tb :

f (t,b)
g = exp

(
w(t,b)

g

)
, (3)

where w(t,b)
g = w(t−1,b)

g + v(t−1,b)
g

with v(t,b)
g = v(t−1,b)

g +N(0, 2/Tb).

In particular, we initialize

v(0,b)
g ∼ N(0, σb);

w(0,b)
g =

{
0, if p(b) = ∅;

w
(Tp(b),p(b))
g , otherwise.

Then, for each branch b, we randomly sample several time points to generate the final cell samples, and let the
“group” identity of cell sample c be k(c) = (t, b).
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Finally, we generate the base expression with an adjustment of library size for each gene g in cell c as

λgc = Lc
λ̃gc∑
g λ̃gc

for each cell c, (4)

where λ̃gc
iid∼

{
λgf

k(c)
g , if g ∈ GDE,

λg, otherwise;

and logLc
iid∼ FL,

where k(c) denotes the group identity of cell c.

Modeling the intrinsic variation

A. Marginal: Particularly, we generate the marginal counts Ỹgc as:

Ỹgc ∼ NB(
1

Bgc
,

1

λgcB2
gc + 1

) (5)

where Bgc ∼ (φ+
1

λgc
)
√
df/X 2(df);

where φ is the common dispersion parameter, and df represents the degree of freedom of the X 2, and NB
represents the Negative Binomial distribution.

B. Co-expression: Recall a copula is defined by a joint cumulative distribution function (CDF), C(u) :
[0, 1]p → [0, 1] with uniform marginal distributions. One of the most popular copula models is the Gaussian
copula, which is defined simply as:

CGauss
Σ = NΣ(Φ−1(u1),Φ−1(u2), . . . ,Φ−1(up)) (6)

where Φ−1 denotes the inverse function of standard normal CDF, and NΣ denotes the joint CDF of a multivari-
ate normal random vector with zero means and correlation matrix Σ.

Then we generate true counts Ygc via the following model:

Ygc = NB−1
gc

(
Φ−1(Xgc)

)
for g = 1, 2, . . . , p, (7)

where (X1c, X2c, . . . , Xpc) ∼ N(0,Σ);

and NB−1
gc is the quantile function of the Negative Binomial distribution with parameters indexed by cell c and

gene g in equation (5), and Σ is the target correlation matrix.

Modeling the technical noise
Particularly, as for the empirical approach from SymSim, one may resort to Zhang et al. (2019) for details.

While as for the parametric approach from Splat, the observed counts Zgc from the data is generated via the
following

Zgc = Ygc(1−Dgc) (8)
where Dgc ∼ Ber(πgc)

with πgc =
1

1 + exp {−k(log (λgc)− x0)}
,

where πgc denotes the probability of zero-inflation, given the expression mean λgc, Ber denotes the Bernoulli
distribution, and Zgc denotes the final observed counts.
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2 Estimating the technical noise
ESCO also allows estimation of the median zero-inflation and shape parameters in equation (8). Though Splat
already includes the corresponding estimation via fitting a logistic regression between the log-transformed gene
mean and their observed zeros proportions, it is biased towards inflating the probability of excess zeros, as can
be understood via the following reasoning:

Given a real scRNA-seq data setZ ∈ Rp×n, where each elementZgc is the observed count of the expression
of gene g in cell c, let

π′gc := Pr{Zgc = 0} . (9)

Splat estimates π′gc via fitting a logistic function to model the relationship between the log means of the nor-
malized counts and the proportion of cell samples that are zero for each gene. Then Splat plugs the estimation
π̂gc in place of πgc in equation (8) to simulate Ẑgc,

Ẑgc = Ŷgc(1− D̂gc), where D̂gc ∼ Ber(π̂gc). (10)

and Ŷgc is the imitation of the true counts Ygc for gene g in cell c simulated in the previous steps.
Assuming the estimation of π′gc is accurate and the simulated true counts Ŷgc well mimics the real truth

Ygc, then this approach would cause more sparsity than expected, since the proportion of zeros in the simulated
observation will be

Pr
{
Ẑgc = 0

}
= Pr

{
Ŷgc = 0

}
+ Pr

{
Ŷgc 6= 0, D̂gc = 1

}
(∗)
= Pr

{
Ŷgc = 0

}
+ Pr

{
Ŷgc 6= 0

}
Pr
{
D̂gc = 1

}
, (11)

where (*) is true since Ŷgc and D̂gc are independent once condition on λgc. Therefore,

Pr
{
Ẑgc = 0

}
= Pr

{
Ŷgc = 0

}
+ Pr

{
Ŷgc 6= 0

}
π̂gc

≥ Pr
{
Ŷgc = 0

}
π̂gc + Pr

{
Ŷgc 6= 0

}
π̂gc

= π̂gc = π′gc = Pr{Zgc = 0} , (12)

From the above calculation, one simple correction for this bias uses:

π̃gc =
π̂gc − Pr

{
Ŷgc = 0

}
1− Pr

{
Ŷgc = 0

} (13)

as the plug-in for equation (8). Particularly, ESCO approximates Pr
{
Ŷgc = 0

}
using the CDF of Poisson with

mean λgc at zero.
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Supplementary Figure

Supplementary Figure 1: Gene co-expression is informative, but we lack satisfactory methods to simulate it
for scRNA-seq data. A. Connection between gene regulation and gene co-expression. The left panel shows the
regulation relationship between the 19 genes in Gonadal Sex Determination (Ríos et al., 2015), while the right
panel shows Pearson’s correlation matrix for these 19 genes with inferred expression (Pratapa et al., 2020).
B. Connection between gene co-expression and cell group clusters. The correlation matrix of the 500 most
significant marker genes of the five major cell types from the Zeisel data (Zeisel et al., 2015) with corresponding
gene types marked with a color bar on top, clustered using hierarchical clustering. C. The correlation matrix
for 200 simulated genes from Splat (Zappia et al., 2017), without zero-inflation. D. The correlation matrix for
200 simulated genes from SymSim (Zappia et al., 2017), without zero-inflation. The left and right panels show
results with and without the cell confounding effect, respectively. Specifically, the confounding effect arise
as SymSim generates the gene expression for gene g in cell c via a random product model, that is expression
Ygc = λgτc, where λg

iid∼ F , and τc
iid∼ G. Once conditioning on the cell confounder τc, the correlation

between expression of genes g1 and g2 disappears.
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Supplementary Figure 2: ESCO can learn both the cell heterogeneity and gene co-expression from the data.
A. The generation process of gene co-expression for one homogeneous cell group from real data using ESCO.
Particularly, the example is for 500 randomly selected genes in pyramidal CA1 cell type (911 cells) from
Zeisel data. B. The comparison of marginal features of real data consist of 500 randomly selected genes in
pyramidal CA1 cell type (911 cells) extracted from Zeisel data, and the corresponding simulated data using
different simulators. Particularly, Lun (Lun et al., 2016) is one of the earliest scRNA-seq simulators, which has
been found to be suboptimal (Zappia et al., 2017). We include it here as a clear contrast with the state-of-art
methods. C. The comparison of real data consist of 4000 most differential expressed genes in three cell types
(astrocytes_ependymal, endothelial_mural, microglia) of 526 cells in total extracted from Zeisel data, and the
corresponding simulated data using ESCO. While the UMAP depiction differs somewhat, the expression and
co-expression patterns match closely.
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Supplementary Table

(a) With gene co-expression

(#genes, #cells) (1000, 300) (5000, 500) (10000, 1000) (15000, 3000) (20000, 5000)
One group 10.6 17.2 49.8 343.5 1102.8

Discrete groups 15.8 27.5 89.7 458.9 1365.7
Tree structured groups 17.8 31.2 80.5 454.6 1328.2
Continuous trajectories 16.3 29.5 99.1 452.6 1270.8

(b) Without gene co-expression

(#genes, #cells) (1000, 300) (5000, 500) (10000, 1000) (15000, 3000) (20000, 5000)
One group 2.5 8.0 10.4 42.0 94.2

Discrete groups 6.6 12.5 28.0 91.7 184.0
Tree structured groups 7.4 16.0 34.1 112.7 212.6
Continuous trajectories 7.3 12.9 30.2 101.7 196.5

Supplementary Table 1: Time (seconds) spent of simulating large complex data.
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