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Supplementary Figure S1. Quantile-quantile plots of the null p-values of the tensor association test, obtained from

TR.true (TR model evaluated at true rank), TR.AIC (TR model evaluated at AIC-selected rank) and TR.BIC (TR

model evaluated at BIC-selected rank) under di�erent B shapes. For a given B shape, the null p-values are obtained

from those omics variables with Bpg = 0 when causal omics variables have e�ect strength d = 0.125, 0.25 and 1. The

x axis represents the expected p-values and the y axis represents the observed p-values. The simulation is conducted

using TCGA Pathway M13087 data, which retains correlation structure among omics variables.
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Supplementary Table S1. Performance of selecting causal omics variables of tensor regression evaluated at true

rank (TR.true), at AIC selected rank (TR.AIC), and at BIC selected rank (TR.BIC), as well as linear regression

model (LM) and lasso on vectorized omics variables, based on 105 replications and e�ect strength d = 0.25. For

TR and LM, two di�erent selection rules are used: (a) p-value<0.05 and (b) Benjamini-Hochberg false discovery

rate (BH-FDR)<0.05. TPR = true positive rate; FDR = false discovery rate. The best performed methods among

TR.AIC, LM and LASSO, judged by F measures, are highlighted in shaded cells. The simulation is based on TCGA

Pathway M13087 data, which retain the correlation structure among omics variables. The results show that using

either selection rule, TR.AIC has higher F measures than LM and LASSO in almost all B shapes, except for "Flat"

with Rule (b), where LASSO has the highest F measure.

B shape = Flat TR.true TR.AIC TR.BIC LM LASSO

p-value < 0.05

TPR 0.6486 0.6485 0.6486 0.5647 0.7566

FDR 0.0366 0.0383 0.0366 0.1460 0.3198

F measure 0.7714 0.7707 0.7715 0.6781 0.7153

BH-FDR < 0.05

TPR 0.5226 0.5226 0.5227 0.4018 0.7566

FDR 0.0054 0.0064 0.0054 0.0329 0.3198

F measure 0.6835 0.6833 0.6836 0.5653 0.7153

B shape = I TR.true TR.AIC TR.BIC LM LASSO

p-value < 0.05

TPR 0.8095 0.8737 0.8754 0.5563 0.8736

FDR 0.2272 0.1188 0.1176 0.1614 0.4103

F measure 0.7894 0.8757 0.8772 0.6667 0.7036

BH-FDR < 0.05

TPR 0.7606 0.8406 0.8433 0.3146 0.8736

FDR 0.1468 0.0385 0.0379 0.0340 0.4103

F measure 0.8002 0.8928 0.8950 0.4690 0.7036

B shape = T TR.true TR.AIC TR.BIC LM LASSO

p-value < 0.05

TPR 0.8657 0.8975 0.9723 0.8078 0.9326

FDR 0.1469 0.0601 0.2860 0.0634 0.3269

F measure 0.8587 0.9165 0.8085 0.8670 0.7817

BH-FDR < 0.05

TPR 0.8433 0.8695 0.9667 0.7600 0.9326

FDR 0.1110 0.0276 0.2730 0.0262 0.3269

F measure 0.8645 0.9152 0.8124 0.8533 0.7817

B shape = Random TR.true TR.AIC TR.BIC LM LASSO

p-value < 0.05

TPR 0.8607 0.8742 0.9679 0.7125 0.9118

FDR 0.0304 0.0341 0.0401 0.0321 0.1845

F measure 0.9116 0.9166 0.9632 0.8204 0.8608

BH-FDR < 0.05

TPR 0.8387 0.8539 0.9622 0.6491 0.9118

FDR 0.0187 0.0220 0.0300 0.0162 0.1845

F measure 0.9042 0.9100 0.9652 0.7815 0.8608
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[Supplementary Figure S2 and Supplementary Table S2 are in Section S5.]

Supplementary Table S3. E�ect estimates of omics variables on the drug sensitivity of Vandetanib in the CCLE

analysis, excluding negative control genes. Values in parentheses are the corresponding p-values. Shaded cells

indicate the selected important omics variables a�ecting Vandetanib sensitivity. For tensor regression (TR.AIC) and

linear model (LM), a variable is selected as important if p-value<0.05. For LASSO, a variable is selected if it has

non-zero coe�cient. Omics variables with BH-FDR< 0.05 are shown in bold.

CNV Methylation mRNA Expression

TR.AIC LM LASSO TR.AIC LM LASSO TR.AIC LM LASSO

EGFR 0.2054 (0.0267) 0.2818 (0.0127) 0.1321 -0.2778 (0.0006) -0.2671 (0.0112) -0.1669 0.1389 (0.1191) 0.0987 (0.3151) 0.1034
EREG -0.0317 (0.4046) 0.1070 (0.1874) 0 0.0429 (0.4092) 0.1373 (0.1293) 0.0035 -0.0214 (0.4695) 0.0464 (0.5562) 0
HRAS -0.0292 (0.5130) -0.0927 (0.2938) -0.1047 0.0395 (0.5347) -0.0349 (0.6840) 0 -0.0197 (0.5860) -0.0059 (0.9454) 0
KRAS -0.0317 (0.4106) 0.1196 (0.2546) 0 0.0429 (0.4030) 0.0008 (0.9938) 0 -0.0214 (0.4168) -0.1871 (0.0913) -0.048
PTPN11 0.0668 (0.1933) 0.0297 (0.7338) 0 -0.0903 (0.0973) -0.1089 (0.2701) 0 0.0452 (0.2208) 0.1280 (0.1919) 0
STAT3 -0.0460 (0.3088) -0.0824 (0.3954) 0 0.0622 (0.2474) 0.1721 (0.0664) 0.0113 -0.0311 (0.3458) 0.0272 (0.7901) 0
TGFA 0.0338 (0.4992) 0.1023 (0.2373) 0 -0.0458 (0.4671) 0.0509 (0.5125) 0 0.0229 (0.4912) 0.0184 (0.8460) 0.0296

S1. Constrained Parameterization and Identi�ablility of B = B1B
>
2

The applied rank-R tensor model considers a pair of matrices (B1,B2) to form the target matrix B by setting

B = B1B
>
2 where B1 ∈ RP×R and B2 ∈ RG×R. This model implicitly represents that both B1 and B2 have full

column rank, otherwise the rank should be less than R. This tensor model is non-identi�able because, for any two

distinct invertible matrices, say O1 and O2, with conformable dimension, two pairs of matrices (B1O1,B2O
−>
1 ) and

(B1O2,B2O
−>
2 ) result in the same B. To �x this disadvantage, we apply the constraint that

B1 =

 C

B12

 (1)

with C ∈ RR×R invertible and B12 ∈ R(P−R)×R. Note that, given B1, this C always exists with suitable row

permutations. Without loss of generality, hereafter, we assume that B1 is permuted by row so that its upper R × R

submatrix is invertible.

Proposition 1 When B1 is de�ned as (1) with arbitrary, �xed and invertible C, the factorization B = B1B
>
2 is

unique.

Proof. Assume that B1B
>
2 = B = B∗1(B∗2)> and both B1 and B

∗
1 satisfy (1). In this sequel,

0 =

 C

B12

B>2 −
 C

B∗12

 (B∗2)> =

 CB>2 −C(B∗2)>

B12B
>
2 −B

∗
12(B∗2)>

 .
Because C is invertible, the �rst row of above equation implies B2 = B∗2. On the other hand, the second row implies
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that

0 = (B12 −B∗12)B>2

⇒ 0 = (B12 −B∗12)B>2 B2

⇒ 0 = (B12 −B∗12)

where the last line is because B>2 B2 is invertible. Thus, we conclude that B∗1 = B1 and B∗2 = B2. In other words,

with the constraint (1), the factorization B = B1B
>
2 is uniquely determined. The proposed constraint (1) makes the

tensor model identi�able.

S2. Equivalence between Linear Model and Tensor Regression When R =
min(P,G)

Without loss of generality, assume that R = min(P,G) = P , and then B1 = C and B = B1B
>
2 = CB>2 . Also let [·]pg

be the operator that extracts the (p, g) element of a matrix. The proposed tensor model of rank P can be expressed

as

yi = z>i β + 〈Xi,B〉+ εi = z>i β + 〈Xi,CB
>
2 〉+ εi = z>i β +

P∑
p=1

G∑
g=1

[Xi]pg[CB>2 ]pg + εi,

which corresponds to the linear model on vectorized Xi; the result follows because C is invertable, there is a unique

mapping between B2 and B.

S3. Asymptotic Normality of B̂

S3.A. Asymptotic Normality of B̂ with a Constant Invertible Matrix C in B1

Before moving forward, we �x notation. De�ne X>i1 ∈ RR×G and X>i2 ∈ R(P−R)×G such that X>i = [X>i1,X
>
i2],

for i = 1, . . . , n. Under low-rank assumption, we de�ne B = B1B
>
2 and B>1 = [C,B>12], for some positive integer

R ≤ P and F ∈ RR×R �xed. Thus, the tensor regression is yi = zTi β + 〈Xi,B1B
T
2 〉 + εi and εi ∼ N (0, σ2). De�ne

b12 = vec(B12), c = vec(C), and b2 = vec(B2). Further, the parameter vector is de�ned as f> = (b>12, b
>
2 ). Denote f̂

as the maximum likelihood estimator of the low-rank tensor regression. Hereafter, matrix or vector with a hat means

the elements consisting of f are replaced by f̂ . Finally, for A ∈ Rm1×n1 with entries Aij and D ∈ Rm2×n2 with

entries D`k, their box product, which can be viewed as a permuted Kronecker product, denoted by E = A �D, is a

m1m2 × n1n2 matrix with its entries:

E(i−1)m2+`,(k−1)n1+j = AijD`k.

Some quick comparisons of box product and the Kronecker product in inverse, transpose and distribution are:

(A⊗B)−1 = A−1 ⊗B−1 (A�B)−1 = B−1 �A−1

(A⊗B)T = AT ⊗BT (A�B)T = BT �AT

(A⊗B)(C⊗D) = AC⊗BD (A�B)(C�D) = AC�BD
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In the following proposition, we summarize the asymptotic result of B̂. Without loss of generality, we assume that

β and σ2 are known.

Proposition 2 Under the low-rank assumption, the tensor regression yi = 〈Xi,B1B
T
2 〉 + εi for i = 1, . . . , n and

εi ∼ N (0, σ2) has Fisher information matrix

=(f) = E

(
∂l

∂f

∂l

∂f

>
)

=

n∑
i=1

1

σ2

[
Ki2b2

K>i2b12 +K>i1c

] [
b>2K

>
i2, b

>
12Ki2 + c>Ki1

]
where Kij = IR ⊗Xij, j = 1, 2. As the result, asymptotically,

√
n× vec

(
B̂
>
−B>

)
D−→ N (0,Σ(C))

where

Σ(C) =

[
A4A1=−1(f)A>1 A

>
4 A4A1=−1(f)A>1 A

>
3

A3A1=−1(f)A>1 A
>
4 A2=−1(f)A>2

]
,

A1 =
[
0GR×(P−R)R, IGR

]
, A2 = [IP−R �B2,B12 ⊗ IG], A3 = B12 ⊗ IG and A4 = C ⊗ IG.

Proof. First of all, because

〈Xi,B〉 =tr(X>i B1B
>
2 ) = tr(B>2X

>
i B1)

=tr

B>2 [X>i1,X
>
i2]

 C

B12


 = tr(B>2X

>
i1C +B>2X

>
i2B12)

=〈X>i1C,B2〉+ 〈Xi2B2,B12〉 = 〈X>i1C,B2〉+ 〈X>i2B12,B2〉

we have

∂〈Xi,B〉
∂b12

= vec(Xi2B2IR) = (IR ⊗Xi2)b2

and

∂〈Xi,B〉
∂b2

= vec(X>i1CIR) + vec(X>i2B12IR) = (IR ⊗Xi1)>c+ (IR ⊗Xi2)>b12

De�ne l = −
∑n

i=1(yi − 〈Xi,B〉)2/σ2. Then, according to the derivatives above, we have

∂l

∂f
=

n∑
i=1

 (IR ⊗Xi2)b2

(IR ⊗Xi2)
>
b12 + (IR ⊗Xi1)

>
c

 (yi − 〈Xi,B〉)
σ2

which implies that the Fisher information matrix with respect to f is

=(f) = E

(
∂l

∂f

∂l

∂f

>
)

=

n∑
i=1

1

σ2

 Ki2b2

K>i2b12 +K>i1c

[b>2K>i2, b>12Ki2 + c>Ki1

]
where Ki1 = IR ⊗Xi1 and Ki2 = IR ⊗Xi2. Consequently, by central limit theorem

√
n
(
f̂ − f

)
D−→ N

(
0,=−1(f)

)
For convenience, we consider the asymptotic distribution of

B̂
>

=


 C

B̂12

 B̂>2

>

=
[
B̂2C

>, B̂2B̂
>
12

]
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instead of B̂. Because vec(B2) = A1f , we have

√
n× vec

(
B̂2C

> −B2C
>
)

=
√
nA4A1

(
f̂ − f

)
D−→ N

(
0,A4A1=−1(f)A>1 A

>
4

)
(2)

Additionally,

√
n× vec

(
B̂2B̂

>
12 −B2B

>
12

)
=
√
n× vec

(
B̂2B̂

>
12 −B2B̂

>
12 +B2B̂

>
12 −B2B

>
12

)
=
√
n× vec

(
IG(B̂2 −B2)B̂

>
12 +B2(B̂12 −B12)>IP−R

)
=
√
n
{(
B̂12 ⊗ IG

)
vec

(
B̂2 −B2

)
+ (IP−R �B2) vec

(
B̂12 −B12

)}
=
√
n
[
IP−R �B2, B̂12 ⊗ IG

] (
f̂ − f

)
D−→ N

(
0,A2=−1(f)A>2

)
(3)

by Slutsky's theorem. Last,

Cov(vec(B̂2C
>), vec(IGB̂2B̂

>
12)) = Cov

(
(C ⊗ IG) b̂2,

(
B̂12 ⊗ IG

)
b̂2

)
= Cov

(
(C ⊗ IG) b̂2,

[(
B̂12 −B12

)
⊗ IG

]
b̂2

)
+ Cov

(
(C ⊗ IG) b̂2, (B12 ⊗ IG) b̂2

)
P−→ A4var

(
b̂2

)
A>3 = A4A1=−1(f)A>1 A

>
3

(4)

Together with (2), (3), and (4), we have

√
n× vec

(
B̂
>
−B>

)
D−→ N (0,Σ(C)) ,

where

Σ(C) =

 A4A1=−1(f)A>1 A
>
4 A4A1=−1(f)A>1 A

>
3

A3A1=−1(f)A>1 A
>
4 A2=−1(f)A>2

 . (5)

Last, the variance estimator is de�ned as

Σ̂(C) =

 Â4A1=−1(f̂)A>1 Â
>
4 Â4A1=−1(f̂)A>1 Â

>
3

Â3A1=−1(f̂)A>1 Â
>
4 Â2=−1(f̂)Â

>
2

 , (6)

where Â2 =
[
IP−R � B̂2, B̂12 ⊗ IG

]
, Â3 = B̂12 ⊗ IG, and Â4 = C ⊗ IG. It can be shown that Σ̂(C) is a consistent

estimator of Σ(C).

S3.B. Extending Results of Section S3.A to a Data-Dependent Cn in B1

In Section S3.A, we obtain the normality of B̂ for an arbitrary constant invertible matrix C. Here we extend the

results to a constant invertible matrix Cn, which may be data dependent. Let B̂12,n and B̂2,n be the estimators

based on the representation in Proposition 1 (i.e., B =

 Cn

B12

B>2 ) and let B̂n =

 Cn

B̂12,n

 B̂>2,n. Also recall that
B̂ = B̂1B̂

>
2 with B̂1 =

 C

B̂12

 and C invertible. Below we show that

(i) B̂n = B̂, and

(ii) Σ̂n(Cn) = Σ̂(C),
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where Σ̂n(Cn), de�ned in a similar fashion as Σ̂(C) of Equation (6), is the variance estimator of B̂ evaluated at

(Cn, B̂12,n, B̂2,n). Then with (i), we have that
√
n ×

(
B̂n −B

)
D−→ N (0,Σ(C)); and (ii) says that the variance

estimators of B̂ computed based on (C, B̂12, B̂2) or (Cn, B̂12,n, B̂2,n) are the same, i.e., Σ̂(C) is invariant to C. (i)

and (ii) together justify our inference procedure based on the estimator B̂n obtained using the alternating least square

(ALS) algorithm given in Section S4.

To show (i), rewrite

B̂ = B̂1B̂
>
2 = B̂1C

−1CnC
−1
n CB̂

>
2 =

 Cn

B̂12C
−1Cn

[C−1n CB̂
>
2

]
.

The last term satis�es Proposition 1 and hence is unique. Therefore, we have B̂12,n = B̂12C
−1Cn and B̂

>
2,n =

C−1n CB̂
>
2 . In other words, B̂ = B̂n.

We show (ii) in the following proposition.

Proposition 3 Σ̂(C) is invariant to C, i.e., Σ̂n(Cn) = Σ̂(C).

Proof. De�ne f̂n =
(
vec>(B̂12,n), vec>(B̂2,n)

)>
and f̂ is the same as de�ned in Section S3.A. Since vec(B̂12,n) =

vec(B̂12C
−1Cn) =

{
C>nC

−> ⊗ IP−R
}
vec(B̂12) and vec(B̂2,n) = vec(B̂2C

>C−>n )

=
{
C−1n C ⊗ IG

}
vec(B̂2), we have f̂n = Lf̂ where

L =

 C>nC
−> ⊗ IP−R 0

0 C−1n C ⊗ IG

 .
In other words, f̂n is a linear transformation of f̂ . So V ar

(
f̂n

)
= LV ar

(
f̂
)
L> = L=−1(f)L>. This implies that

Σ̂n(Cn) =

 Â4,nA1=−1(f̂n)A>1 Â
>
4,n Â4,nA1=−1(f̂n)A>1 Â

>
3,n

Â3,nA1=−1(f̂n)A>1 Â
>
4,n Â2,n=−1(f̂n)Â

>
2,n


=

 Â4,nA1L=−1(f̂)L>A>1 Â
>
4,n Â4,nA1L=−1(f̂)L>A>1 Â

>
3,n

Â3,nA1L=−1(f̂)L>A>1 Â
>
4,n Â2,nL=−1(f̂)L>Â

>
2,n

 ,
where Â2,n =

[
IP−R � B̂2,n, B̂12,n ⊗ IG

]
, Â3,n = B̂12,n ⊗ IG, and Â4,n = Cn ⊗ IG. Thus, the proof is complete if

Â4,nA1L = Â4A1, Â3,nA1L = Â3A1, and Â2,nL = Â2 hold.

Note that A1L = [O,C−1n C ⊗ IG]. Then, the �rst equation holds because

Â4,nA1L = (Cn ⊗ IG) [O,C−1n C ⊗ IG] = [O,CnC
−1
n C ⊗ IG] = [O,C ⊗ IG] = Â4A1.

Similarly, the second equation holds because

Â3,nA1L = (B̂12,n ⊗ IG)A1L = (B̂12C
−1Cn ⊗ IG)A1L = [O, B̂12 ⊗ IG] = Â3A1.

Last, we have

Â2,nL = [(IP−R � B̂2,n)(C>nC
−> ⊗ IP−R), B̂12,nC

−1
n C ⊗ IG]. (7)
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De�ne ek as the kth column of an R(P − R) × R(P − R) identity matrix, and Ek as a (P − R) × R matrix with

vec(Ek) = ek. Then, the kth column of the �rst element of (7) can be expressed as

(IP−R � B̂2,n)(C>nC
−> ⊗ IP−R)ek = (IP−R � B̂2,n)vec(EkC

−1Cn) = vec(B̂2,nC
>
nC
−>E>k )

= vec(B̂2E
>
k ) = (IP−R � B̂2)ek.

Thus, we have (IP−R � B̂2,n)(C>nC
−> ⊗ IP−R) = IP−R � B̂2. The second element of (7) can be rewritten as

B̂12C
−1CnC

−1
n C ⊗ IG = B̂12 ⊗ IG. Therefore, Â2,nL = [IP−R � B̂2, B̂12 ⊗ IG] = Â2. So the proof is complete.

S4. Parameter Estimation: the Alternating Least Square (ALS) Algorithm

For estimating B1 and B2, the term involved is 〈Xi,B1B
T
2 〉. By the cyclic property of the trace estimator, we have

〈Xi,B1B
T
2 〉 = 〈XiB2,B1〉 = 〈XT

i B1,B2〉. That is, the response vector y is linear in B1 given B2 and linear in B2

given B1 for Gaussian response variable.

E(yi | Xi, zi) = zTi β + 〈Xi,B1B
T
2 〉

= zTi β + 〈XiB2,B1〉 = zTi β + 〈[A(B
(j)
2 )]i,B1〉 (8)

= zTi β + 〈XT
i B1,B2〉 = zTi β + 〈[B(B

(j+1)
1 )]i,B2〉, (9)

where [•]i is the i-th row of •, A(B2) =



vec(X1B2)T

vec(X2B2)T

...

vec(XnB2)T


, B(B1) =



vec(XT
1B1)T

vec(XT
2B1)T

...

vec(XT
nB1)T


, B(j)
• is the estimates of B• in

the jth iteration. (8) and (9) show that we can update either B1 or B2 by solving a simple least square problem.

Consequently, we obtain the following estimation algorithm:

Algorithm 1 Tensor Regression in order-3 case for Gaussian outcome variables (TR-G)

1: procedure TR-G(B
(0)
1 , B

(0)
2 , β(0)) . Initialize B

(0)
1 , B

(0)
2 and β(0)

2: repeat

3: β(j+1) = LS(β|y,Z,B(j)
1 ,B

(j)
2 )

4: B
(j+1)
1 = LS(B1|y, {Z,A(B

(j)
2 )},β(j+1))

5: B
(j+1)
2 = LS(B2|y, {Z,B(B

(j+1)
1 )},β(j+1))

6: until convergence
7: end procedure

In Algorithm 1, LS(B1 | y, X, A, . . .) indicates a least square problem with respect to B1 given a response vector

y and a design matrix X, conditioning on A or other variables. The estimation procedure of the tensor regression

coe�cients is a series of least square problems.
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S5. Additional Simulations based on "Gene De-correlation" Data Tensor.

To make sure the results are robust to correlations among omics variables, we repeat the simulation analyses of Section

3.1 but using omics data tensors that remove the correlation among genes. We generate the "gene de-correlation" omics

data tensors, denoted as X ∗∗ with dimension (P,G, n) = (3, 74, 530), by resampling the original data tensor X ∗ across

subjects for each gene as follows. Rewrite the ith slice of X ∗∗ as X∗∗i ≡ [x∗∗·1i, · · · ,x∗∗·Gi], where x
∗∗
·gi is the P × 1 (and

P = 3 here) multi-platform design vector of gene g for individual i. Similarly, the ith slice of X ∗ isX∗i ≡ [x∗·1i, · · · ,x∗·Gi],

g = 1, · · · , 74, i = 1, · · · , 530. For subject i, we generate the multi-platform data of gene g by randomly selecting

a vector from x∗·g,1, · · · ,x∗·g,530, and repeat this process for g = 1, · · · , G= 74 to get X∗∗i . This sampling process is

repeated n times with replacement to obtain X∗∗1 , · · · ,X
∗∗
530. Finally, given an individual's omics data X∗∗i , we follow

the same procedure and settings to simulate the outcome value yi from the model yi = z>i β + 〈X∗∗i ,B〉+ εi. Results

are summarized in Supplementary Figure S2 and Supplementary Table S2 (A)-(C); the results show similar �ndings

as reported in Section 3.1 using correlated data tensor.

Supplementary Figure S2. Quantile-quantile plots of the null p-values of the tensor association test, obtained from

TR.true (TR model evaluated at true rank), TR.AIC (TR model evaluated at AIC-selected rank) and TR.BIC (TR

model evaluated at BIC-selected rank) under di�erent B shapes. For a given B shape, the null p-values are obtained

from those omics variables with Bpg = 0 when causal omics variables have e�ect strength d = 0.125, 0.25 and 1. The

x axis represents the expected p-values and the y axis represents the observed p-values. The simulation is conducted

using "gene de-correlated" data, i.e., the between-gene correlation are removed by resampling data across subjects,

per gene.
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Supplementary Table S2(A). Model rank determined using AIC and BIC for tensor regression (TR) model, based

on the "gene de-correlated" simulation, i.e., the between-gene correlation are removed by resampling data across

subjects, per gene. The table shows the proportion of a certain rank value is selected by AIC or BIC. For a given B

shape, results of true rank are shown in shaded bold; d indicates the e�ect strength of causal omics variables.

TR.AIC TR.BIC
Selected Rank Selected Rank

B shape = Flat 1 2 3 1 2 3

d = 0.125 0.990 0.010 0 1.000 0 0
d = 0.25 1.000 0 0 1.000 0 0
d = 1 0.995 0.005 0 1.000 0 0

B shape = I 1 2 3 1 2 3

d = 0.125 0.990 0.010 0 1.000 0 0
d = 0.25 1.000 0 0 1.000 0 0
d = 1 1.000 0 0 1.000 0 0

B shape = T 1 2 3 1 2 3

d = 0.125 0 0.940 0.060 1.000 0 0
d = 0.25 0 0.940 0.060 0 1.000 0
d = 1 0 0.900 0.100 0 1.000 0

B shape = Random 1 2 3 1 2 3

d = 0.125 0.165 0.790 0.045 1.000 0 0
d = 0.25 0 1.000 0 1.000 0 0
d = 1 0 0.950 0.050 0 1.000 0

Supplementary Table S2(B). Performance of selecting causal omics variables under di�erent B shapes for di�erent

methods, based on the "gene de-correlated" simulation, i.e., the between-gene correlation are removed by resampling

data across subjects, per gene. Methods include tensor regression evaluated at true rank (TR.true), at AIC determined

rank (TR.AIC), and at BIC determined rank (TR.BIC), as well as linear regression model (LM) and LASSO on

vectorized omics variables, based on 200 replications. TPR = true positive rate; FDR = false discovery rate; d

indicates the e�ect strength of causal omics variables. For TR and LM, a variable is selected as important if p-value

< 0.05. The best performed methods among TR.AIC, LM and LASSO, judged by F-measures, are shown in shades.

B shape = Flat B shape = I B shape = T B shape = Random

TR. TR. TR.
LM LASSO

TR. TR. TR.
LM LASSO

TR. TR. TR.
LM LASSO

TR. TR. TR.
LM LASSOtrue AIC BIC true AIC BIC true AIC BIC true AIC BIC

d = 0.125
TPR 0.667 0.667 0.667 0.552 0.758 0.905 0.903 0.905 0.525 0.781 0.944 0.936 0.982 0.819 0.948 0.847 0.860 0.962 0.691 0.863
FDR 0.046 0.049 0.046 0.144 0.352 0.110 0.111 0.110 0.168 0.358 0.058 0.061 0.440 0.064 0.291 0.029 0.031 0.025 0.035 0.144

F measure 0.780 0.779 0.780 0.669 0.698 0.896 0.895 0.896 0.641 0.704 0.942 0.937 0.713 0.873 0.811 0.905 0.910 0.968 0.805 0.859
d = 0.25
TPR 0.853 0.853 0.853 0.806 0.899 0.917 0.917 0.917 0.895 0.934 0.982 0.981 0.982 0.972 0.989 0.953 0.953 0.995 0.908 0.967
FDR 0.037 0.038 0.037 0.111 0.374 0.101 0.101 0.101 0.110 0.400 0.055 0.057 0.055 0.053 0.308 0.026 0.026 0.023 0.025 0.172

F measure 0.900 0.900 0.900 0.845 0.738 0.907 0.907 0.907 0.892 0.731 0.963 0.961 0.963 0.959 0.814 0.964 0.964 0.986 0.940 0.892
d = 1
TPR 0.988 0.988 0.988 0.987 1.000 0.919 0.919 0.919 0.918 0.940 0.982 0.982 0.982 0.982 0.989 0.968 0.968 0.968 0.960 0.984
FDR 0.060 0.062 0.060 0.091 0.406 0.101 0.101 0.101 0.108 0.434 0.054 0.057 0.054 0.055 0.329 0.026 0.026 0.026 0.025 0.194

F measure 0.954 0.953 0.954 0.946 0.745 0.908 0.908 0.908 0.905 0.706 0.963 0.962 0.963 0.963 0.799 0.971 0.971 0.971 0.967 0.886
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Supplementary Table S2(C). Performance of selecting causal omics variables of tensor regression evaluated at

true rank (TR.true), at AIC selected rank (TR.AIC), and at BIC selected rank (TR.BIC), as well as linear regression

model (LM) and lasso on vectorized omics variables, based on 105 replications and e�ect strength d = 0.25. For

TR and LM, two di�erent selection rules are used: (a) p-value<0.05 and (b) Benjamini-Hochberg false discovery

rate (BH-FDR)<0.05. TPR = true positive rate; FDR = false discovery rate. The best performed methods among

TR.AIC, LM and LASSO, judged by F measures, are highlighted in shaded cells. The simulation is based on the "gene

de-correlated" simulation, i.e., the between-gene correlation are removed by resampling data across subjects, per gene.

The results show that using either selection rule, TR.AIC has higher F measures than LM and LASSO for di�erent B

shapes.

B shape = Flat TR.true TR.AIC TR.BIC LM LASSO

p-value < 0.05

TPR 0.8455 0.8453 0.8455 0.7858 0.8932

FDR 0.0413 0.0435 0.0413 0.1107 0.3803

F measure 0.8933 0.8922 0.8933 0.8334 0.7313

BH-FDR < 0.05

TPR 0.7910 0.7907 0.7910 0.7054 0.8932

FDR 0.0132 0.0143 0.0132 0.0332 0.3803

F measure 0.8758 0.8752 0.8758 0.8146 0.7313

B shape = I TR.true TR.AIC TR.BIC LM LASSO

p-value < 0.05

TPR 0.9174 0.9173 0.9174 0.8708 0.9343

FDR 0.1051 0.1064 0.1051 0.1109 0.3952

F measure 0.9049 0.9042 0.9049 0.8791 0.7339

BH-FDR < 0.05

TPR 0.9143 0.9140 0.9143 0.8050 0.9343

FDR 0.0345 0.0354 0.0345 0.0345 0.3952

F measure 0.9388 0.9382 0.9388 0.8771 0.7339

B shape = T TR.true TR.AIC TR.BIC LM LASSO

p-value < 0.05

TPR 0.9816 0.9799 0.9818 0.9618 0.9866

FDR 0.0542 0.0569 0.0548 0.0541 0.3278

F measure 0.9631 0.9609 0.9628 0.9536 0.7994

BH-FDR < 0.05

TPR 0.9809 0.9780 0.9810 0.9478 0.9866

FDR 0.0272 0.0290 0.0278 0.0263 0.3278

F measure 0.9766 0.9744 0.9764 0.9604 0.7994

B shape = Random TR.true TR.AIC TR.BIC LM LASSO

p-value < 0.05

TPR 0.9498 0.9448 0.9952 0.8859 0.9634

FDR 0.0256 0.0267 0.0272 0.0261 0.1781

F measure 0.9618 0.9587 0.9837 0.9276 0.8869

BH-FDR < 0.05

TPR 0.9426 0.9367 0.9936 0.8647 0.9634

FDR 0.0171 0.0178 0.0194 0.0162 0.1781

F measure 0.9622 0.9587 0.9869 0.9202 0.8869
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S6. Omics Biomarkers for Paclitaxel Using CCLE Data

In this application, we aim at identifying important omics variables that a�ect the drug sensitivity of paclitaxel, one

of the most commonly used chemotherapy for many di�erent types of cancer. We focus on P=2 expression platforms

(i.e., mRNA expression and protein expression) and the pan-cancer cell lines (including lung, haematopoietic and

lymphoid tissue, skin, breast, ovary, pancreas, central nervous system, large intestine, endometrium and liver can-

cers). We consider G=55 genes that are from 5 KEGG pathways related to cell cycle and cell death (i.e., cell cycle

pathway, apoptosis pathway, p53 signaling pathway, MAPK signaling pathway and PI3K-Akt signaling pathway) and

have expression data in the two platforms. From the CCLE website (https://portals.broadinstitute.org/ccle/data), we

download the paclitaxel sensitivity data (CCLE_NP24.2009_Drug_data_2015.02.24.csv) and the protein expression

data (CCLE_RPPA_20181003.csv). We download the mRNA expression data from Gene Expression Omnibus (GEO ac-

cession GSE36133; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36133). After removing cell lines

with missing values, there are n =340 cell lines for further analysis.
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Supplementary Figure S3. Number of important omics variables identi�ed by TR.AIC, LM and LASSO for

paclitaxel drug sensitivity, displayed by the UpSet plot. For TR.AIC and LM, a variable is selected as important if

BH-FDR<0.05.

The TR model of rank 1 has the smallest AIC values. By controlling the FDR level at 0.05 using the Benjamini-

Hochberg procedure, TR.AIC identi�es 3 variables and LM identi�es 2 variables to be important for paclitaxel sensi-

tivity. LASSO again identi�es many (i.e., 30) important variables, among which 3 variables overlap with TR.AIC, LM

or both, but 2 variables are from housekeeping gene ACTB. Supplementary Figure S3 shows the number of important

variables identi�ed by di�erent methods, and Supplementary Table S4 lists the coe�cient estimates (and p-values if

applicable) of di�erent methods. All methods identify BCL2L1 mRNA as biomarkers for paclitaxel; TR.AIC identi�es

2 additional variables, i.e., BID mRNA (also identi�ed by LASSO) and BCL2L1 protein. Both LM and LASSO

identify RB1 protein as a biomarker for paclitaxel, and similar �ndings has been reported in breast cancer (e.g., Jones

et al., 2016; Marangoni et al., 2018), especially the triple-negative breast cancer. Although RB1 protein expression is

not identi�ed by TR.AIC, it has a TR.AIC p-value <0.05 (i.e., 0.0117).

BCL2L1 mRNA is identi�ed as a biomarker for the e�cacy of paclitaxel by all methods, and such association has
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been widely reported in many cancers, e.g., gastric cancer (Park et al., 2015), colorectal cancer (Sillars-Hardebol et al.,

2012), ovarian cancer (Stover et al., 2019), and liver cancer (Chun and Lee, 2004). Although only TR.AIC identi�es

the protein expression of BCL2L1 as an important biomarker, several papers demonstrated that BCL2L1 protein

expression is associated with the paclitaxel resistance. For examples, the low protein expression level of BCL2L1 in

the Hep3B cell line led to its high sensitivity to paclitaxel (Chun and Lee, 2004), and this dysregulation of BCL2L1

is observed in colorectal cancer patients with chromosome 20q gain (Sillars-Hardebol et al., 2012).

TR.AIC also identi�es BID mRNA expression as important. Similar to BCL2L1, mRNA expression of BID was

inhibited in the cells being treated by paclitaxel (Serbes et al., 2016). A previous study of the treatments of dexametha-

sone and paclitaxel showed that the expression of pro-apoptotic BID was inhibited and thus the chemotherapy-induced

apoptosis was inhibited (Pang et al., 2006), suggesting the important role of BID in the response of paclitaxel.
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Supplementary Table S4. E�ect estimates of omics variables on the drug sensitivity of paclitaxel in the CCLE

analysis; parentheses indicate the corresponding p-values. Shaded cells indicate important omics variables a�ecting

paclitaxel sensitivity. For tensor regression (TR.AIC) and linear model (LM), a variable is selected as important at

the FDR level of 0.05 using the Benjamini-Hochberg procedure. For LASSO, a variable is selected if it has non-zero

coe�cient. Omics variables with p-values<0.05 are shown in bold.

mRNA Expression Protein Expression

TR.AIC LM LASSO TR.AIC LM LASSO

ACTB 0.1071 (0.1469) 0.1974 (0.0760) 0.1086 ACTB 0.0803 (0.1547) 0.0031 (0.9808) 0.0018
ARAF -0.0790 (0.1682) -0.1386 (0.1439) 0 ARAF -0.0592 (0.1865) 0.0585 (0.5274) 0
ATM 0.0655 (0.3226) -0.1864 (0.1699) 0 ATM 0.0491 (0.3149) 0.0700 (0.3904) 0.0006
BAD 0.1587 (0.0215) 0.1823 (0.0674) 0 BAD 0.1190 (0.0339) -0.0253 (0.7832) 0
BAX 0.0013 (0.9846) 0.0898 (0.3802) 0.0742 BAX 0.0090 (0.9846) 0.1829 (0.1337) 0
BCL2 -0.0459 (0.5336) -0.1039 (0.5164) 0 BCL2 -0.0344 (0.5372) -0.1122 (0.3186) 0

BCL2L1 -0.2302 (0.0013) -0.4334 (0.0004) -0.2742 BCL2L1 -0.1726 (0.0011) 0.0772 (0.4489) 0
BCL2L11 0.1282 (0.0816) 0.0884 (0.5054) 0 BCL2L11 0.0961 (0.0902) 0.1180 (0.3231) 0.0067

BID 0.2506 (0.0003) 0.2457 (0.0030) 0.1411 BID 0.1879 (0.0030) 0.2240 (0.1811) 0
BIRC2 -0.1680 (0.0269) 0.0036 (0.9726) 0 BIRC2 -0.1259 (0.0458) -0.1447 (0.3855) -0.011
BRAF 0.0205 (0.7250) 0.0428 (0.6712) 0 BRAF 0.0154 (0.7272) -0.0065 (0.9419) 0
CASP7 -0.0765 (0.2172) -0.0092 (0.9206) 0 CASP7 -0.0574 (0.2194) -0.0379 (0.7381) 0
CASP8 -0.0509 (0.4663) -0.0690 (0.5294) 0 CASP8 -0.0382 (0.4679) -0.0405 (0.7743) 0
CCNB1 0.0413 (0.5575) 0.1533 (0.1458) 0 CCNB1 0.0309 (0.5563) -0.1188 (0.3230) 0
CCND1 -0.0295 (0.6886) -0.0329 (0.7572) -0.0987 CCND1 -0.0221 (0.6869) 0.1541 (0.1471) 0.0092
CCNE1 -0.1159 (0.0847) -0.2113 (0.0681) 0 CCNE1 -0.0869 (0.0880) -0.0850 (0.5340) 0
CDK1 0.1383 (0.0564) 0.0393 (0.7269) 0 CDK1 0.1037 (0.0644) 0.0260 (0.7871) 0.0491

CDKN1A 0.1133 (0.0870) 0.1125 (0.2945) 0 CDKN1A 0.0849 (0.0851) 0.1735 (0.1301) 0
CDKN1B -0.1027 (0.0809) -0.1148 (0.2319) 0 CDKN1B -0.0770 (0.0913) -0.1442 (0.1156) 0
CDKN2A 0.0789 (0.3031) -0.0943 (0.5112) 0 CDKN2A 0.0592 (0.3014) 0.0478 (0.7124) 0
CHEK1 0.0949 (0.1970) 0.1378 (0.275) 0.1282 CHEK1 0.0711 (0.2086) -0.0959 (0.3598) 0
DIABLO -0.0128 (0.8468) -0.0653 (0.5433) 0 DIABLO -0.0096 (0.8476) 0.0942 (0.4549) 0.0773
EIF4E -0.0036 (0.9560) -0.0123 (0.9167) 0 EIF4E -0.0027 (0.9561) 0.0582 (0.5596) 0

EIF4EBP1 0.0777 (0.3081) 0.1344 (0.2968) 0.0466 EIF4EBP1 0.0582 (0.2878) 0.1370 (0.2350) 0
FOXO3 0.0752 (0.2592) 0.0556 (0.5705) 0 FOXO3 0.0564 (0.2634) 0.0884 (0.4966) 0.0025
GSK3B -0.0371 (0.5686) 0.0496 (0.6507) 0 GSK3B -0.0278 (0.5619) -0.0292 (0.7431) 0
IRS1 -0.1065 (0.1249) -0.0588 (0.6355) 0 IRS1 -0.0798 (0.1307) -0.0985 (0.4178) -0.0025
JUN 0.0060 (0.9340) 0.0042 (0.9707) -0.027 JUN 0.0045 (0.9339) 0.0276 (0.8110) 0

MAP2K1 0.0930 (0.1413) -0.1805 (0.1131) 0 MAP2K1 0.0697 (0.1548) 0.1791 (0.0319) 0
MAPK1 -0.0296 (0.6212) -0.1276 (0.1201) 0 MAPK1 -0.0222 (0.62) -0.0035 (0.9680) 0
MAPK14 -0.0036 (0.9564) 0.1361 (0.2641) 0.0417 MAPK14 -0.0027 (0.9563) -0.1008 (0.3387) -0.0215
MAPK8 0.0607 (0.3470) 0.0901 (0.2826) 0.0006 MAPK8 0.0455 (0.3534) 0.0680 (0.5269) 0
MDM2 -0.0993 (0.1549) -0.0507 (0.676) 0 MDM2 -0.0744 (0.1523) 0.1989 (0.0802) 0
MDM4 -0.0576 (0.4820) -0.0590 (0.6721) 0 MDM4 -0.0432 (0.4839) -0.0411 (0.7862) 0
MTOR -0.0070 (0.9087) 0.0424 (0.6659) 0 MTOR -0.0052 (0.9087) -0.2084 (0.0304) -0.0362
MYC 0.1041 (0.1922) 0.0538 (0.6201) 0.0613 MYC 0.0780 (0.2028) 0.1501 (0.2912) 0.0086
NFKB1 0.0519 (0.4388) 0.1333 (0.1957) 0.0705 NFKB1 0.0389 (0.4298) 0.0794 (0.3885) 0
PCNA 0.1407 (0.0551) 0.1655 (0.1711) 0.0184 PCNA 0.1054 (0.0466) 0.1995 (0.0365) 0
PIK3CA -0.0395 (0.5427) -0.2081 (0.0503) 0.0153 PIK3CA -0.0296 (0.5557) -0.2118 (0.0826) 0
PRKAA1 0.1125 (0.0670) 0.1963 (0.0338) 0 PRKAA1 0.0843 (0.0807) 0.1607 (0.1548) 0
PRKCA 0.0294 (0.6975) -0.0684 (0.6073) 0 PRKCA 0.0220 (0.6937) 0.1467 (0.3588) 0
PTEN 0.0939 (0.2445) 0.1970 (0.0952) 0 PTEN 0.0704 (0.2495) -0.0340 (0.8452) 0
RAF1 0.1638 (0.0273) 0.0493 (0.6851) 0.0092 RAF1 0.1228 (0.0365) 0.0649 (0.5919) 0.0662
RB1 0.2039 (0.0040) 0.0626 (0.5219) 0 RB1 0.1529 (0.0117) 0.4653 (0.0003) 0.0932
RPS6 0.0126 (0.8610) 0.0782 (0.4426) 0.0454 RPS6 0.0094 (0.8616) 0.1157 (0.3858) 0

RPS6KB1 -0.0230 (0.7380) -0.2350 (0.1015) 0 RPS6KB1 -0.0172 (0.7386) 0.0388 (0.7121) 0
RPTOR -0.0414 (0.4528) -0.1813 (0.0541) 0 RPTOR -0.0310 (0.4498) 0.0558 (0.6729) 0

SERPINE1 -0.0309 (0.7031) 0.0523 (0.7598) 0 SERPINE1 -0.0232 (0.7030) -0.0126 (0.9090) 0
SMAD4 0.0807 (0.2420) 0.0206 (0.835) 0 SMAD4 0.0605 (0.2533) 0.2266 (0.0586) 0
STMN1 -0.0078 (0.9181) 0.0084 (0.9448) 0 STMN1 -0.0058 (0.9181) 0.1349 (0.3328) 0
SYK -0.1248 (0.0991) 0.2163 (0.304) 0 SYK -0.0935 (0.0908) -0.2226 (0.0647) 0
TP53 -0.1376 (0.0498) -0.2581 (0.0221) 0 TP53 -0.1032 (0.0909) -0.0287 (0.8544) 0
TSC1 -0.0047 (0.9456) 0.0897 (0.3802) 0 TSC1 -0.0035 (0.9457) -0.2718 (0.1739) 0
TSC2 0.0945 (0.1386) 0.1207 (0.2136) 0 TSC2 0.0708 (0.1420) -0.0629 (0.5284) 0

TUBA1B -0.1061 (0.1551) -0.0711 (0.5445) 0 TUBA1B -0.0795 (0.1443) -0.1881 (0.1355) 0


