

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Correlation between perioperative parecoxib use and postoperative acute kidney injury in patients undergoing non-cardiac surgery: A retrospective cohort analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047840
Article Type:	Original research
Date Submitted by the Author:	14-Dec-2020
Complete List of Authors:	Tang, Yong-Zhong; Central South University Third Xiangya Hospital, Anesthesiology Zeng, Pingping; Central South University Third Xiangya Hospital, Department of Anesthesiology Liao, Yan; Central South University Third Xiangya Hospital, Department of Anesthesiology Qin, Zheng; Hunan University College of Computer Science and Electronic Engineering Zhang, Hao; Institute of Microelectronics pf Chinese Academy of Sciences Li, Bo; Central South University Third Xiangya Hospital Ouyang, Wen; Central South University Third Xiangya Hospital li, dan; Central South University, Department of Anesthesiology
Keywords:	Adult anaesthesia < ANAESTHETICS, Acute renal failure < NEPHROLOGY, Pain management < ANAESTHETICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
54 55
55 56
57
58
59

60

1	Correlation between perioperative parecoxib use and postoperative acute kidney
2	injury in patients undergoing non-cardiac surgery: A retrospective cohort analysis
3	
4	Yongzhong Tang, M.D. ¹ , Pingping Zeng, M.D. ¹ , Yan Liao, M.D. ¹ , Zheng Qin, Ph.D. ² ,
5	Hao Zhang, Ph.D. ³ , Bo Li, M.D. ⁴ , Wen Ouyang, Ph.D. ¹ , and Dan Li, Ph.D. ^{1*}
6	¹ Department of Anesthesiology, The Third Xiangya Hospital, Central South University,
7	Changsha, China
8	² College of Computer Science and Electronic Engineering, Hunan University, Changsha,
9	China
10	³ Institute of Microelectronics of Chinese of Science, Beijing, China
11	⁴ Operation Room, The Third Xiangya Hospital, Central South University, Changsha,
12	China
13	
14	Corresponding author: Dan Li, Department of Anesthesiology, The Third Xiangya
15	Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013,
16	China
17	Tel: +8613574871720, Fax: +8673188618151, E-mail: <u>danfuer623@163.com</u>
18	

19	Abstract
20	Objective: The association of nonsteroidal anti-inflammatory drugs with postoperative acute kidney
21	injury is controversial. However, there are few studies focusing on the association between parecoxib
22	and postoperative acute kidney injury.
23	Design: A retrospective cohort study
24	Setting: Third Xiangya Hospital of Central South University in Hunan Province, China
25	Participants: The electronic medical records and laboratory results were obtained from 9,246 adult
26	patients (18-60 years) undergoing non-cardiac surgery performed between January 1, 2012 to August
27	31, 2017. Study groups were treated with or without parecoxib.
28	Interventions: Univariable analysis identified demographic, preoperative laboratory, and
29	intraoperative factors associated with acute kidney injury. Logistic stepwise regression was used to
30	calculate the adjusted odds ratio of parecoxib and acute kidney injury association.
31	Results: The incidence of postoperative acute kidney injury was 6.06% and parecoxib was used in
32	10.5% of the patients. The mortality was 4.64% in the acute kidney injury group. The incidence of
33	acute kidney injury was lower in the parecoxib-administered group (4%) than that in the group without
34	parecoxib (6.3%, $p = 0.005$). Postoperative acute kidney injury risk reduced by 39% in the parecoxib-
35	administered group after adjusting for interference factors.
36	Conclusions: Thus, parecoxib might have potential protective effects against postoperative acute
37	kidney injury risk in adult patients undergoing non-cardiac surgery.
38	
39	Keywords: acute kidney injury; parecoxib; non-cardiac surgery
40	

41	Strengths and limitations of this study: Large study population including all adult patients (18–60
42	years) undergoing non-cardiac surgery in Third Xiangya Hospital of Central South University in China
43	between 2012 to 2017.□
44	Our study indicated that parecoxib might have potential protective effects against postoperative
45	acute kidney injury risk.
46	This retrospective single-center observational study may have had some selection bias, and the
47	timing of the serum creatinine measurement may vary with different doctors.

48	Background	

Acute kidney injury (AKI), a long-recognized complication of surgery with a high incidence of morbidity and mortality, increases health care costs and length of hospital stay [1-3]. Even in patients undergoing non-cardiac surgery with low-grade American Society of Anesthesiologists (ASA) physical status such as ASA I–II, the incidence of postoperative AKI can reach 6% [4]. Mild kidney injury, such as a small increase in postoperative serum creatinine, is associated with renal dysfunction for as long as 1 to 2 years after surgery [5].

Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used perioperative anesthetic adjuvants, with anti-inflammatory and analgesic effects. The main mechanism of action of NSAIDs is the inhibition of cyclooxygenase (COX) enzymes, which can ultimately result in the reduction of prostanoids and thromboxane [6]. COX exists in two forms: COX-1, which is present in most body tissues body including the stomach and intestines and COX-2, which is primarily found at sites of inflammation [7]. Accumulating evidence suggests that traditional NSAIDs, such as aspirin and ibuprofen, are associated with acute and chronic gastrointestinal bleeding and kidney disease [8, 9]. These NSAIDs are nonselective COX (COX-1 and COX-2) inhibitors and their side effects are mostly COX-1 related.

Parecoxib is a parenteral specific COX-2 inhibitor, which enhances its therapeutic gain with minimal adverse effects [6, 10]. Parecoxib is used as a perioperative analgesic in over 80 countries, however, clinical data about effect of parecoxib on postoperative AKI are scarce. Therefore, it is important to establish its safety during the perioperative period.

The aim of this study was to assess the correlation between the perioperative use ofparecoxib and postoperative AKI in patients undergoing non-cardiac surgery.

73 Methods

74 Design and selection criteria

This retrospective study was performed at the Third Xiangya Hospital of Central South University from January 1, 2012, to August 31, 2017. The inclusion criterion was patients aged 18-60 years who underwent non-cardiac surgery. The exclusion criteria were ASA grade VI, administration of local anesthesia, liver transplantation, cardiac surgery, urological surgery (including kidney transplantation), lack of serum creatinine or covariate data, and preoperative combined CKD, defined as estimate glomerular filtration rate (eGFR) <60 mL·min⁻¹·1.73m^{(2) -1}, \geq 3 months). Parecoxib doses larger than 80 mg were not included because the routine dose is not more than 80 mg/day based on the drug instructions. The study was approved by the Ethics Committee of the Third Xiangya Hospital of Central South University (approval number 2020S264) that waived the need for informed consent because of the observational nature of the study.

87 Data collection

The following information was collected: 1) epidemiological data including age, sex, and BMI; 2) individual history including preoperative complications and medication history; 3) laboratory data including serum creatinine and eGFR calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula; 4)

BMJ Open

intraoperative data including emergency, surgical grade, operative time, anesthesia method, ASA grade, amount of fluid infusion and out, intraoperative erythrocyte transfusion volume, amount of blood loss, intraoperative hypotension and vasoactive drugs. 5) postoperative outcomes such as occurrence of AKI, admission to ICU, and mortality. All clinical data of the 9,246 patients who underwent non-cardiac surgery were obtained by a retrospective review of the computerized patient record system of our hospital. Definitions Postoperative AKI was defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) 2012 creatinine criteria [11], as one of the following: an increase in serum creatinine by $\geq 0.3 \text{ mg/dL}$ within 48 h or a ≥ 1.5 -times increase in serum creatinine from baseline within 7 postoperative days. The baseline serum creatinine level was calculated using the lowest level at preoperative day 7. The primary outcome was the impact of parecoxib on AKI, defined as AKI occurring within 7 postoperative days. Parecoxib administration was defined during the operative time. Surgical grade was classified using the surgical classification catalogue constituted by the Chinese Ministry of Health, published in 2018. Intraoperative hypotension was defined as mean arterial pressure (MAP) <65mmHg for a duration of at least 5 min. Patient and public involvement

113 No patient involvement.

Statistical analysis All statistical analyses were performed using SAS version 9.4 software (SAS Institute, Inc., Cary, NC, USA) and CRAN R (v3.4.3). Missing data of covariates were handled by multiple imputation model. The continuous results are expressed as mean(SD), whereas categorical variables are expressed as numbers with percentages. The Kruskal-Wallis rank sum test was used to compare continuous variables between groups, whereas the chi-square (χ^2) test or Fisher's exact probability method was used for categorical variables. Univariable logistic regression analysis was used to identify epidemiological, preoperative laboratory, and intraoperative factors that were significantly associated with AKI development. The data were adjusted for potential confounders in multivariable regression models. In addition, the sensitivity test or subgroup analysis were performed. The results of the classification variable are expressed as odds ratio (OR) or "Beta" and 95% CI; a p-value < 0.05 indicated a statistically significant difference. Results Of the 108,198 records identified, those of 9,246 patients were included in the analysis (Fig. 1). Reasons for excluding patients were age <18 or >60 years (n = 4,783), ASA grade VI (n = 13), exposure to local anesthesia (n = 12,054), cardiac surgery (n = 387), urological surgery including kidney transplantation (n = 3,589), liver transplantation (n =

135 107), no recorded preoperative or postoperative creatinine data (n=73,093), no recorded

BMJ Open

2								
3 4 5	136	covariate data such as routine blood panel or infusion volume ($n = 4,114$), preoperative						
6 7	137	chronic kidney disease (CKD) ($n = 472$), and administration of parecoxib doses >80 mg						
8 9 10	138	(n = 340).	(n = 340).					
11 12	139							
13 14 15	140	AKI						
16 17 18	141	The incidence of postope	rative AKI was 6.06% (5	560/9,246). In the	AKI group, the			
19 20	142	probability of admission to t	he intensive care unit (IC)	U) and mortality we	ere 10.18% and			
21 22 23	143	4.64%, respectively (Table 1).					
24 25 26	144							
Table 1. Baseline characteristics of patients aged 18–60 years with and with					l without acute			
30 31 32	146	kidney injury (AKI)						
33 34 35			without AKI	With AKI				
36 37 38		Clinical features	(n=8686)	(n=560)	p-value			
39 40 41		Age (years)	44.25±10.43	45.06±10.18	0.074			
41 42 43		BMI	22.93±4.93	22.54±3.83	0.07			
44 45 46		eGFR	101.98±16.38	94.41±19.78	< 0.001			
47 48		Male	4267 (49.13%)	300 (53.57%)	0.041			
49 50 51		Smoking	1213 (13.97%)	105 (18.75%)	0.002			
52 53 54		Alcohol consumption	822 (9.46%)	74 (13.21%)	0.004			
55 56		Anemia	1538 (17.71%)	161 (28.75%)	<0.001			
57 58 59		Hypertension	1884 (21.69%)	211 (37.68%)	< 0.001			
60								

Diabetes mellitus	509 (5.86%)	52 (9.29%)	< 0.001
ACEI	189 (2.18%)	21 (3.75%)	0.015
ARB	116 (1.34%)	13 (2.32%)	0.054
ССВ	1125 (12.95%)	119 (21.25%)	< 0.001
Diuretics	77 (0.89%)	19 (3.39%)	< 0.001
ASA grade			< 0.001
I–II	6633 (76.36%)	317 (56.61%)	
III–V	2053 (23.64%)	243 (43.39%)	
Anesthesia method			< 0.001
General anesthesia	7735 (89.05%)	531 (94.82%)	
No general anesthesia	951 (10.95%)	29 (5.18%)	
Emergency	1395 (16.06%)	130 (23.21%)	< 0.001
Surgical Grade			< 0.001
1	245 (2.82%)	14 (2.50%)	
2	2746 (31.61%)	118 (21.07%)	
3	5349 (61.58%)	386 (68.93%)	
4	346 (3.98%)	42 (7.50%)	
Operative time (min)			< 0.001
≤ 60	1338 (15.4%)	63 (11.25%)	
61–120	2176 (25.05%)	111 (19.82%)	
121–180	2032 (23.39%)	135 (24.11%)	
>180	3140 (36.15%)	251 (44.82%)	

	Intraoperative erythrocyte			
				< 0.001
	Transfusion, mL (%)			
	<100	6735 (77.54)	339 (60.54)	
	100–600	868 (9.99)	82 (14.64)	
	601–1000	508 (5.85)	42 (7.50)	
	>1000	575 (6.62)	97 (17.32)	
	Amount of Blood loss, mL			<0.001
	(%)			<0.001
	<100	2623 (30.20)	131 (23.39)	
	100–600	4771 (54.93)	292 (52.14)	
	601–1000	670 (7.71)	60 (10.71)	
	>1000	622 (7.16)	77 (13.75)	
	Amount of fluid infusion	916.67 (625.00-	1125.00 (703.12–	-0.001
	(10 mL/24 h)	1432.29)	1604.17)	<0.001
	Amount of fluid out		375.00 (208.33-	-0.001
	(10 mL/24 h)	333.33 (145.83–541.67)	687.50)	< 0.001
	Intraoperative Hypotension	930 (10.71%)	81 (14.46%)	0.006
	Vasoactive drugs	664 (7.64%)	71 (12.68%)	<0.001
	Parecoxib	934 (10.75%)	39 (6.96%)	0.005
	Admission to ICU	376 (4.33%)	57 (10.18%)	< 0.001
	Death	32 (0.37%)	26 (4.64%)	< 0.001
147				

148	AKI: acute kidney injury, BMI: body mass index, eGFR: estimated glomerular filtration rate, ACEI:				
149	angiotensin-converting enzyme inhibitors, ARB: angiotensin receptor blockers, CCB: calcium-				
150	channel blockers, ASA: American Society of Anesthesiologists, ICU, intensive care unit. Data are				
151	expressed as number of patients (%) or mean \pm standard deviation (SD).				
152					
153	There was no difference in a	age, body mass index (E	BMI), angiotensin re	ceptor blocke	ers
154	(ARBs) use and intraoperativ	ve hypotension among pa	atients with and with	out AKI (Tab	ole
155	1). Significant differences b	between patients with A	KI and without AK	I are shown	in
156	Table 1 (all p < 0.05).				
157					
158	Parecoxib				
159	Parecoxib was used in 10.5% (973/9,246) of patients (Table 2).				
160					
161	Table 2. Baseline characteri	stics of patients aged 18	-60 years treated w	ith and witho	out
162	parecoxib		2		
	Clinical features	Without parecoxib	With parecoxib		
		(n=8273)	(n=973)	p-value	
	Age (year)	44.23±10.46	44.89±10.04	0.06	
	BMI	22.89±4.99	23.03±3.76	0.409	
	eGFR	101.66±16.66	101.56±16.23	0.858	
	Male	4062 (49.1%)	508 (52.2%)	0.063	

Page 13 of 31

BMJ Open

1	2
- 1	/

1				12
2 3 4	Smoking	1175 (14.2%)	146 (15%)	0.479
5 6 7	Alcohol consumption	811 (9.8%)	89 (9.1%)	0.544
8 9 10	Anemia	1547 (18.7%)	152 (15.6%)	0.019
11 12 13	Hypertension	1903 (23%)	189(19.4%)	0.011
14 15 16	Diabetes mellitus	505 (6.1%)	56 (5.8%)	0.666
17 18	ACEI	199 (2.4%)	14 (1.4%)	0.065
19 20 21	ARB	116 (1.4%)	14 (1.4%)	0.902
22 23 24	ССВ	1142 (13.8%)	103 (10.6%)	0.006
25 26	Diuretics	91 (1.1%)	8 (0.8%)	0.482
27 28 29	ASA grade			0.09
30 31 32	I–II	6196 (74.9%)	753 (77.4%)	
33 34	III–V	2077 (25.1%)	220 (22.6%)	0.001
35 36 37	Anesthesia method	72(2(900/)	007 (02 20/)	<0.001
38 39 40	General anesthesia No general anesthesia	7363 (89%) 910 (11%)	907 (93.2%)	
41 42 43	Emergency	1406 (17%)	119 (12.2%)	<0.001
44 45 46	Surgical grade			<0.001
47 48	1	240 (2.9%)	19 (2%)	
49 50 51	2	2623 (31.7%)	243 (25%)	
52 53 54	3	5080 (61.4%)	656 (67.4%)	
55 56	4	330 (4%)	55 (5.7%)	
57 58 59 60	Operative time (min)			<0.001

13
±0

				13
≤60	1315 (15.9%)	88 (9%)		
61–120	2085 (25.2%)	204 (21%)		
121–180	1919 (23.2%)	246 (25.3%)		
>180	2954 (35.7%)	435 (44.7%)		
Intraoperative erythrocyte			0.94	
Transfusion, mL (%)			0.94	
<100	6329 (76.5%)	744 (76.5%)		
100–600	852 (10.3%)	98 (10.1%)		
601–1000	496 (6%)	56 (5.8%)		
>1000	596 (7.2%)	75 (7.7%)		
Amount of Blood loss, mL			0.003	
(%)			0.005	
<100	2507 (30.3%)	251 (25.8%)		
100–600	4500 (4.4%)	559 (57.5%)		
601–1000	662 (8%)	70 (7.2%)		
>1000	604 (7.3%)	93 (9.6%)		
Intraoperative Hypotension	10.8	11.9	0.297	
Vasoactive drugs	7.8	8.9	0.227	
Amount of fluid infusion	1037.07±565.54	1159.31±579.85	< 0.001	
(10 mL/24 h)	1057.07-505.57	1157.51-577.05	~0.001	
Amount of fluid out	410.17±374.16	373.74±334.53	0.004	

AKI	521 (6.3%)	39 (4%)	0.005
AKI.RANK			0.013
0	93.7	96	
1	4.5	2.6	
2	1.8	1.4	

enzyme inhibitors, ARB: angiotensin receptor blockers, CCB: calcium-channel blockers, ASA:
American Society of Anesthesiologists, AKI: acute kidney injury. Data are expressed as number of
patients (%) or mean ± standard deviation (SD).

The incidence of AKI was lower in the parecoxib-administered group (4%) than in the group without parecoxib (6.3%, p = 0.005). There was no difference in age, BMI, estimated glomerular filtration rate (eGFR), sex, smoking, alcohol consumption, presence of diabetes mellitus, use of angiotensin-converting enzyme inhibitors (ACEIs), ARBs, or diuretics, ASA grade, incidence of intraoperative erythrocyte transfusion and intraoperative hypotension, and use of vasoactive drugs between patients treated with and without parecoxib (Table 2). Significant differences between patients treated with and without parecoxib are shown in Table 2 (all p < 0.05).

177 Univariable analysis

178 The factors shown by the univariable analysis to influence AKI development in patients

aged 18–60 years who underwent non-cardiac surgery are listed in Table 3.

181 Table 3. Univariable analysis of acute kidney injury (AKI)

		Univariable	e
Variable	Statistics	OR (95% CI)	p-value
Parecoxib	0.11± 0.31	0.62 (0.45, 0.87)	0.0050
Age (year)	44.30 ± 10.42	1.01 (1.00, 1.02)	0.0737
Male	4567 (49.39%)	1.19 (1.01, 1.42)	0.0416
BMI	22.90 ± 4.87	0.98 (0.95, 1.00)	0.0396
Smoking	1318 (14.25%)	1.42 (1.14, 1.77)	0.0018
Alcohol consumption	896 (9.69%)	1.46 (1.13, 1.88)	0.0038
Anemia	1699 (18.38%)	1.88 (1.55, 2.27)	< 0.0001
Hypertension	2095 (22.66%)	2.18 (1.83, 2.61)	< 0.0001
Diabetes mellitus	561 (6.07%)	1.64 (1.22, 2.22)	0.0011
ACEI	210 (2.27%)	1.75 (1.11, 2.77)	0.0167
ARB	129 (1.40%)	1.76 (0.98, 3.14)	0.0570
ССВ	1244 (13.45%)	1.81 (1.47, 2.24)	< 0.0001
Diuretics	96 (1.04%)	3.93 (2.36, 6.54)	< 0.0001
eGFR	97.94±22.36	0.96 (0.96, 0.97)	< 0.0001
ASA grade III–V	2296 (24.83%)	2.48 (2.08, 2.95)	< 0.0001
No general anesthesia	980 (10.60%)	0.44 (0.30, 0.65)	< 0.0001
Emergency	1525 (16.49%)	1.58 (1.29, 1.94)	< 0.0001

Page 17 of 31

BMJ Open

1	C
1	σ

Operative time (min)			
• · · · ·			
≤60	1401 (15.15%)	1	
61–120	2287 (24.74%)	1.08 (0.79, 1.49)	0.6200
121–180	2167 (23.44%)	1.41 (1.04, 1.92)	0.0279
>180	3391 (36.68%)	1.70 (1.28, 2.25)	0.0003
Intraoperative Hypotension	1011 (10.93%)	1.41 (1.10, 1.80)	0.0060
Vasoactive drugs	735 (7.95%)	0.06 (0.03, 0.09)	<0.0001
Intraoperative erythrocyte			
transfusion, mL (%)			
<100	7074 (76.51%)	1	
100–600	950 (10.27%)	1.88 (1.46, 2.41)	< 0.000
601–1000	550 (5.95%)	1.64 (1.18, 2.29)	0.0035
>1000	672 (7.27%)	3.35 (2.63, 4.27)	<0.000
Amount of Blood loss, mL			
(%)			
<100	2754 (29.79%)	1	
100–600	5063 (54.76%)	1.23 (0.99, 1.51)	0.0596
601–1000	730 (7.9%)	1.79 (1.31, 2.46)	0.0003
>1000	699 (7.56%)	2.48 (1.85, 3.33)	<0.0001
182 OR: odds ratio, BMI: body m	ass index ACEL and	iotensin-converting enzy	me inhihi

184 Anesthesiologists.

185	
186	In the univariable analysis, male sex, smoking, alcohol consumption, anemia,
187	hypertension, diabetes mellitus, ACEI use, calcium channel blocker (CCB) use, diuretic
188	use, ASA grade III-V, emergency, surgical grade 4, duration of the operation, incidence
189	of intraoperative hypotension and erythrocyte transfusion, and amount of blood loss were
190	independently associated with an increased risk of postoperative AKI (Table 3).
191	Parecoxib (OR, 0.62; 95%CI, 0.45–0.87, p = 0.005), eGFR (OR,0.96; 95%CI, 0.96–
192	0.97, p < 0.0001), no general anesthesia (OR, 0.44; 95%CI, 0.30–0.65, p < 0.0001) and
193	vasoactive drug use(OR, 0.06; 95%CI, 0.03-0.09, p < 0.0001) were independently
194	associated with a decreased risk of postoperative AKI (Table 3). Age (OR, 1.01; 95%CI,
195	1.00–1.02, p = 0.0737), BMI (OR, 0.98; 95%CI, 0.95–1.00, p = 0.0396), and ARB use
196	(OR, 1.76; 95%CI, 0.98–3.14, p = 0.0570) were not correlated with AKI (Table 3).
197	
198	Multivariable regression analysis
199	The occurrence of postoperative AKI was regarded as a dependent variable, and the
200	administration of parecoxib, an independent variable when we performed the stepwise
201	regression analysis (Table 4).
202	
203	Table 4 Odds ratio of postoperative acute kidney injury (AKI) associated with parecoxib
	Non-adjusted: Adjusted I: Adjusted II: Adjusted III:

		Model 1	Model 2	Model 3	Model 4
	OR (95%	0.62 (0.45, 0.87)	0.64 (0.46, 0.90)	0.63 (0.44, 0.89)	0.61(0.43, 0.87)
	CI) p-value	0.0050	0.0096	0.0095	0.0069
204	Model 1: Non-	adjusted.			
05	Model 2: Adju	sted for age, sex, BMI	, smoking, alcohol co	nsumption, anemia, h	ypertension, diabetes
06	mellitus, ACE	, CCB, diuretics, ASA	, anesthesia method, e	emergency, surgical g	rade, amount of fluid
07	infusion and ou	ut, intraoperative eryth	rocyte transfusion, an	d amount of blood lo	SS.
08	Model 3: Mode	el 2 plus ARB, eGFR,	and operative time.		
09	Model 4: Mode	el 3 plus intraoperativ	e hypotension, and va	asoactive drugs.	
10					
11	The risk a	djustment models w	vere constructed usi	ng logistic stepwis	e regression. After
12	adjusting for	these interference f	àctors, parecoxib w	as still independen	tly associated with
13	postoperative	e AKI (OR, 0.61; 95	5% CI, 0.43–0.87, r	nodel 4 in Table 4)	
14					
15	Sensitivity a	nalysis			
16	Table 5 sh	ows the sensitivity a	analysis of postoper	ative AKI associat	ed with parecoxib.
17					
18	Table 5 Sens	sitivity analysis of	association betwee	en postoperative ad	cute kidney injury
19	(AKI) and pa	recoxib			
		М	odel 1	Aodel 2	Model 3

1	0
т	Э

						19
		parecoxib				
	eGFR	1	0.49 (0.31, 0.79)	0.54 (0.33, 0.87)	0.50 (0.30, 0.84)	0.49(0.29,0.82)
	<90		0.0032	0.0119	0.0084	0.0065
	Non-	1	0.57 (0.39, 0.84)	0.56 (0.37, 0.84)	0.56 (0.38, 0.84)	0.55(0.37,0.83)
	smoker		0.0040	0.0046	0.0052	0.0043
	AKI	0	-0.03 (-0.05, -0.00)	-0.02 (-0.05, -0.00)	-0.02 (-0.04, -0.00)	-0.02(-0.04,-0.00)
	RANK	(0.0176	0.0283	0.0254	0.0271
	AKI RANK	(outcome	of postoperative AKI	was divided into three	e groups: stage 0, no .	AKI; stage 1, AKI
	grade 1; stag	ge 2, AKI	grade 2 and 3)			
220	Model 1: Non-	adjusted.				
221	Model 2: Adjusted for age, sex, BMI, smoking, alcohol consumption, anemia, hypertension, diabetes					
222	mellitus, ACEI, CCB, diuretics, ASA, anesthesia method, emergency, surgical grade, amount of fluid					
223	infusion and ou	ıt, intraope	rative erythrocyte transfu	usion, and amount of blo	ood loss.	
224	Model 3: Model 2 plus ARB, eGFR, and operative time					
225	Model 4: Model 3 plus intraoperative hypotension, and vasoactive drugs.					
226						
227	For patients with an eGFR <90 mL·min ⁻¹ ·1.73 m ^{(2) -1} or who were non-smokers, single-					
228	dose parecoxib (40 mg or 80 mg) was associated with a lower incidence of postoperative					
229	AKI. We div	ided the	outcome of postoperat	ive AKI into three g	roups: stage 0, no A	KI;
230	stage 1, AKI	grade 1;	and stage 2, AKI grad	e 2 and 3. The results	s showed that pareco	xib
231	exerted prote	ctive effe	ects in postoperative A	KI in differently ranl	ked AKIs.	
232						

233 Discu	ssion
-----------	-------

According to the surgery type and AKI diagnostic criteria, the incidence of postoperative AKI ranges from 1.0% to 31% [12-14], and our study revealed an incidence of 6.06% in the study population of patients aged 18–60 years who underwent non-cardiac surgery. The incidence was similar to that in the recently published data by Nishimoto (6%, non-cardiac surgery; mean age, 63 years) [15]. In our study, the univariable analysis identified male sex, smoking, alcohol consumption, anemia, hypertension, diabetes mellitus, ACEI use, CCB use, diuretic use, eGFR, ASA grade III-V, anesthesia mode, emergency, surgical grade 4, duration of the operation (>120 min), incidence of intraoperative hypotension, intraoperative erythrocyte transfusion (>100 mL), amount of blood loss (>600 mL), and vasoactive drug use to be associated with AKI, some of which are similar to previously published data [16, 17].

However, age and BMI did not correlate with AKI in our study, which is inconsistent with the findings of previous studies [18]. This discrepancy can be explained by the difference in mean age and BMI between the studies, which were both lower in our study population. The results of the sensitivity analysis suggested that single-dose (40 mg or 80 mg) parecoxib might have potential protective effects against postoperative AKI in differentially ranked AKI.

Numerous studies have investigated the association between NSAIDs and AKI [9, 19].
An updated Cochrane systematic review and meta-analysis published in 2018 indicated
that NSAIDs have uncertain effects on the rate of AKI and may slightly increase serum
creatinine in patients with normal kidney function following surgery [19]. In another

meta-analysis, a significant risk of AKI was observed with most traditional NSAIDs but
not with two COX-2 specific inhibitors (rofecoxib and celecoxib) [9]. A pooled analysis
of 28 randomized clinical trials investigating the safety of parecoxib for the management
of postoperative pain showed that its associated risk of renal failure and impairment was
1%, similar to that with the placebo (0.9%) [20].

However, our study indicated that intraoperative single-dose parecoxib (40 mg or 80 mg) might provide potential protective effects against postoperative AKI in patients aged 18-60 years who underwent non-cardiac surgery. Moreover, this is not the first time a renoprotective effect has been postulated for parecoxib. For example, a study also showed that a single-dose of parecoxib (20 mg/kg) reduced tubular renal injury and serum inflammatory cytokines level (interleukin (IL)-1 α , IL- β , IL6, and tumor necrosis factor $(TNF)-\alpha$ in an ischemic rat model [21]. Moreover, several animal studies have suggested that pretreatment with COX-2 inhibitors improved outcomes in function and histology in not only the kidney but also other organs after ischemia [21, 22, 24]. To the best of our knowledge, this is the first clinical report to suggest that single-dose (40 mg or 80 mg) parecoxib may be renoprotective in patients aged 18-60 years who underwent non-cardiac surgery.

The mechanism by which parecoxib decreases the risk of postoperative AKI is unknown. However, one possible underlying mechanism is likely related to inflammation. A previous study showed that inflammation is a predictor of postoperative AKI and a mediator of increased mortality after AKI in non-cardiac surgery [25]. However, perioperative parecoxib reduced local and systemic inflammatory cytokines

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
11	
14 15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27 28	
29 30	
30	
31	
32 33	
33	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

postoperatively [26, 27]. Another possible mechanism is associated with hemodynamic 277 change. COX-1 contributes to controlling renal GFR, whereas COX-2 is involved in 278 sodium and water excretion [28]. COX-2 inhibitors are associated with mild hypertension 279 280 owing to modest sodium retention in the first few days of therapy [29]. The renoprotective mechanism of parecoxib may be related to its anti-inflammatory effects and sodium 281 regulation. 282

Our study had some limitations that are worth mentioning. First, this was a 283 retrospective single-center observational study; thus, it may have had some selection bias. 284 Second, the timing of the serum creatinine measurement was based on clinical discretion; 285 286 thus, it may vary with different doctors. Third, we simply chose patients aged 18-60 years who underwent non-cardiac surgery as the target to research, therefore, our results should 287 Lien be extrapolated cautiously. 288

289

Conclusions 290

In conclusion, in non-cardiac surgery patients, a single dose of parecoxib (40 mg or 80 291 mg) may have potential protective effects against postoperative AKI in those aged 18-60 292 years. However, these short-term effects may not represent the benefit of this drug in the 293 long term. Furthermore, more comprehensive studies are needed to confirm the effects of 294 295 parecoxib on the risk of postoperative AKI.

296

Acknowledgments 297

We thank Dr. Xing Liu for technical consultation. 298

299	
300	Author's Contributions
301	Yongzhong Tang helped in designing the study, analyzing and interpreting the data, and
302	drafting and revising the manuscript. Pingping Zeng and Yan Liao helped in collecting,
303	analyzing and interpreting the data, and drafting and revising the manuscript. Zheng Qin,
04	Hao Zhang and Bo Li helped in analyzing and interpreting the data. Wen Ouyang helped
805	in Supervising, Funding acquisition and drafting and revising the manuscript. Dan Li
06	helped in designing the study, analyzing and interpreting the data, and drafting and
07	revising the manuscript.
08	
09	Funding: This work was supported by the National Key R&D Program of China (grant
10	number 2018YFC2001800), Project of Health and Health Commission of Hunan
11	Province (grant number 20201802), Hunan Province Key Laboratory Project (grant
12	number 2018TP1009), and the Research and Innovation Funds from Xiangya Bigdata
13	Foundation of Central South University.
814	
815	Competing interests: The authors declare they have no competing interests.
316	
817	Patient Consent for publication: Not applicable.
318	
19	Ethics approval: This study was approved by the ethics committee of the third Xiangya
320	hospital of Central South University (2020S264). Because of the observational nature of

1		24
2 3 4	321	the study, informed consent was waived.
5 6 7	322	
8 9 10	323	Data sharing statement: The data used and analyzed in this study are available from
11 12 13	324	the corresponding author on reasonable request.
14 15		
16 17 18		
19 20		
21 22 23		
24 25		
26 27 28		
29 30		
31 32 33		
34 35		
36 37 38		
39 40 41		
42 43		
44 45 46		
47 48		
49 50 51		
52 53		
54 55 56		
57 58		
59 60		

25	REFERENCES
26	[1] Romagnoli S, Ricci Z. Postoperative acute kidney injury. Minerva Anestesiol.
27	2015;81:684–696.
8	[2] Ortega-Loubon C, Fernandez-Molina M, Carrascal-Hinojal Y, Fulquet-Carreras E.
)	Cardiac surgery-associated acute kidney injury. Ann Card Anaesth. 2016;19:687-698.
	[3] Bell S, Ross VC, Zealley KA, Millar F, Isles C. Management of post-operative acute
	kidney injury. <i>QJM</i> . 2017;110:695–700.
	[4] Iyigun M, Aykut G, Tosun M, et al. Perioperative risk factors of acute kidney injury
	after non-cardiac surgery: A multicenter, prospective, observational study in patients
	with low grade American Society of Anesthesiologists physical status. Am J Surg.
	2019;218:457–461.
	[5] Turan A, Cohen B, Adegboye J, et al. Mild acute kidney injury after noncardiac
	surgery is associated with long-term renal dysfunction: a retrospective cohort study.
	Anesthesiology. 2020 May;132(5):1053-1061.
	[6] Cuniberti B, Odore R, Barbero R, et al. In vitro and ex vivo pharmacodynamics of
	selected non-steroidal anti-inflammatory drugs in equine whole blood. Vet J.
	2012;191:327–333.
	[7] Mitchell JA, Warner TD. COX isoforms in the cardiovascular system: understanding
	the activities of non-steroidal anti-inflammatory drugs. Nat Rev Drug
	Discov.2006;5:75–86.
	[8] Sriperumbuduri S, Hiremath S. The case for cautious consumption: NSAIDs in
5	chronic kidney disease. Curr Opin Nephrol Hypertens. 2019;28:163–170.

BMJ Open

2		
3 4 5	347	[9] Ungprasert P, Cheungpasitporn W, Crowson CS, Matteson EL. Individual non-
6 7	348	steroidal anti-inflammatory drugs and risk of acute kidney injury: A systematic
8 9 10	349	review and meta-analysis of observational studies. Eur J Intern Med. 2015;26:285-
11 12	350	291.
13 14 15	351	[10] Amabile CM, Spencer AP. Parecoxib for parenteral analgesia in postsurgical
16 17 18	352	patients. Ann Pharmacother. 2004;38:882-886.
19 20	353	[11] Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron
21 22 23	354	<i>Clin Pract.</i> 2012;120:C179–C184.
24 25 26	355	[12] Vaara ST, Bellomo R. Postoperative renal dysfunction after noncardiac surgery.
27 28	356	<i>Curr Opin Crit Care.</i> 2017;23:440–446.
29 30 31	357	[13] Kim M, Brady JE, Li G. Variations in the risk of acute kidney injury across
32 33	358	intraabdominal surgery procedures. Anesth Analg. 2014;119:1121–1132.
34 35 36	359	[14] Biteker M, Dayan A, Tekkesin AI, et al. Incidence, risk factors, and outcomes of
37 38 39	360	perioperative acute kidney injury in noncardiac and nonvascular surgery. Am J Surg.
40 41	361	2014;207:53–59.
42 43 44	362	[15] Nishimoto M, Murashima M, Kokubu M, et al. Positive association between intra-
45 46	363	operative fluid balance and post-operative acute kidney injury in non-cardiac surgery:
47 48 49	364	the NARA-AKI cohort study. J Nephrol. 2020 Jun;33(3):561-568.
50 51 52	365	[16] Mathis MR, Naik BI, Freundlich RE, et al. Preoperative risk and the association
53 54	366	between hypotension and postoperative acute kidney injury. Anesthesiology.
55 56 57	367	2020;132:461–475.
58 59 60	368	[17] Cho E, Kim SC, Kim MG, et al. The incidence and risk factors of acute kidney injury

369	after hepatobiliary surgery: a prospective observational study. BMC Nephrol.
370	2014;15:169.
371	[18] Wang J, Yu W, Zhai G, et al. Independent risk factors for postoperative AKI and the
372	impact of the AKI on 30-day postoperative outcomes in patients with type A acute
373	aortic dissection: an updated meta-analysis and meta-regression. J Thorac Dis.
374	2018;10:2590–2598.
375	[19] Bell S, Rennie T, Marwick CA, Davey P. Effects of peri-operative nonsteroidal anti-
376	inflammatory drugs on post-operative kidney function for adults with normal kidney
377	function. Cochrane Database Syst Rev. 2018;11:CD011274.
378	[20] Schug SA, Parsons B, Li C, Xia F. The safety profile of parecoxib for the treatment
379	of postoperative pain: a pooled analysis of 28 randomized, double-blind, placebo-
380	controlled clinical trials and a review of over 10 years of postauthorization data. J
381	Pain Res. 2017;10:2451–2459.
382	[21] Takaku M, da Silva AC, Iritsu NI, Vianna PTG, Castiglia YMM. Effects of a single
383	dose of parecoxib on inflammatory response and ischemic tubular injury caused by
384	hemorrhagic shock in rats. Pain Res Treat. 2018;2018:8375746.
385	[22] Feitoza CQ, Camara NO, Pinheiro HS, et al. Cyclooxygenase 1 and/or 2 blockade
386	ameliorates the renal tissue damage triggered by ischemia and reperfusion injury. Int
387	Immunopharmacol. 2005;5:79–84.
388	[23] Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Leon OS, Fiebich BL.
389	Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces
390	blood-brain barrier disruption and leukocyte infiltration following transient focal

391	cerebral ischaemia in rats. J Neurochem. 2007;100:1108–1120.
392	[24] Feitoza CQ, Sanders H, Cenedeze M, Camara NOS, Pacheco-Silva A. Pretreatment
393	with indomethacin protects from acute renal failure following ischemia-reperfusion
394	injury. Transplant Proc. 2002;34:2979–2980.
395	[25] Murashima M, Nishimoto M, Kokubu M, et al. Inflammation as a predictor of acute
96	kidney injury and mediator of higher mortality after acute kidney injury in non-
397	cardiac surgery. Sci Rep. 2019;9:20260.
398	[26] Chong SJ, Wong YC, Wu J, et al. Parecoxib reduces systemic inflammation and
399	acute lung injury in burned animals with delayed fluid resuscitation. Int J Inflam.
100	2014;2014:972645.
101	[27] Zhu Y, Wang S, Wu H, Wu Y. Effect of perioperative parecoxib on postoperative
402	pain and local inflammation factors PGE2 and IL-6 for total knee arthroplasty: a
03	randomized, double-blind, placebo-controlled study. Eur J Orthop Surg Traumatol.
04	2014;24:395–401.
05	[28] Lucas GNC, Leitao ACC, Alencar RL, et al. Pathophysiological aspects of
06	nephropathy caused by non-steroidal anti-inflammatory drugs. J Bras Nefrol.
07	2019;41:124–130.
08	[29] Hegazy R, Alashhab M, Amin M. Cardiorenal effects of newer NSAIDs (celecoxib)
109	versus classic NSAIDs (ibuprofen) in patients with arthritis. J Toxicol.
	2011;2011:862153.

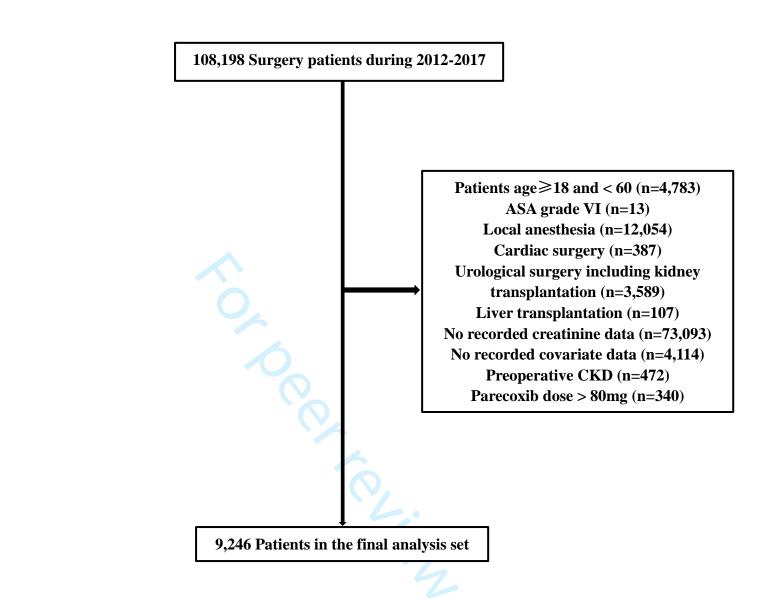


Fig 1. Enrollment of patients undergoing non-cardiac surgery.

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5-6
		(b) For matched studies, give matching criteria and number of exposed and unexposed	-
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6
Bias	9	Describe any efforts to address potential sources of bias	5
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6-7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	6-7
		(d) If applicable, explain how loss to follow-up was addressed	7
		(e) Describe any sensitivity analyses	7

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined for eligibility, confirmed	7
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	7
		(c) Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Report numbers of outcome events or summary measures over time	8-11
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	14-17
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8-17
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	18-19
Discussion			
Key results	18	Summarise key results with reference to study objectives	20-22
Limitations			
Interpretation	nterpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence		22
Generalisability	21	Discuss the generalisability (external validity) of the study results	-
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	23
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

Correlation between perioperative parecoxib use and postoperative acute kidney injury in patients undergoing non-cardiac surgery: A retrospective cohort analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047840.R1
Article Type:	Original research
Date Submitted by the Author:	27-Apr-2021
Complete List of Authors:	Tang, Yong-Zhong; Central South University Third Xiangya Hospital, Anesthesiology Zeng, Pingping; Central South University Third Xiangya Hospital, Department of Anesthesiology Liao, Yan; Central South University Third Xiangya Hospital, Department of Anesthesiology Qin, Zheng; Hunan University College of Computer Science and Electronic Engineering Zhang, Hao; Institute of Microelectronics pf Chinese Academy of Sciences Li, Bo; Central South University Third Xiangya Hospital Ouyang, Wen; Central South University Third Xiangya Hospital li, dan; Central South University, Department of Anesthesiology
Primary Subject Heading :	Urology
Secondary Subject Heading:	Surgery, Pharmacology and therapeutics, Anaesthesia
Keywords:	Adult anaesthesia < ANAESTHETICS, Acute renal failure < NEPHROLOGY, Pain management < ANAESTHETICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1

2
3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
54 55
56
57
58
59

60

1	Correlation between perioperative parecoxib use and postoperative acute kidney
2	injury in patients undergoing non-cardiac surgery: A retrospective cohort analysis
3	
4	Yongzhong Tang, M.D. ¹ , Pingping Zeng, M.D. ¹ , Yan Liao, M.D. ¹ , Zheng Qin, Ph.D. ² ,
5	Hao Zhang, Ph.D. ³ , Bo Li, M.D. ⁴ , Wen Ouyang, Ph.D. ¹ , and Dan Li, Ph.D. ^{1*}
6	¹ Department of Anesthesiology, The Third Xiangya Hospital, Central South University,
7	Changsha, China
8	² College of Computer Science and Electronic Engineering, Hunan University, Changsha,
9	China
10	³ Institute of Microelectronics of Chinese of Science, Beijing, China
11	⁴ Operation Room, The Third Xiangya Hospital, Central South University, Changsha,
12	China
13	
14	Corresponding author: Dan Li, Department of Anesthesiology, The Third Xiangya
15	Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013,
16	China
17	Tel: +8613574871720, Fax: +8673188618151, E-mail: <u>danfuer623@163.com</u>
18	

19	Abstract
20	Objective: The association of nonsteroidal anti-inflammatory drugs with postoperative acute kidney
21	injury is controversial. However, there are few studies focusing on the association between parecoxib
22	and postoperative acute kidney injury. Our study aimed at the possible correlation between the
23	intraoperative administration of COX-2 inhibitors parecoxib and perioperative AKI.
24	Design: A retrospective cohort study
25	Setting: Third Xiangya Hospital of Central South University in Hunan Province, China
26	Participants: The electronic medical records and laboratory results were obtained from 9,246 adult
27	patients (18-60 years) undergoing non-cardiac surgery performed between January 1, 2012 to August
28	31, 2017. Study groups were treated with or without parecoxib.
29	Interventions: Univariable analysis identified demographic, preoperative laboratory, and
30	intraoperative factors associated with acute kidney injury. Logistic stepwise regression was used to
31	calculate the adjusted odds ratio of parecoxib and acute kidney injury association.
32	Results: The incidence of acute kidney injury was lower in the parecoxib-administered group (4%)
33	than that in the group without parecoxib (6.3% , p = 0.005). In the Multivariable regression analysis,
34	postoperative acute kidney injury risk reduced by 39% (OR, 0.61; 95% CI, 0.43-0.87) in the
35	parecoxib-administered group after adjusting for interference factors. Sensitivity analysis showed that
36	postoperative AKI risk reduced in four subgroups: eGRF<90 mL·min ⁻¹ ·1.73m ⁽²⁾⁻¹ (OR, 0.49; 95%CI,
37	0.29-0.82), non-smoker (OR, 0.55; 95%CI, 0.37-0.83), blood loss <1000ml (OR, 0.55; 95%CI, 0.37-
38	0.83) and non-hypotension (OR, 0.57; 95%CI, 0.38-0.84).
39	Conclusions: Thus, parecoxib may slightly hint at a protective effect against postoperative acute
40	kidney injury risk in adult patients undergoing non-cardiac surgery.
41	

 42 Keywords: acute kidney injury; parecoxib; non-cardiac surgery

Strengths and limitations of this study: Large study population including all adult patients (18–60
years) undergoing non-cardiac surgery in Third Xiangya Hospital of Central South University in China
between 2012 to 2017.

46 between 2012 to 2017.□

47 Our study indicated that parecoxib may slightly hint at a protective effect against postoperative

48 acute kidney injury risk.

- 49 The selection bias and some unknown confounders in this retrospective single-center
- 50 observational study may limit the generalisability of the results.

51 Background

Acute kidney injury (AKI), a long-recognized complication of surgery with a high incidence of morbidity and mortality, increases health care costs and length of hospital stay[1-3]. Even in patients undergoing non-cardiac surgery with low-grade American Society of Anesthesiologists (ASA) physical status such as ASA I–II, the incidence of postoperative AKI can reach 6%[4]. Mild kidney injury, such as a small increase in postoperative serum creatinine, is associated with renal dysfunction for as long as 1 to 2 years after surgery [5].

Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used perioperative anesthetic adjuvants, with anti-inflammatory and analgesic effects. The main mechanism of action of NSAIDs is the inhibition of cyclooxygenase (COX) enzymes, which can ultimately result in the reduction of prostanoids and thromboxan[6]. Within the kidneys, prostaglandins act as vasodilators to ensure adequate flow to the organ. NSAIDs inhibit this mechanism and can lead to acute kidney injury (AKI). The second form of NSAID-induced AKI is acute interstitial nephritis, which may related to the prolonged exposure to NSAIDs, and interstitial infiltrate with predominance of T-lymphocytes[7].

67 COX exists in two forms: COX-1, which is present in most body tissues body including 68 the stomach and intestines and COX-2, which is primarily found at sites of 69 inflammation[8]. Accumulating evidence suggests that traditional NSAIDs, such as 70 aspirin and ibuprofen, are associated with acute and chronic gastrointestinal bleeding and 71 kidney disease[9 10]. These NSAIDs are nonselective COX (COX-1 and COX-2) 72 inhibitors and their side effects are mostly COX-1 related. Parecoxib is a parenteral specific COX-2 inhibitor, which enhances its therapeutic gain with minimal adverse effects[6 11]. Parecoxib is used as a perioperative analgesic in over 80 countries, however, clinical data about effect of parecoxib on postoperative AKI are scarce. Therefore, it is important to establish its safety during the perioperative period. The aim of this study was to assess the correlation between the perioperative use of parecoxib and postoperative AKI in patients undergoing non-cardiac surgery.

80 Methods

81 Design and selection criteria

This retrospective study was performed at the Third Xiangya Hospital of Central South University from January 1, 2012, to August 31, 2017. The inclusion criterion was patients aged 18–60 years who underwent non-cardiac surgery. The exclusion criteria were ASA grade VI, administration of local anesthesia, liver transplantation, cardiac surgery, urological surgery (including kidney transplantation), lack of serum creatinine or covariate data, and preoperative combined CKD, defined as estimate glomerular filtration rate (eGFR) <60 mL·min⁻¹·1.73m^{(2) -1}, >3 months). Parecoxib doses larger than 80 mg were not included because the routine dose is not more than 80 mg/day based on the drug instructions. The study was approved by the Ethics Committee of the Third Xiangya Hospital of Central South University (approval number 2020S264) that waived the need for informed consent because of the observational nature of the study.

94 Data collection

BMJ Open

The following information was collected: 1) epidemiological data including age, sex, and BMI; 2) individual history including preoperative complications and medication history; 3) laboratory data including serum creatinine and eGFR calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula; 4) intraoperative data including emergency, surgical grade, operative time, anesthesia method, ASA grade, amount of fluid infusion and out, intraoperative erythrocyte transfusion volume, amount of blood loss, intraoperative hypotension and vasoactive drugs. 5) postoperative outcomes such as occurrence of AKI, admission to ICU, and mortality. All clinical data of the 9,246 patients who underwent non-cardiac surgery were obtained by a retrospective review of the computerized patient record system of our hospital. elie

Definitions

Postoperative AKI was defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) 2012 creatinine criteria[12], as one of the following: an increase in serum creatinine by ≥ 0.3 mg/dL within 48 h or a ≥ 1.5 -times increase in serum creatinine from baseline within 7 postoperative days. The baseline serum creatinine level was calculated using the lowest level within preoperative day 7. The primary outcome was the impact of parecoxib on AKI, defined as AKI occurring within 7 postoperative days. Parecoxib administration was defined during the operative time. Surgical grade was classified using the surgical classification catalogue constituted by the Chinese Ministry of Health, published in 2018. Intraoperative hypotension was defined as mean arterial

2	
3	
4	
5	
6 7 8 9 10	
7	
8	
0	
9	
10	
11	
12	
13	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
25	
24	
25	
26	
27	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	
28	
29	
30	
 31 32 33 34 35 36 37 38 	
22	
22	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
1111	

117 pressure (MAP) <65mmHg for a duration of at least 5 min.

119 Patient and public involvement

120 No patient involvement.

121

118

1

122 Statistical analysis

All statistical analyses were performed using SAS version 9.4 software (SAS 123 Institute, Inc., Cary, NC, USA) and CRAN R (v3.4.3). Missing data of covariates 124 (including BMI and eGFR) were handled by multiple imputation model. The continuous 125 results are expressed as mean (SD), whereas categorical variables are expressed as 126 numbers with percentages. The Kruskal-Wallis rank sum test was used to compare 127 continuous variables between groups, whereas the chi-square (χ^2) test or Fisher's exact 128 probability method was used for categorical variables. Univariable logistic regression 129 analysis was used to identify epidemiological, preoperative laboratory, and 130 intraoperative factors that were significantly associated with AKI development. The 131 132 data were adjusted for potential confounders in multivariable regression models. To further validate these results in a number of specific populations that may influence the 133 incidence of AKI. The sensitivity test was performed in the following four different 134 subgroups: eGFR<90 mL·min⁻¹·1.73m⁽²⁾⁻¹, non-smoker, blood loss <1000ml, and non-135 hypotension. The results of the classification variable are expressed as odds ratio (OR) 136 or "Beta" and 95% CI; a p-value < 0.05 indicated a statistically significant difference. 137 138

1 2					8
3 4 5	139	Results			
6 7	140	Of the 108,198 records ide	ntified, those of 9,246	patients were included	l in the analysis
8 9 10	141	(Fig. 1). Reasons for exclud	ing patients were age	<18 or >60 years (n =	= 4,783), ASA
11 12 13	142	grade VI ($n = 13$), regional a	anesthesia administrate	d by a surgeon (n = 1	2,054), cardiac
14 15	143	surgery (n = 387), urological	surgery including kid	ney transplantation (n	= 3,589), liver
16 17 18	144	transplantation (n = 107), r	no recorded preoperati	ve or postoperative	creatinine data
19 20	145	(n=73,093), no recorded cova	ariate data such as routi	ne blood panel or infu	sion volume (n
21 22 23	146	= 4,114), preoperative chron	nic kidney disease (CK	D) $(n = 472)$, and ad	ministration of
24 25 26	147	parecoxib doses >80 mg (n =	340).		
27 28	148				
29 30 31	149	AKI			
32 33 34	150	The incidence of postoper	rative AKI was 6.06%	(560/9,246). In the A	AKI group, the
35 36	151	probability of admission to the	ne intensive care unit (I	CU) and mortality we	ere 10.18% and
37 38 39	152	4.64%, respectively (Suppler	nental Table 1).		
40 41	153				
42 43 44	154	Supplemental Table 1. Bas	eline characteristics of	patients aged 18-60	years with and
45 46 47	155	without acute kidney injury ((AKI)		
48 49 50			with out A VI		
51 52		Clinical features	without AKI	With AKI	p-value
53 54			(n=8686)	(n=560)	
55 56		Age (years)	44.25±10.43	45.06±10.18	0.074
57 58 59		BMI	22.93±4.93	22.54±3.83	0.07
60					

1				9
3 4 5	eGFR	101.98±16.38	94.41±19.78	<0.001
6 7	Male	4267 (49.13%)	300 (53.57%)	0.041
8 9 10	Smoking	1213 (13.97%)	105 (18.75%)	0.002
11 12 13	Alcohol consumption	822 (9.46%)	74 (13.21%)	0.004
14 15	Anemia	1538 (17.71%)	161 (28.75%)	<0.001
16 17 18	Hypertension	1884 (21.69%)	211 (37.68%)	< 0.001
19 20 21	Diabetes mellitus	509 (5.86%)	52 (9.29%)	< 0.001
22 23	ACEI	189 (2.18%)	21 (3.75%)	0.015
24 25 26	ARB	116 (1.34%)	13 (2.32%)	0.054
27 28 29	CCB	1125 (12.95%)	119 (21.25%)	<0.001
30 31	Diuretics	77 (0.89%)	19 (3.39%)	<0.001
32 33 34	ASA grade			<0.001
35 36	I–II	6633 (76.36%)	317 (56.61%)	
37 38 39	III–V	2053 (23.64%)	243 (43.39%)	
40 41 42	Anesthesia method			< 0.001
43 44	General anesthesia	7735 (89.05%)	531 (94.82%)	
45 46 47	Non-general anesthesia	951 (10.95%)	29 (5.18%)	
48 49 50	Emergency	1395 (16.06%)	130 (23.21%)	< 0.001
51 52	Surgical Grade			<0.001
53 54 55	1	245 (2.82%)	14 (2.50%)	
56 57 58	2	2746 (31.61%)	118 (21.07%)	
58 59 60	3	5349 (61.58%)	386 (68.93%)	

Page 11 of 34

1

1 2				
2 3 4 5	4	346 (3.98%)	42 (7.50%)	
6 7	Operative time (min)			< 0.001
8 9 10	≤60	1338 (15.4%)	63 (11.25%)	
11 12 13	61–120	2176 (25.05%)	111 (19.82%)	
14 15	121–180	2032 (23.39%)	135 (24.11%)	
16 17 18	>180	3140 (36.15%)	251 (44.82%)	
19 20 21	Intraoperative erythrocyte			< 0.001
22 23	Transfusion, mL (%)			
24 25 26	<100	6735 (77.54)	339 (60.54)	
27 28 29	100–600	868 (9.99)	82 (14.64)	
30 31	601–1000	508 (5.85)	42 (7.50)	
32 33 34	>1000	575 (6.62)	97 (17.32)	
35 36 37	Amount of Blood loss, mL			<0.001
38 39	(%)			
40 41 42	<100	2623 (30.20)	131 (23.39)	
43 44	100–600	4771 (54.93)	292 (52.14)	
45 46 47	601–1000	670 (7.71)	60 (10.71)	
48 49 50	>1000	622 (7.16)	77 (13.75)	
51 52	Amount of fluid infusion	916.67 (625.00–	1125.00 (703.12-	< 0.001
53 54 55	(10 mL/24 h)	1432.29)	1604.17)	
56 57 58 59	Amount of fluid out (10 mL/24 h)	333.33 (145.83–541.67)	375.00 (208.33– 687.50)	<0.001
60				

Intraoperative Hypotension	930 (10.71%)	81 (14.46%)	0.006
Vasoactive drugs	664 (7.64%)	71 (12.68%)	< 0.001
Parecoxib	934 (10.75%)	39 (6.96%)	0.005
Admission to ICU	376 (4.33%)	57 (10.18%)	< 0.00
Death	32 (0.37%)	26 (4.64%)	<0.00]

AKI: acute kidney injury, BMI: body mass index, eGFR: estimated glomerular filtration rate, ACEI:
angiotensin-converting enzyme inhibitors, ARB: angiotensin receptor blockers, CCB: calciumchannel blockers, ASA: American Society of Anesthesiologists, Non-general anesthesia include
neuraxial anesthesia (spinal or epidural) and nerve block anesthesia, ICU: intensive care unit. Data are
expressed as number of patients (%) or mean ± standard deviation (SD).

163There was no difference in age, body mass index (BMI), angiotensin receptor blockers164(ARBs) use and intraoperative hypotension among patients with and without AKI165(Supplemental Table 1). Significant differences between patients with AKI and without166AKI are shown in Supplemental Table 1 (all p < 0.05).

168 Parecoxib

169 Parecoxib was used in 10.5% (973/9,246) of patients (Table 1).

Table 1. Baseline characteristics of patients aged 18–60 years treated with and withoutparecoxib

Page 13 of 34

2				
3 4 5		Without parecoxib	With parecoxib	
6 7 8	Clinical features	(n=8273)	(n=973)	p-value
9 10	Age (year)	44.23±10.46	44.89±10.04	0.06
11 12 13	BMI	22.89±4.99	23.03±3.76	0.409
14 15 16	eGFR	101.66±16.66	101.56±16.23	0.858
17 18	Male	4062 (49.1%)	508 (52.2%)	0.063
19 20 21	Smoking	1175 (14.2%)	146 (15%)	0.479
22 23	Alcohol consumption	811 (9.8%)	89 (9.1%)	0.544
24 25 26	Anemia	1547 (18.7%)	152 (15.6%)	0.019
27 28 29	Hypertension	1903 (23%)	189(19.4%)	0.011
30 31	Diabetes mellitus	505 (6.1%)	56 (5.8%)	0.666
32 33 34	ACEI	199 (2.4%)	14 (1.4%)	0.065
35 36	ARB	116 (1.4%)	14 (1.4%)	0.902
37 38 39	ССВ	1142 (13.8%)	103 (10.6%)	0.006
40 41 42	Diuretics	91 (1.1%)	8 (0.8%)	0.482
43 44	ASA grade			0.09
45 46 47	I–II	6196 (74.9%)	753 (77.4%)	
48 49	III–V	2077 (25.1%)	220 (22.6%)	
50 51 52	Anesthesia method			< 0.001
53 54	General anesthesia	7363 (89%)	907 (93.2%)	
55 56 57	Non-general anesthesia	910 (11%)	66 (6.8%)	
58 59 60	Emergency	1406 (17%)	119 (12.2%)	<0.001

Surgical grade			<0.001
1	240 (2.9%)	19 (2%)	
2	2623 (31.7%)	243 (25%)	
3	5080 (61.4%)	656 (67.4%)	
4	330 (4%)	55 (5.7%)	
Operative time (min)			< 0.001
≤60	1315 (15.9%)	88 (9%)	
61–120	2085 (25.2%)	204 (21%)	
121–180	1919 (23.2%)	246 (25.3%)	
>180	2954 (35.7%)	435 (44.7%)	
Intraoperative erythrocyte			0.04
Transfusion, mL (%)			0.94
<100	6329 (76.5%)	744 (76.5%)	
100–600	852 (10.3%)	98 (10.1%)	
601–1000	496 (6%)	56 (5.8%)	
>1000	596 (7.2%)	75 (7.7%)	
Amount of Blood loss, mL			0.002
(%)			0.003
<100	2507 (30.3%)	251 (25.8%)	
100–600	4500 (4.4%)	559 (57.5%)	
601–1000	662 (8%)	70 (7.2%)	
>1000	604 (7.3%)	93 (9.6%)	

Intraoperative Hypotension	10.8	11.9	0.29
Vasoactive drugs	7.8	8.9	0.22
Amount of fluid infusion	1037.07±565.54	1159.31±579.85	< 0.0
(10 mL/24 h)	1037.07±303.34	1137.31-377.03	<0.0
Amount of fluid out	410.17±374.16	373.74±334.53	0.00
(10 mL/24 h)	110.17-27 1.10	575.71-551.65	0.00
AKI	521 (6.3%)	39 (4%)	0.00
AKI Stages			0.02
0	93.7	96	
1	4.5	2.6	
2	1	0.7	
3	0.7	0.7	

BMI: body mass index, eGFR: estimated glomerular filtration rate, ACEI: angiotensin-converting
enzyme inhibitors, ARB: angiotensin receptor blockers, CCB: calcium-channel blockers, ASA:
American Society of Anesthesiologists, Non-general anesthesia include neuraxial anesthesia (spinal
or epidural) and nerve block anesthesia, AKI: acute kidney injury. Data are expressed as number of
patients (%) or mean ± standard deviation (SD). AKI Stages (outcome of postoperative AKI was
divided into four groups: stage 0, no AKI; stage 1, AKI grade 1; stage 2, AKI grade 2 and stage 3,
AKI grade 3)

181 The incidence of AKI was lower in the parecoxib-administered group (4%) than in the 182 group without parecoxib (6.3%, p = 0.005). There was no difference in age, BMI, estimated glomerular filtration rate (eGFR), sex, smoking, alcohol consumption, presence of diabetes mellitus, use of angiotensin-converting enzyme inhibitors (ACEIs), ARBs, or diuretics, ASA grade, incidence of intraoperative erythrocyte transfusion and intraoperative hypotension, and use of vasoactive drugs between patients treated with and without parecoxib (Table 1). Significant differences between patients treated with and without parecoxib are shown in Table 1 (all p < 0.05).

190 Univariable analysis

The factors shown by the univariable analysis to influence AKI development in patients
aged 18–60 years who underwent non-cardiac surgery are listed in Table 2.

Variable	Statistics	Univariable		
Variable	Statistics	OR (95% CI)	p-value	
Parecoxib	0.11 ± 0.31	0.62 (0.45, 0.87)	0.0050	
Age (year)	44.30 ± 10.42	1.01 (1.00, 1.02)	0.0737	
Male	4567 (49.39%)	1.19 (1.01, 1.42)	0.0416	
BMI	22.90 ± 4.87	0.98 (0.95, 1.00)	0.0396	
Smoking	1318 (14.25%)	1.42 (1.14, 1.77)	0.0018	
Alcohol consumption	896 (9.69%)	1.46 (1.13, 1.88)	0.0038	
Anemia	1699 (18.38%)	1.88 (1.55, 2.27)	< 0.0001	
Hypertension	2095 (22.66%)	2.18 (1.83, 2.61)	< 0.0001	

194 Table 2. Univariable analysis of acute kidney injury (AKI)

Page 17 of 34

BMJ Open

1 2				
- 3 4 5	Diabetes mellitus	561 (6.07%)	1.64 (1.22, 2.22)	0.0011
6 7	ACEI	210 (2.27%)	1.75 (1.11, 2.77)	0.0167
8 9 10	ARB	129 (1.40%)	1.76 (0.98, 3.14)	0.0570
11 12	ССВ	1244 (13.45%)	1.81 (1.47, 2.24)	<0.0001
13 14 15	Diuretics	96 (1.04%)	3.93 (2.36, 6.54)	<0.0001
16 17 18	eGFR	97.94±22.36	0.96 (0.96, 0.97)	<0.0001
19 20	ASA grade III–V	2296 (24.83%)	2.48 (2.08, 2.95)	<0.0001
21 22 23	Non-general anesthesia	980 (10.60%)	0.44 (0.30, 0.65)	<0.0001
24 25	Emergency	1525 (16.49%)	1.58 (1.29, 1.94)	<0.0001
26 27 28	Surgical grade 4	388 (4.20%)	2.12 (1.14, 3.98)	0.0184
29 30 31	Operative time (min)			
32 33	≤60	1401 (15.15%)	1	
34 35 36	61–120	2287 (24.74%)	1.08 (0.79, 1.49)	0.6200
37 38	121–180	2167 (23.44%)	1.41 (1.04, 1.92)	0.0279
39 40 41	>180	3391 (36.68%)	1.70 (1.28, 2.25)	0.0003
42 43 44	Intraoperative Hypotension	1011 (10.93%)	1.41 (1.10, 1.80)	0.0060
45 46	Vasoactive drugs	735 (7.95%)	0.06 (0.03, 0.09)	<0.0001
47 48 49	Intraoperative erythrocyte			
50 51	transfusion, mL (%)			
52 53 54	<100	7074 (76.51%)	1	
55 56	100–600	950 (10.27%)	1.88 (1.46, 2.41)	<0.0001
57 58 59	601–1000	550 (5.95%)	1.64 (1.18, 2.29)	0.0035
60				

vasoactive drug use (OR, 0.06; 95%CI, 0.03–0.09, p < 0.0001) were independently

independently associated with an increased risk of postoperative AKI (Table 2).

associated with a decreased risk of postoperative AKI (Table 2). Age (OR, 1.01; 95%CI,

1.00-1.02, p = 0.0737), BMI (OR, 0.98; 95%CI, 0.95-1.00, p = 0.0396), and ARB use

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

OR: odds ratio, BMI: body mass index, ACEI: angiotensin-converting enzyme inhibitors, ARB: block anesthesia.

angiotensin receptor blockers, CCB: calcium-channel blockers, ASA: American Society of Anesthesiologists. Non-general anesthesia include neuraxial anesthesia (spinal or epidural) and nerve

In the univariable analysis, male sex, smoking, alcohol consumption, anemia,

hypertension, diabetes mellitus, ACEI use, calcium channel blocker (CCB) use, diuretic

use, ASA grade III–V, emergency, surgical grade 4, duration of the operation, incidence

of intraoperative hypotension and erythrocyte transfusion, and amount of blood loss were

Parecoxib (OR, 0.62; 95%CI, 0.45–0.87, p = 0.005), eGFR (OR, 0.96; 95%CI, 0.96–

0.97, p < 0.0001), non-general anesthesia (OR, 0.44; 95%CI, 0.30–0.65, p < 0.0001) and

Amou

>1000

unt of Blood loss, mL		
(%)		
<100	2754 (29.79%)	1
100–600	5063 (54.76%)	1.23 (0.99, 1.51) 0.0596
601–1000	730 (7.9%)	1.79 (1.31, 2.46) 0.0003
>1000	699 (7.56%)	2.48 (1.85, 3.33) <0.0001

3.35 (2.63, 4.27)

672 (7.27%)

< 0.0001

210	(OR, 1.76; 959	%CI, 0.98–3.14, p =	= 0.0570) were not	correlated with Al	KI (Table 2).
211					
212	Multivariable	regression analysis			
213	The occurre	ence of postoperation	ive AKI or AKI S	tages was regarde	ed as a dependent
214	variable, and	the administratio	n of parecoxib, a	n independent v	ariable when we
215	performed the	stepwise regression	n analysis (Table 3)).	
216					
217	Table 3 Odds	ratio of postoperati	ve acute kidney inj	ury (AKI) associat	ed with parecoxib
		Model 1	Model 2	Model 3	Model 4
		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
		<i>p</i> -value	<i>p</i> -value	<i>p</i> -value	<i>p</i> -value
		0.62 (0.45, 0.87)	0.64 (0.46, 0.90)	0.63 (0.44, 0.89)	0.61(0.43, 0.87)
	AKI	0.0050	0.0096	0.0095	0.0069
		-0.02 (-0.05,	-0.02 (-0.05, -	-0.02 (-0.05, -	-0.03(-0.05,-
	AKI Stages	0.00) 0.0627	0.00) 0.0792	0.00) 0.0517	0.00) 0.0236
218	AKI Stages (out	tcome of postoperativ	e AKI was divided in	to four groups: stage	e 0, no AKI; stage 1,
219	AKI grade 1; sta	age 2, AKI grade 2 and	d stage 3, AKI grade 3	3)	
220	Model 1: Non-a	djusted.			
221	Model 2: Adjust	ted for age, sex, BMI,	smoking, alcohol con	sumption, anemia, h	ypertension, diabetes
222	mellitus, ACEI,	CCB, diuretics, ASA,	anesthesia method, er	mergency, surgical g	rade, amount of fluid
223	infusion and out	, intraoperative erythr	ocyte transfusion, and	amount of blood los	SS.
224	Model 3: Model	2 plus ARB, eGFR, a	and operative time.		

		<i>p</i> -value	<i>p</i> -value	<i>p</i> -value	<i>p</i> -value
		OR (95% CI)	OR (95% CI) 🝆	OR (95% CI)	OR (95% CI)
		Model 1	Model 2	Model 3	Model 4
			0		
238	(AKI) and parecoxib				
237	Table 4 Sensitivity a	analysis of association	between postoperat	ive acute kidney inj	ury
236					
235	intraoperative non-hypotension.				
234	subgroups of eGFR	<90 mL·min ⁻¹ ·1.73 m ⁽	^{2) -1} , non-smokers, b	lood loss <1000ml,	and
233	Table 4 presented t	he association betwee	n postoperative AK	I and parecoxib in	the
232	Sensitivity analysis				
231					
230	postoperative AKI st	ages (OR, -0.03; 95% (CI, -0.05– -0.00, mod	lel 4 in Table 3).	
229	postoperative AKI (OR, 0.61; 95% CI, 0	.43–0.87, model 4 i	n Table 3) or differ	rent
228	adjusting for these in	terference factors, pare	coxib was still indepe	endently associated v	vith
227	The risk adjustmen	nt models were constru	cted using logistic sto	epwise regression. A	fter
226					
225	Model 4: Model 3 plus i	ntraoperative hypotensio	on, and vasoactive drug	5.	

<90

0.0119

0.0084

0.0065

0.0032

Page 21 of 34

BMJ Open

1 2						20
2 3 4 5	Non-	1	0.57 (0.39, 0.84)	0.56 (0.37, 0.84)	0.56 (0.38, 0.84)	0.55(0.37,0.83)
6 7	smoker		0.0040	0.0046	0.0052	0.0043
8 9 10	blood loss <1000ml	1	0.56 (0.39, 0.82)	0.57 (0.39, 0.84)	0.56 (0.37, 0.83)	0.55 (0.37, 0.83)
11 12			0.0027	0.0042	0.0040	0.0037
13 14 15 16	non- hypotensi	1	0.60 (0.42, 0.87)	0.60 (0.42, 0.87)	0.57 (0.38, 0.84)	
17 18	on		0.0064	0.0077	0.0050	
19 20 239	Model 1: Non-a	djusted.)			
21 22 240 23	Model 2: Adjus	ted for age	e, sex, BMI, smoking, alo	cohol consumption, ane	nia, hypertension, diab	etes
24 25 241	mellitus, ACEI,	CCB, diu	retics, ASA, anesthesia n	nethod, emergency, surg	gical grade, amount of f	luid
26 27 28 242	infusion and out, intraoperative erythrocyte transfusion, and amount of blood loss.					
29 30 243 31	Model 3: Model 2 plus ARB, eGFR, and operative time					
32 33 244	Model 4: Model	3 plus in	raoperative hypotension	, and vasoactive drugs.		
34 35 245 36						
37 38 246 39	For patients with an eGFR <90 mL \cdot min ⁻¹ ·1.73 m ⁽²⁾ -1 or who were non-smokers, single-					
40 41 247	dose parecoxib (40 mg or 80 mg) was associated with a lower incidence of postoperative					
42 43 248 44	AKI (Table 4)	. Similar	results were obtained	with the adjusted mo	dels. Postoperative A	KI
45 46 249	risk also reduc	ced in pa	tients with blood loss	<1000ml (OR, 0.55;	95%CI, 0.37-0.83)	and
47 48 250 49	non-hypotension (OR, 0.57; 95%CI, 0.38-0.84).					
50 51 251 52						
53 54 252	Discussion					
55 56 253 57	According	to the	surgery type and A	AKI diagnostic crite	eria, the incidence	of
58 59 254 60	postoperative	AKI rang	ges from 1.0% to 31%	[13-15], and our stud	ly revealed an incide	nce

255	of 6.06% in the study population of patients aged 18-60 years who underwent non-cardiac
256	surgery. The incidence was similar to that in the recently published data by Nishimoto
257	(6%, non-cardiac surgery; mean age, 63 years)[16]. In our study, the univariable analysis
258	identified male sex, smoking, alcohol consumption, anemia, hypertension, diabetes
259	mellitus, ACEI use, CCB use, diuretic use, eGFR, ASA grade III-V, anesthesia mode,
260	emergency, surgical grade 4, duration of the operation (>120 min), incidence of
261	intraoperative hypotension, intraoperative erythrocyte transfusion (>100 mL), amount of
262	blood loss (>600 mL), and vasoactive drug use to be associated with AKI, some of which
263	are similar to previously published data by Mathis MR (2020) and Cho E (2014) [17 18].
264	However, age and BMI did not correlate with AKI in our study, which is inconsistent
265	with the findings from Wang J's studies[19]. This discrepancy can be explained by the
266	difference in mean age and BMI between the studies, which were both lower in our study
267	population. The results of the sensitivity analysis suggested that single-dose (40 mg or 80
268	mg) parecoxib might have potential protective effects against postoperative AKI in
269	differentially ranked AKI. eGFR <90 mL·min ^{-1.1.73} m ^{(2) -1} represented the population
270	with preoperative glomerular filtration impairment, while non-hypertension and blood-
271	loss<1000ml, represented people with relatively stable intraoperative circulation and
272	relatively good renal perfusion pressure. The subgroup analysis showed parecoxib might
273	reduce the AKI risk in these patients.

Numerous studies have investigated the association between NSAIDs and AKI[10 20].
An updated Cochrane systematic review and meta-analysis published by Bell S in 2018
indicated that NSAIDs have uncertain effects on the rate of AKI and may slightly increase

Page 23 of 34

1

BMJ Open

2		
3		
4		
5		
6		
7		
, 8		
9		
10		
11		
12		
13	5	
14		
15	,	
16	,	
17	,	
18	;	
19		
20		
20 21		
21 22		
22 23		
24		
25		
26)	
27	, ,	
28	;	
29)	
30)	
31		
32		
33		
34		
35		
36		
	,	
37		
38		
)	
40		
41		
42		
43		
44	ł	
45	;	
46		
47	,	
48	2	
49		
4> 50		
50 51		
52		
53		
54		
55		
56)	
57	,	
58		
59)	
60		

serum creatinine in patients with normal kidney function following surgery[20]. In 277 another meta-analysis (Ungprasert P, 2015), a significant risk of AKI was observed with 278 most traditional NSAIDs but not with two COX-2 specific inhibitors (rofecoxib and 279 280 celecoxib) [10]. A pooled analysis of 28 randomized clinical trials investigating the safety of parecoxib for the management of postoperative pain showed that its associated risk of 281 renal failure and impairment was 1%, similar to that with the placebo (0.9%)[21]. 282 However, our study indicated that intraoperative single-dose parecoxib (40 mg or 80 283 mg) might provide potential protective effects against postoperative AKI in patients aged 284 18-60 years who underwent non-cardiac surgery. Moreover, this is not the first time a 285 renoprotective effect has been postulated for parecoxib. For example, the study of Takaku 286 M et al. also showed that a single-dose of parecoxib (20 mg/kg) reduced tubular renal 287 injury and serum inflammatory cytokines level (interleukin (IL)-1 α , IL- β , IL6, and tumor 288 necrosis factor (TNF)- α) in an ischemic rat model[22]. Moreover, several animal 289 studies(Takaku M 2018, Feitoza CQ 2005, Feitoza CQ 2004, Candelario-Jalil E 2007) 290 have suggested that pretreatment with COX-2 inhibitors improved outcomes in function 291 and histology in not only the kidney but also other organs after ischemia[22-25]. To the 292 best of our knowledge, this is the first clinical report to suggest that single-dose (40 mg 293 or 80 mg) parecoxib may be renoprotective in patients aged 18-60 years who underwent 294 295 non-cardiac surgery.

The mechanism by which parecoxib decreases the risk of postoperative AKI is
unknown. However, one possible underlying mechanism is likely related to inflammation.
A previous study of Murashima M et al. showed that inflammation is a predictor of

postoperative AKI and a mediator of increased mortality after AKI in non-cardiac surgery [26]. However, perioperative parecoxib reduced local and systemic inflammatory cytokines postoperatively[27 28]. Another possible mechanism is associated with hemodynamic change. COX-1 contributes to controlling renal GFR, whereas COX-2 is involved in sodium and water excretion[7]. COX-2 inhibitors are associated with mild hypertension owing to modest sodium retention in the first few days of therapy[29]. The renoprotective mechanism of parecoxib may be related to its anti-inflammatory effects and sodium regulation. Our study had some limitations that are worth mentioning. First, this was a retrospective single-center observational study; thus, it may have had some selection bias. Second, the timing of the serum creatinine measurement was based on clinical discretion; thus, it may vary with different doctors. Third, we simply chose patients aged 18-60 years who underwent non-cardiac surgery as the target to research. Fourthly, due to the nature

of the retrospective study, some unknown or unmeasured confounders, and those
excluded patients who had missing data may interfere the outcomes. Therefore, our
results should be extrapolated cautiously.

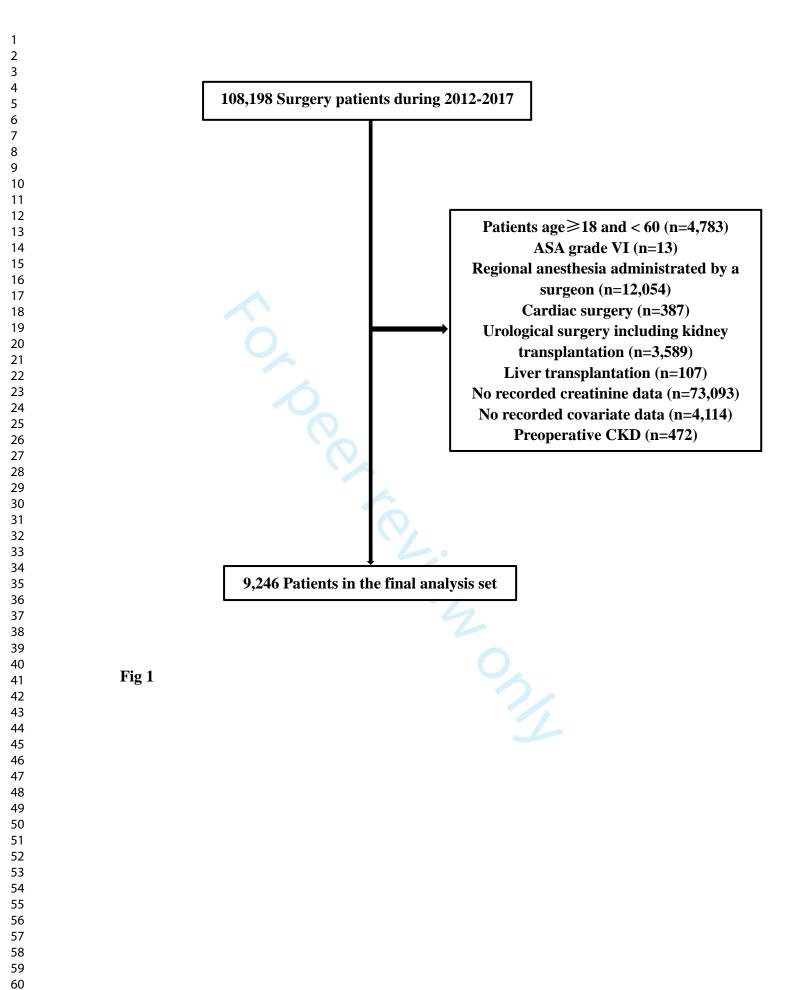
Conclusions

In conclusion, in non-cardiac surgery patients, a single dose of parecoxib (40 mg or 80 mg) may slightly hint at a protective effect against postoperative AKI in those aged 18– 60 years. However, these short-term effects may not represent the benefit of this drug in the long term. Furthermore, more comprehensive studies are needed to confirm the effects

3	321	of parecoxib on the risk of postoperative AKI.
3	322	
3	323	Figure legends
3	324	Fig 1. Enrollment of patients undergoing non-cardiac surgery. The numbers in brackets
3	325	represent patients excluded for the reasons described earlier.
3	326	
3	327	Acknowledgments
3	328	We thank Dr. Xing Liu for technical consultation.
3	329	
3	330	Author's Contributions
3	331	Yongzhong Tang helped in designing the study, analyzing and interpreting the data, and
3	332	drafting and revising the manuscript. Pingping Zeng and Yan Liao helped in collecting,
3	333	analyzing and interpreting the data, and drafting and revising the manuscript. Zheng Qin,
3	334	Hao Zhang and Bo Li helped in analyzing and interpreting the data. Wen Ouyang helped
3	335	in Supervising, Funding acquisition and drafting and revising the manuscript. Dan Li
3	336	helped in designing the study, analyzing and interpreting the data, and drafting and
3	337	revising the manuscript.
3	338	
3	339	Funding: This work was supported by the National Key R&D Program of China (grant
3	340	number 2018YFC2001800), Project of Health and Health Commission of Hunan
3	341	Province (grant number 20201802), Hunan Province Key Laboratory Project (grant
Э	342	number 2018TP1009), and the Research and Innovation Funds from Xiangya Bigdata

1 2		25
2 3 4 5	343	Foundation of Central South University.
6 7	344	
8 9 10	345	Competing interests: The authors declare they have no competing interests.
11 12 13	346	
14 15	347	Patient Consent for publication: Not applicable.
16 17 18	348	
19 20	349	Ethics approval: This study was approved by the ethics committee of the third Xiangya
21 22 23	350	hospital of Central South University (2020S264). Because of the observational nature of
24 25 26	351	the study, informed consent was waived.
20 27 28	352	
29 30 31	353	Data sharing statement: The data used and analyzed in this study are available from
32 33	354	the corresponding author on reasonable request.
34 35 36		
37 38		
39 40 41		
42 43		
44 45		
46 47 48		
48 49 50		
50 51 52		
53 54		
55 56		
57 58		
59 60		

1 2		26
3 4	355	REFERENCES
5 6	356	1. Romagnoli S, Ricci Z. Postoperative acute kidney injury. Minerva anestesiologica 2015; 81 (6):684-96
7	357	2. Ortega-Loubon C, Fernandez-Molina M, Carrascal-Hinojal Y, et al. Cardiac surgery-associated acute
8	358	kidney injury. Annals of cardiac anaesthesia 2016; 19 (4):687-98 doi: 10.4103/0971-
9 10	359	9784.191578[published Online First: Epub Date] .
11	360	3. Bell S, Ross VC, Zealley KA, et al. Management of post-operative acute kidney injury. QJM : monthly
12	361	journal of the Association of Physicians 2017; 110 (11):695-700 doi:
13 14	362	10.1093/gjmed/hcw175[published Online First: Epub Date]].
14	363	4. Iyigun M, Aykut G, Tosun M, et al. Perioperative risk factors of acute kidney injury after non-cardiac
16	364	surgery: A multicenter, prospective, observational study in patients with low grade American
17	365	Society of Anesthesiologists physical status. American journal of surgery 2019; 218 (3):457-61 doi:
18 19	366	10.1016/j.amjsurg.2019.01.031[published Online First: Epub Date] .
20	367	5. Turan A, Cohen B, Adegboye J, et al. Mild Acute Kidney Injury after Noncardiac Surgery Is Associated
21	368	with Long-term Renal Dysfunction: A Retrospective Cohort Study. Anesthesiology 2020 doi:
22 23	369	10.1097/ALN.00000000000003109[published Online First: Epub Date] .
24	370	6. Cuniberti B, Odore R, Barbero R, et al. In vitro and ex vivo pharmacodynamics of selected non-steroidal
25	371	anti-inflammatory drugs in equine whole blood. Veterinary journal 2012;191(3):327-33 doi:
26 27	372	10.1016/j.tvjl.2011.03.016[published Online First: Epub Date]].
27	373	7. Lucas GNC, Leitao ACC, Alencar RL, et al. Pathophysiological aspects of nephropathy caused by non-
29	374	steroidal anti-inflammatory drugs. Jornal brasileiro de nefrologia : 'orgao oficial de Sociedades
30 31	375	Brasileira e Latino-Americana de Nefrologia 2019; 41 (1):124-30 doi: 10.1590/2175-8239-JBN-
32	376	2018-0107[published Online First: Epub Date]].
33	377	8. Mitchell JA, Warner TD. COX isoforms in the cardiovascular system: understanding the activities of non-
34 25	378	steroidal anti-inflammatory drugs. Nature reviews Drug discovery 2006; 5 (1):75-86 doi:
35 36	379	10.1038/nrd1929[published Online First: Epub Date]].
37	380	9. Sriperumbuduri S, Hiremath S. The case for cautious consumption: NSAIDs in chronic kidney disease.
38	381	Current opinion in nephrology and hypertension 2019; 28 (2):163-70 doi:
39 40	382	10.1097/MNH.0000000000000473[published Online First: Epub Date] .
41	383	10. Ungprasert P, Cheungpasitporn W, Crowson CS, et al. Individual non-steroidal anti-inflammatory drugs
42	384	and risk of acute kidney injury: A systematic review and meta-analysis of observational studies.
43 44	385	European journal of internal medicine 2015; 26 (4):285-91 doi:
44	386	10.1016/j.ejim.2015.03.008[published Online First: Epub Date] .
46	387	11. Amabile CM, Spencer AP. Parecoxib for parenteral analgesia in postsurgical patients. The Annals of
47	388	pharmacotherapy 2004; 38 (5):882-6 doi: 10.1345/aph.1D283[published Online First: Epub Date] .
48 49	389	12. Khwaja A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin Pract
50	390	2012; 120 (4):C179-C84 doi: 10.1159/000339789[published Online First: Epub Date] .
51	391	13. Kim M, Brady JE, Li G. Variations in the risk of acute kidney injury across intraabdominal surgery
52 53	392	procedures. Anesthesia and analgesia 2014; 119 (5):1121-32 doi:
55	393	10.1213/ANE.000000000000425[published Online First: Epub Date] .
55	394	14. Biteker M, Dayan A, Tekkesin AI, et al. Incidence, risk factors, and outcomes of perioperative acute
56 57	395	kidney injury in noncardiac and nonvascular surgery. American journal of surgery
57 58	396	2014; 207 (1):53-9 doi: 10.1016/j.amjsurg.2013.04.006[published Online First: Epub Date]].
59 60	397	15. Vaara ST, Bellomo R. Postoperative renal dysfunction after noncardiac surgery. Current opinion in


Page 28 of 34

BMJ Open

1

2		
3 4	398	critical care 2017;23(5):440-46 doi: 10.1097/MCC.000000000000439[published Online First:
4 5	399	Epub Date] .
6	400	16. Nishimoto M, Murashima M, Kokubu M, et al. Positive association between intra-operative fluid
7	401	balance and post-operative acute kidney injury in non-cardiac surgery: the NARA-AKI cohort
8	402	study. Journal of nephrology 2020; 33 (3):561-68 doi: 10.1007/s40620-019-00688-x[published
9 10	403	Online First: Epub Date] .
10	404	17. Mathis MR, Naik BI, Freundlich RE, et al. Preoperative Risk and the Association between Hypotension
12	405	and Postoperative Acute Kidney Injury. Anesthesiology 2019 doi:
13	405	
14		10.1097/ALN.000000000003063[published Online First: Epub Date] .
15 16	407	18. Cho E, Kim SC, Kim MG, et al. The incidence and risk factors of acute kidney injury after hepatobiliary
17	408	surgery: a prospective observational study. Bmc Nephrol 2014;15 doi: Artn 169
18	409	10.1186/1471-2369-15-169[published Online First: Epub Date] .
19	410	19. Wang J, Yu W, Zhai G, et al. Independent risk factors for postoperative AKI and the impact of the AKI
20 21	411	on 30-day postoperative outcomes in patients with type A acute aortic dissection: an updated
21	412	meta-analysis and meta-regression. Journal of thoracic disease 2018; 10 (5):2590-98 doi:
23	413	10.21037/jtd.2018.05.47[published Online First: Epub Date] .
24	414	20. Bell S, Rennie T, Marwick CA, et al. Effects of peri-operative nonsteroidal anti-inflammatory drugs on
25	415	post-operative kidney function for adults with normal kidney function. The Cochrane database
26 27	416	of systematic reviews 2018;11:CD011274 doi: 10.1002/14651858.CD011274.pub2[published
28	417	Online First: Epub Date] .
29	418	21. Schug SA, Parsons B, Li C, et al. The safety profile of parecoxib for the treatment of postoperative pain:
30	419	a pooled analysis of 28 randomized, double-blind, placebo-controlled clinical trials and a review
31 32	420	of over 10 years of postauthorization data. Journal of pain research 2017; 10 :2451-59 doi:
32 33	420	10.2147/JPR.S136052[published Online First: Epub Date]].
34		
35	422	22. Takaku M, da Silva AC, Iritsu NI, et al. Effects of a Single Dose of Parecoxib on Inflammatory Response
36	423	and Ischemic Tubular Injury Caused by Hemorrhagic Shock in Rats. Pain research and treatment
37 38	424	2018; 2018 :8375746 doi: 10.1155/2018/8375746[published Online First: Epub Date] .
39	425	23. Feitoza CQ, Camara NO, Pinheiro HS, et al. Cyclooxygenase 1 and/or 2 blockade ameliorates the renal
40	426	tissue damage triggered by ischemia and reperfusion injury. International immunopharmacology
41	427	2005; 5 (1):79-84 doi: 10.1016/j.intimp.2004.09.024[published Online First: Epub Date] .
42 43	428	24. Feitoza CQ, Sanders H, Cenedeze M, et al. Pretreatment with indomethacin protects from acute renal
43 44	429	failure following ischemia-reperfusion injury. Transplant P 2002; 34 (7):2979-80 doi: Pii S0041-
45	430	1345(02)03507-8
46	431	Doi 10.1016/S0041-1345(02)03507-8[published Online First: Epub Date] .
47	432	25. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, et al. Post-ischaemic treatment with the
48 49	433	cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte
50	434	infiltration following transient focal cerebral ischaemia in rats. Journal of neurochemistry
51	435	2007; 100 (4):1108-20 doi: 10.1111/j.1471-4159.2006.04280.x[published Online First: Epub
52	436	Date]].
53 54	437	26. Murashima M, Nishimoto M, Kokubu M, et al. Inflammation as a predictor of acute kidney injury and
54 55		
56	438	mediator of higher mortality after acute kidney injury in non-cardiac surgery. Scientific reports
57	439	2019; 9 (1):20260 doi: 10.1038/s41598-019-56615-4[published Online First: Epub Date] .
58 50	440	27. Chong SJ, Wong YC, Wu J, et al. Parecoxib reduces systemic inflammation and acute lung injury in
59 60	441	burned animals with delayed fluid resuscitation. International journal of inflammation

1 2	28
3 442	2014; 2014 :972645 doi: 10.1155/2014/972645[published Online First: Epub Date] .
4 5 443	28. Zhu Y, Wang S, Wu H, et al. Effect of perioperative parecoxib on postoperative pain and local
6 444 7 445	inflammation factors PGE2 and IL-6 for total knee arthroplasty: a randomized, double-blind,
7 445 8 446	placebo-controlled study. European journal of orthopaedic surgery & traumatology : orthopedie
9	traumatologie 2014; 24 (3):395-401 doi: 10.1007/s00590-013-1203-4[published Online First: Epub Date] .
1044711448	29. Hegazy R, Alashhab M, Amin M. Cardiorenal Effects of Newer NSAIDs (Celecoxib) versus Classic NSAIDs
12 449	(Ibuprofen) in Patients with Arthritis. Journal of toxicology 2011; 2011 :862153 doi:
13 14 450	10.1155/2011/862153[published Online First: Epub Date]].
15 16 451	
16 451 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

BMJ Open

Supplemental Table 1. Baseline characteristics of patients aged 18–60 years with and without acute kidney injury (AKI)

Clinical features	without AKI	With AKI	
Clinical features	(n=8686)	(n=560)	p-value
Age (years)	44.25±10.43	45.06±10.18	0.074
ВМІ	22.93±4.93	22.54±3.83	0.07
eGFR	101.98±16.38	94.41±19.78	< 0.001
Male	4267 (49.13%)	300 (53.57%)	0.041
Smoking	1213 (13.97%)	105 (18.75%)	0.002
Alcohol consumption	822 (9.46%)	74 (13.21%)	0.004
Anemia	1538 (17.71%)	161 (28.75%)	< 0.001
Hypertension	1884 (21.69%)	211 (37.68%)	< 0.001
Diabetes mellitus	509 (5.86%)	52 (9.29%)	< 0.001
ACEI	189 (2.18%)	21 (3.75%)	0.015
ARB	116 (1.34%)	13 (2.32%)	0.054
ССВ	1125 (12.95%)	119 (21.25%)	< 0.001
Diuretics	77 (0.89%)	19 (3.39%)	< 0.001
ASA grade			< 0.001
I–II	6633 (76.36%)	317 (56.61%)	
III–V	2053 (23.64%)	243 (43.39%)	
Anesthesia method			< 0.001

	2		
General anesthesia	7735 (89.05%)	531 (94.82%)	
Non-general anesthesia	951 (10.95%)	29 (5.18%)	
Emergency	1395 (16.06%)	130 (23.21%)	< 0.001
Surgical Grade			< 0.001
1	245 (2.82%)	14 (2.50%)	
2	2746 (31.61%)	118 (21.07%)	
3	5349 (61.58%)	386 (68.93%)	
4	346 (3.98%)	42 (7.50%)	
Operative time (min)			<0.001
≤ 60	1338 (15.4%)	63 (11.25%)	
61–120	2176 (25.05%)	111 (19.82%)	
121–180	2032 (23.39%)	135 (24.11%)	
>180	3140 (36.15%)	251 (44.82%)	
Intraoperative erythrocyte			<0.001
Transfusion, mL (%)			<0.001
<100	6735 (77.54)	339 (60.54)	
100–600	868 (9.99)	82 (14.64)	
601–1000	508 (5.85)	42 (7.50)	
>1000	575 (6.62)	97 (17.32)	
Amount of Blood loss, mL			<0.001
(%)			\0.001
<100	2623 (30.20)	131 (23.39)	

Page 33 of 34

	3		
100–600	4771 (54.93)	292 (52.14)	
601–1000	670 (7.71)	60 (10.71)	
>1000	622 (7.16)	77 (13.75)	
Amount of fluid infusion	916.67 (625.00–	1125.00 (703.12-	<0.001
(10 mL/24 h)	1432.29)	1604.17)	<0.001
Amount of fluid out	222 22 (145 92 541 67)	375.00 (208.33–	<0.001
(10 mL/24 h)	333.33 (145.83–541.67)	687.50)	<0.001
Intraoperative Hypotension	930 (10.71%)	81 (14.46%)	0.006
Vasoactive drugs	664 (7.64%)	71 (12.68%)	< 0.001
Parecoxib	934 (10.75%)	39 (6.96%)	0.005
Admission to ICU	376 (4.33%)	57 (10.18%)	< 0.001
Death	32 (0.37%)	26 (4.64%)	< 0.001

AKI: acute kidney injury, BMI: body mass index, eGFR: estimated glomerular filtration rate, ACEI: angiotensin-converting enzyme inhibitors, ARB: angiotensin receptor blockers, CCB: calcium-channel blockers, ASA: American Society of Anesthesiologists, Non-general anesthesia include neuraxial anesthesia (spinal or epidural) and nerve block anesthesia, ICU: intensive care unit. Data are expressed as number of patients (%) or mean ± standard deviation (SD).

BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5-6
		(b) For matched studies, give matching criteria and number of exposed and unexposed	-
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6
Bias	9	Describe any efforts to address potential sources of bias	5
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6-7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	6-7
		(d) If applicable, explain how loss to follow-up was addressed	7
		(e) Describe any sensitivity analyses	7

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	7
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	7
		(c) Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Report numbers of outcome events or summary measures over time	8-11
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	14-17
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8-17
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	18-19
Discussion			
Key results	18	Summarise key results with reference to study objectives	20-22
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	22
Generalisability	21	Discuss the generalisability (external validity) of the study results	-
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	23

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Correlation between perioperative parecoxib use and postoperative acute kidney injury in patients undergoing non-cardiac surgery: A retrospective cohort analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047840.R2
Article Type:	Original research
Date Submitted by the Author:	13-Jul-2021
Complete List of Authors:	Tang, Yong-Zhong; Central South University Third Xiangya Hospital, Anesthesiology Zeng, Pingping; Central South University Third Xiangya Hospital, Department of Anesthesiology Liao, Yan; Central South University Third Xiangya Hospital, Department of Anesthesiology Qin, Zheng; Hunan University College of Computer Science and Electronic Engineering Zhang, Hao; Institute of Microelectronics pf Chinese Academy of Sciences Li, Bo; Central South University Third Xiangya Hospital Ouyang, Wen; Central South University Third Xiangya Hospital li, dan; Central South University, Department of Anesthesiology
Primary Subject Heading :	Urology
Secondary Subject Heading:	Surgery, Pharmacology and therapeutics, Anaesthesia
Keywords:	Adult anaesthesia < ANAESTHETICS, Acute renal failure < NEPHROLOGY, Pain management < ANAESTHETICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
54 55
55 56
57
58
59

60

1	Correlation between perioperative parecoxib use and postoperative acute kidney
2	injury in patients undergoing non-cardiac surgery: A retrospective cohort analysis
3	
4	Yongzhong Tang, M.D. ¹ , Pingping Zeng, M.D. ¹ , Yan Liao, M.D. ¹ , Zheng Qin, Ph.D. ² ,
5	Hao Zhang, Ph.D. ³ , Bo Li, M.D. ⁴ , Wen Ouyang, Ph.D. ¹ , and Dan Li, Ph.D. ^{1*}
6	¹ Department of Anesthesiology, The Third Xiangya Hospital, Central South University,
7	Changsha, China
8	² College of Computer Science and Electronic Engineering, Hunan University, Changsha,
9	China
10	³ Institute of Microelectronics of Chinese of Science, Beijing, China
11	⁴ Operation Room, The Third Xiangya Hospital, Central South University, Changsha,
12	China
13	
14	Corresponding author: Dan Li, Department of Anesthesiology, The Third Xiangya
15	Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013,
16	China
17	Tel: +8613574871720, Fax: +8673188618151, E-mail: <u>danfuer623@163.com</u>
18	

19	Abstract
20	Objective: The association of nonsteroidal anti-inflammatory drugs with postoperative acute kidney
21	injury is controversial. However, there are few studies focusing on the association between parecoxib
22	and postoperative acute kidney injury. Our study aimed at the possible correlation between the
23	intraoperative administration of COX-2 inhibitors parecoxib and perioperative AKI.
24	Design: A retrospective cohort study
25	Setting: Third Xiangya Hospital of Central South University in Hunan Province, China
26	Participants: The electronic medical records and laboratory results were obtained from 9,246 adult
27	patients (18-60 years) undergoing non-cardiac surgery performed between January 1, 2012 to August
28	31, 2017. Study groups were treated with or without parecoxib.
29	Interventions: Univariable analysis identified demographic, preoperative laboratory, and
30	intraoperative factors associated with acute kidney injury. Logistic stepwise regression was used to
31	calculate the adjusted odds ratio of parecoxib and acute kidney injury association.
32	Results: The incidence of acute kidney injury was lower in the parecoxib-administered group (4%)
33	than that in the group without parecoxib (6.3% , p = 0.005). In the Multivariable regression analysis,
34	postoperative acute kidney injury risk reduced by 39% (OR, 0.61; 95% CI, 0.43-0.87) in the
35	parecoxib-administered group after adjusting for interference factors. Sensitivity analysis showed that
36	postoperative AKI risk reduced in four subgroups: eGRF<90 mL·min ⁻¹ ·1.73m ⁽²⁾⁻¹ (OR, 0.49; 95%CI,
37	0.29-0.82), non-smoker (OR, 0.55; 95%CI, 0.37-0.83), blood loss <1000ml (OR, 0.55; 95%CI, 0.37-
38	0.83) and non-hypotension (OR, 0.57; 95%CI, 0.38-0.84).
39	Conclusions: Thus, parecoxib is associated with a modest reduction of postoperative acute kidney
40	injury risk among adult patients undergoing non-cardiac surgery.
41	

42 Keywords: acute kidney injury; parecoxib; non-cardiac surgery

44 Strengths and limitations of this study: Large study population including all adult patients (18–60

45 years) undergoing non-cardiac surgery in Third Xiangya Hospital of Central South University in China

46 between 2012 to 2017. \Box

47 Univariable analysis identified demographic, preoperative laboratory, and intraoperative factors

48 associated with acute kidney injury.

49 Logistic stepwise regression was used to calculate the adjusted odds ratio of parecoxib and acute

50 kidney injury association.

51 The selection bias and some unknown confounders in this retrospective single-center52 observational study may limit the generalizability of the results.

erez oni

53 Background

Acute kidney injury (AKI), a long-recognized complication of surgery with a high incidence of morbidity and mortality, increases health care costs and length of hospital stay[1-3]. Even in patients undergoing non-cardiac surgery with low-grade American Society of Anesthesiologists (ASA) physical status such as ASA I–II, the incidence of postoperative AKI can reach 6%[4]. Mild kidney injury, such as a small increase in postoperative serum creatinine, is associated with renal dysfunction for as long as 1 to 2 years after surgery [5].

Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used perioperative anesthetic adjuvants, with anti-inflammatory and analgesic effects. The main mechanism of action of NSAIDs is the inhibition of cyclooxygenase (COX) enzymes, which can ultimately result in the reduction of prostanoids and thromboxan[6]. Within the kidneys, prostaglandins act as vasodilators to ensure adequate flow to the organ. NSAIDs inhibit this mechanism and can lead to acute kidney injury (AKI). The second form of NSAID-induced AKI is acute interstitial nephritis, which may be related to the prolonged exposure to NSAIDs, and interstitial infiltrates with the predominance of T-lymphocytes[7].

COX exists in two forms: COX-1, which is present in most body tissues body including
the stomach, intestines and COX-2, which is primarily found at sites of inflammation[8].
Accumulating evidence suggests that traditional NSAIDs, such as aspirin and ibuprofen,
are associated with acute and chronic gastrointestinal bleeding and kidney disease[9 10].
These NSAIDs are nonselective COX (COX-1 and COX-2) inhibitors and their side

effects are mostly COX-1 related.

Parecoxib is a parenteral specific COX-2 inhibitor, which enhances its therapeutic gain with minimal adverse effects[6 11]. Parecoxib is used as a perioperative analgesic in over 80 countries, however, clinical data about the effect of parecoxib on postoperative AKI are scarce. Therefore, it is important to establish its safety during the perioperative period. The aim of this study was to assess the correlation between the perioperative use of parecoxib and postoperative AKI in patients undergoing non-cardiac surgery.

Methods

Per Design and selection criteria

This retrospective study was performed at the Third Xiangva Hospital of Central South University from January 1, 2012, to August 31, 2017. The inclusion criterion was patients aged 18-60 years who underwent non-cardiac surgery. The exclusion criteria were ASA grade VI, administration of local anesthesia, liver transplantation, cardiac surgery, urological surgery (including kidney transplantation), lack of serum creatinine or covariate data, and preoperative combined CKD, defined as estimate glomerular filtration rate (eGFR) <60 mL \cdot min⁻¹·1.73m⁽²⁾⁻¹, \geq 3 months). Whether to use the Parecoxib or not was based on the doctor's preference. Parecoxib doses larger than 80 mg were not included because the routine dose is not more than 80 mg/day based on the drug instructions. The study was approved by the Ethics Committee of the Third Xiangya Hospital of Central South University (approval number 2020S264) that waived the need for informed consent because of the observational nature of the study.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
43 44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

98	Data collection
99	The following information was collected: 1) epidemiological data including age, sex,
100	and BMI; 2) individual history including preoperative complications and medication
101	history; 3) laboratory data including serum creatinine and eGFR calculated using the
102	Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula; 4)
103	intraoperative data including emergency, surgical grade, operative time, anesthesia
104	method, ASA grade, amount of fluid infusion and out, intraoperative erythrocyte
105	transfusion volume, amount of blood loss, intraoperative hypotension and vasoactive
106	drugs. 5) postoperative outcomes such as the occurrence of AKI, admission to ICU, and
107	mortality. All clinical data of the 9,246 patients who underwent non-cardiac surgery were
108	obtained by a retrospective review of the computerized patient record system of our
109	hospital.
110	
111	Definitions
112	Postoperative AKI was defined according to the Kidney Disease: Improving Global

Outcomes (KDIGO) 2012 creatinine criteria[12], as one of the following: an increase in serum creatinine by ≥ 0.3 mg/dL within 48 h or a ≥ 1.5 -times increase in serum creatinine from baseline within 7 postoperative days. The baseline serum creatinine level was calculated using the lowest level within preoperative day 7. The primary outcome was the impact of parecoxib on AKI, defined as AKI occurring within 7 postoperative days. Parecoxib administration was defined during the operative time. The surgical grade was

	7
119	classified using the surgical classification catalog constituted by the Chinese Ministry of
120	Health, published in 2018. Intraoperative hypotension was defined as mean arterial
121	pressure (MAP) <65mmHg for a duration of at least 5 min.
122	
123	Patient and public involvement
124	No patient involvement.
125	
126	Statistical analysis
127	All statistical analyses were performed using SAS version 9.4 software (SAS
128	Institute, Inc., Cary, NC, USA) and CRAN R (v3.4.3). Missing data of covariates
129	(including BMI and eGFR) were handled by a multiple imputation model. The
130	continuous results are expressed as mean (SD), whereas categorical variables are
131	expressed as numbers with percentages. The Kruskal-Wallis rank sum test was used to
132	compare continuous variables between groups, whereas the chi-square ($\chi 2$) test or
133	Fisher's exact probability method was used for categorical variables. Univariable
134	logistic regression analysis was used to identify epidemiological, preoperative
135	laboratory, and intraoperative factors that were significantly associated with AKI
136	development. The data were adjusted for potential confounders in multivariable
137	regression models. To further validate these results in a number of specific populations
138	that may influence the incidence of AKI. The sensitivity test was performed in the
139	following four different subgroups: eGFR<90 mL·min ⁻¹ ·1.73m ⁽²⁾⁻¹ , non-smoker, blood
140	loss <1000ml, and non-hypotension. The results of the classification variable are

BMJ Open

3 4	141	expressed as odds ratio (OR) or "Beta" and 95% CI; a p-value < 0.05 indicated a
5 6 7	142	statistically significant difference.
8 9	143	
10 11 12	144	Results
13 14		
15 16	145	Of the 108,198 records identified, those of 9,246 patients were included in the analysis
17 18	146	(Fig. 1). Reasons for excluding patients were age <18 or >60 years (n = 4,783), ASA
19 20 21	147	grade VI (n = 13), regional anesthesia administrated by a surgeon (n = 12,054), cardiac
22 23	148	surgery (n = 387), urological surgery including kidney transplantation (n = 3,589), liver
24 25 26	149	transplantation (n = 107), no recorded preoperative or postoperative creatinine data
20 27 28	150	(n=73,093), no recorded covariate data such as routine blood panel or infusion volume (n
29 30	151	= 4,114), preoperative chronic kidney disease (CKD) ($n = 472$), and administration of
31 32 33	152	parecoxib doses $>80 \text{ mg} (n = 340).$
34 35	153	parecoxib doses $>80 \text{ mg} (n = 340).$
36 37 38	154	AKI
39 40 41	155	The incidence of postoperative AKI was 6.06% (560/9,246). In the AKI group, the
42 43 44	156	probability of admission to the intensive care unit (ICU) and mortality was 10.18% and
45 46	157	4.64%, respectively (Supplemental Table 1).
47 48 49	158	There were no differences in age, body mass index (BMI), angiotensin receptor blockers
50 51	159	(ARBs) use and intraoperative hypotension among patients with and without AKI
52 53 54	160	(Supplemental Table 1). Significant differences between patients with AKI and without
55 56	161	AKI are shown in Supplemental Table 1 (all $p < 0.05$).
57 58 59 60	162	

163 Parecoxib

```
164 Parecoxib was used in 10.5% (973/9,246) of patients (Table 1).
```


166 Table 1. Baseline characteristics of patients aged 18–60 years treated with and without

167 parecoxib

	Without parecoxib	With parecoxib	_
Clinical features	(n=8273)	(n=973)	p-value
Age (year)	44.23±10.46	44.89±10.04	0.06
BMI	22.89±4.99	23.03±3.76	0.409
eGFR	101.66±16.66	101.56±16.23	0.858
Male	4062 (49.1%)	508 (52.2%)	0.063
Smoking	1175 (14.2%)	146 (15%)	0.479
Alcohol consumption	811 (9.8%)	89 (9.1%)	0.544
Anemia	1547 (18.7%)	152 (15.6%)	0.019
Hypertension	1903 (23%)	189(19.4%)	0.011
Diabetes mellitus	505 (6.1%)	56 (5.8%)	0.666
ACEI	199 (2.4%)	14 (1.4%)	0.065
ARB	116 (1.4%)	14 (1.4%)	0.902
ССВ	1142 (13.8%)	103 (10.6%)	0.006
Diuretics	91 (1.1%)	8 (0.8%)	0.482
ASA grade			0.09

Page 11 of 31

BMJ Open

1				10
2 3				
4	I–II	6196 (74.9%)	753 (77.4%)	
5				
6 7	III–V	2077 (25.1%)	220 (22.6%)	
8				
9 10	Anesthesia method			< 0.001
11				
12	General anesthesia	7363 (89%)	907 (93.2%)	
13 14				
14	Non-general anesthesia	910 (11%)	66 (6.8%)	
16				
17	Emergency	1406 (17%)	119 (12.2%)	< 0.001
18 19				
20	Surgical grade			< 0.001
21				
22 23	1	240 (2.9%)	19 (2%)	
23				
25	2	2623 (31.7%)	243 (25%)	
26				
27 28	3	5080 (61.4%)	656 (67.4%)	
29				
30	4	330 (4%)	55 (5.7%)	
31 32				
33	Operative time (min)			< 0.001
34				
35	≤ 60	1315 (15.9%)	88 (9%)	
36 37				
38	61–120	2085 (25.2%)	204 (21%)	
39				
40 41	121–180	1919 (23.2%)	246 (25.3%)	
41 42				
43	>180	2954 (35.7%)	435 (44.7%)	
44				
45 46	Intraoperative erythrocyte			
47				0.94
48	Transfusion, mL (%)			
49 50				
51	<100	6329 (76.5%)	744 (76.5%)	
52			·	
53	100-600	852 (10.3%)	98 (10.1%)	
54 55				
56	601-1000	496 (6%)	56 (5.8%)	
57			· •	
58 59	>1000	596 (7.2%)	75 (7.7%)	
60			· •	
1				

	BMJ Open		
Amount of Blood loss, mL			
(%)			0.003
<100	2507 (30.3%)	251 (25.8%)	
100–600	4500 (4.4%)	559 (57.5%)	
601–1000	662 (8%)	70 (7.2%)	
>1000	604 (7.3%)	93 (9.6%)	
Intraoperative Hypotension	10.8	11.9	0.297
Vasoactive drugs	7.8	8.9	0.227
Amount of fluid infusion		1150 21 570 05	-0.001
(10 mL/24 h)	1037.07±565.54	1159.31±579.85	<0.001
Amount of fluid out	410 17 274 16	373.74±334.53	0.004
(10 mL/24 h)	410.17±374.16	575.74±554.55	0.004
AKI	521 (6.3%)	39 (4%)	0.005
AKI Stages			0.029
	93.7	96	
0			
0 1	4.5	2.6	
	4.5 1	2.6 0.7	

BMJ Open

172	of patients (%) or mean ± standard deviation (SD). AKI Stages (outcome of postoperative AKI was					
173	divided into four groups: stage 0, no AKI; stage 1, AKI grade 1; stage 2, AKI grade 2 and stage 3,					
174	AKI grade 3)					
175						
176	The incidence of AKI wa	s lower in the pareco	oxib-administered grou	up (4%) than in the		
177	group without parecoxib	(6.3%, p = 0.005).	There was no differe	ence in age, BMI,		
178	estimated glomerular filtra	ation rate (eGFR), sex	, smoking, alcohol con	sumption, presence		
179	of diabetes mellitus, use o	f angiotensin-convert	ing enzyme inhibitors	(ACEIs), ARBs, or		
180	diuretics, ASA grade, the incidence of intraoperative erythrocyte transfusion and					
181	intraoperative hypotension, and use of vasoactive drugs between patients treated with and					
182	without parecoxib (Table 1). Significant differences between patients treated with and					
183	without parecoxib are shown in Table 1 (all $p < 0.05$).					
184	Univariable analysis					
185	Univariable analysis					
186	The factors are shown by the univariable analysis to influence AKI development in					
187	patients aged 18-60 years who underwent non-cardiac surgery are listed in Table 2.					
188						
189	Table 2. Univariable analysis of acute kidney injury (AKI)					
	Variable	Statistics	Univariab	le		
	Variable	Statistics	OR (95% CI)	p-value		
	Parecoxib	0.11±0.31	0.62 (0.45, 0.87)	0.0050		

1.01 (1.00, 1.02)

0.0737

 44.30 ± 10.42

Age (year)

-	
12	
1.0	

Male	4567 (49.39%)	1.19 (1.01, 1.42)	0.0416	
BMI	22.90 ± 4.87	0.98 (0.95, 1.00)	0.0396	
Smoking	1318 (14.25%)	1.42 (1.14, 1.77)	0.0018	
Alcohol consumption	896 (9.69%)	1.46 (1.13, 1.88)	0.0038	
Anemia	1699 (18.38%)	1.88 (1.55, 2.27)	< 0.0001	
Hypertension	2095 (22.66%)	2.18 (1.83, 2.61)	< 0.0001	
Diabetes mellitus	561 (6.07%)	1.64 (1.22, 2.22)	0.0011	
ACEI	210 (2.27%)	1.75 (1.11, 2.77)	0.0167	
ARB	129 (1.40%)	1.76 (0.98, 3.14)	0.0570	
ССВ	1244 (13.45%)	1.81 (1.47, 2.24)	< 0.0001	
Diuretics	96 (1.04%)	3.93 (2.36, 6.54)	< 0.0001	
eGFR	97.94±22.36	0.96 (0.96, 0.97)	< 0.0001	
ASA grade III–V	2296 (24.83%)	2.48 (2.08, 2.95)	< 0.0001	
Non-general anesthesia	980 (10.60%)	0.44 (0.30, 0.65)	< 0.0001	
Emergency	1525 (16.49%)	1.58 (1.29, 1.94)	< 0.0001	
Surgical grade 4	388 (4.20%)	2.12 (1.14, 3.98)	0.0184	
Operative time (min)				
≤ 60	1401 (15.15%)	1		
61–120	2287 (24.74%)	1.08 (0.79, 1.49)	0.6200	
121–180	2167 (23.44%)	1.41 (1.04, 1.92)	0.0279	
>180	3391 (36.68%)	1.70 (1.28, 2.25)	0.0003	
Intraoperative Hypotension	1011 (10.93%)	1.41 (1.10, 1.80)	0.0060	

Page 15 of 31

BMJ Open

1					14
2 3 4 5		Vasoactive drugs	735 (7.95%)	0.06 (0.03, 0.09)	<0.0001
6 7		Intraoperative erythrocyte			
8 9 10		transfusion, mL (%)			
11 12		<100	7074 (76.51%)	1	
13 14 15		100–600	950 (10.27%)	1.88 (1.46, 2.41)	<0.0001
16 17 18		601–1000	550 (5.95%)	1.64 (1.18, 2.29)	0.0035
19 20		>1000	672 (7.27%)	3.35 (2.63, 4.27)	<0.0001
21 22 23		Amount of Blood loss, mL			
24 25		(%)			
26 27 28		<100	2754 (29.79%)	1	
29 30 31		100–600	5063 (54.76%)	1.23 (0.99, 1.51)	0.0596
32 33		601–1000	730 (7.9%)	1.79 (1.31, 2.46)	0.0003
34 35 36		>1000	699 (7.56%)	2.48 (1.85, 3.33)	<0.0001
37 38	190	OR: odds ratio, BMI: body ma	ss index, ACEI: ang	iotensin-converting enzy	me inhibitors, ARB:
39 40 41	191	angiotensin receptor blockers,	CCB: calcium-chan	nnel blockers, ASA: A	American Society of
42 43 44	192	Anesthesiologists. Non-general a	nesthesia includes neu	ıraxial anesthesia (spinal	or epidural) and nerve
45 46	193	block anesthesia.			
47 48 49	194				
50 51	195	In the univariable analy	ysis, male sex, sr	noking, alcohol con	sumption, anemia,
52 53 54	196	hypertension, diabetes mellit	us, ACEI use, calc	ium channel blocker ((CCB) use, diuretic

use, ASA grade III-V, emergency, surgical grade 4, duration of the operation, the

incidence of intraoperative hypotension and erythrocyte transfusion, and amount of blood

199	loss were independently associated with an increased risk of postoperative AKI (Table						
200	2).						
201	Parecoxib (OR, 0.62; 95%CI, 0.45–0.87, p = 0.005), eGFR (OR, 0.96; 95%CI, 0.96–						
202	0.97, p < 0.000	01), non-general an	esthesia (OR, 0.44	; 95%CI, 0.30–0.65	5, p < 0.0001) and		
203	vasoactive dru	ıg use (OR, 0.06;	95%CI, 0.03–0.09	9, p < 0.0001) we	ere independently		
204	associated with	h a decreased risk o	of postoperative Ak	XI (Table 2). Age (OR, 1.01; 95%CI,		
205	1.00–1.02, p =	= 0.0737), BMI (Ol	R, 0.98; 95%CI, 0.	95–1.00, p = 0.039	96), and ARB use		
206	(OR, 1.76; 959	%CI, 0.98–3.14, p =	= 0.0570) were not	correlated with Ak	XI (Table 2).		
207							
208	Multivariable regression analysis						
209	The occurre	ence of postoperation	we AKI or AKI S	tages was regarde	d as a dependent		
210	The occurrence of postoperative AKI or AKI Stages was regarded as a dependent variable, and the administration of parecoxib, an independent variable when we						
211	performed the	stepwise regression	n analysis (Table 3).			
212	-						
213	Table 3 Odds	ratio of postoperati	ve acute kidney inj	ury (AKI) associat	ed with parecoxib		
				2	-		
		Model 1	Model 2	Model 3	Model 4		
	OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)						
	<i>p</i> -value <i>p</i> -value <i>p</i> -value <i>p</i> -value						
		0.62 (0.45, 0.87)	0.64 (0.46, 0.90)	0.63 (0.44, 0.89)	0.61(0.43, 0.87)		
	AKI	0.0050	0.0096	0.0095	0.0069		
	AKI Stages	-0.02 (-0.05,	-0.02 (-0.05, -	-0.02 (-0.05, -	-0.03(-0.05,-		

Page 17	7 of 31		BMJ Open		
1 2					16
2 3 4 5		0.00) 0.0627	0.00) 0.0792	0.00) 0.0517	0.00) 0.0236
6 7	214	AKI Stages (outcome of postoperative	e AKI was divided in	to four groups: stage	e 0, no AKI; stage 1,
8 9 10	215	AKI grade 1; stage 2, AKI grade 2 and	stage 3, AKI grade 3	3)	
11 12 13	216	Model 1: Non-adjusted.			
14 15	217	Model 2: Adjusted for age, sex, BMI, s	smoking, alcohol con	sumption, anemia, hy	pertension, diabetes
16 17 18	218	mellitus, ACEI, CCB, diuretics, ASA,	anesthesia method, e	mergency, surgical gr	rade, amount of fluid
19 20	219	infusion and out, intraoperative erythro	ocyte transfusion, and	l amount of blood los	SS.
21 22 23	220	Model 3: Model 2 plus ARB, eGFR, an	nd operative time.		
24 25	221	Model 4: Model 3 plus intraoperative	hypotension, and va	soactive drugs.	
26 27 28	222				
29 30 31	223	The risk adjustment models we	re constructed usir	ng logistic stepwise	e regression. After
32 33	224	adjusting for these interference fac	ctors, parecoxib wa	as still independent	ly associated with
34 35 36	225	postoperative AKI (OR, 0.61; 9	5% CI, 0.43–0.87	, model 4 in Tab	le 3) or different
37 38	226	postoperative AKI stages (OR, -0.	.03; 95% CI, -0.05	– -0.00, model 4 ir	n Table 3).
39 40 41	227				
42 43	228	Sensitivity analysis			
44 45 46	229	Table 4 presented the association	on between postoj	perative AKI and	parecoxib in the
47 48 49	230	subgroups of eGFR <90 mL·min	- ¹ ·1.73 m ^{(2) -1} , non	-smokers, blood l	oss <1000ml, and
50 51	231	intraoperative non-hypotension.			
52 53 54	232				
55 56	233	Table 4 Sensitivity analysis of the	association betwe	en postoperative a	cute kidney injury
57 58 59	234	(AKI) and parecoxib			
60					

		Model 1	Model 2	Model 3	Model 4
		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
		<i>p</i> -value	<i>p</i> -value	<i>p</i> -value	<i>p</i> -value
	Without		Parec	oxib	
	parecoxib				
eGFR	1	0.49 (0.31, 0.79)	0.54 (0.33, 0.87)	0.50 (0.30, 0.84)	0.49(0.29,0.82)
<90		0.0032	0.0119	0.0084	0.0065
Non-	1	0.57 (0.39, 0.84)	0.56 (0.37, 0.84)	0.56 (0.38, 0.84)	0.55(0.37,0.83)
smoker		0.0040	0.0046	0.0052	0.0043
blood loss <1000ml	1	0.56 (0.39, 0.82)	0.57 (0.39, 0.84)	0.56 (0.37, 0.83)	0.55 (0.37, 0.83)
		0.0027	0.0042	0.0040	0.0037
non- hypotensi	1	0.60 (0.42, 0.87)	0.60 (0.42, 0.87)	0.57 (0.38, 0.84)	
on		0.0064	0.0077	0.0050	
Model 1: Nor	n-adjusted.		0.		
Model 2: Adj	usted for age,	sex, BMI, smoking, alc	cohol consumption, ane	mia, hypertension, diab	etes
mellitus, ACI	EI, CCB, diur	etics, ASA, anesthesia n	nethod, emergency, surg	gical grade, amount of f	luid
infusion and o	out, intraopera	ative erythrocyte transfu	sion, and amount of blo	ood loss.	
Model 3: Mo	del 2 plus AR	B, eGFR, and operative	time		
Model 4: Mo	del 3 plus intr	aoperative hypotension,	and vasoactive drugs.		

Page 19 of 31

1

BMJ Open

2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
3 4 5 6 7 8 9 10	
11	
11	
12	
13	
14	
15	
15	
11 12 13 14 15 16 17 18 19	
17	
18	
19	
20	
20	
21	
22	
20 21 22 23 24 25 26 27 28 29	
24	
27	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
JJ ⊃⊿	
34	
35	
34 35 36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

dose parecoxib (40 mg or 80 mg) was associated with a lower incidence of postoperative
AKI (Table 4). Similar results were obtained with the adjusted models. Postoperative AKI
risk also reduced in patients with blood loss <1000ml (OR, 0.55; 95%CI, 0.37-0.83) and
non-hypotension (OR, 0.57; 95%CI, 0.38-0.84).

248 **Discussion**

247

According to the surgery type and AKI diagnostic criteria, the incidence of 249 postoperative AKI ranges from 1.0% to 31%[13-15], and our study revealed an incidence 250 of 6.06% in the study population of patients aged 18–60 years who underwent non-cardiac 251 surgery. The incidence was similar to that in the recently published data by Nishimoto 252 (6%, non-cardiac surgery; mean age, 63 years)[16]. In our study, the univariable analysis 253 identified male sex, smoking, alcohol consumption, anemia, hypertension, diabetes 254 mellitus, ACEI use, CCB use, diuretic use, eGFR, ASA grade III-V, anesthesia mode, 255 emergency, surgical grade 4, duration of the operation (>120 min), the incidence of 256 intraoperative hypotension, intraoperative erythrocyte transfusion (>100 mL), amount of 257 258 blood loss (>600 mL), and vasoactive drug use to be associated with AKI, some of which are similar to previously published data by Mathis MR (2020) and Cho E (2014) [17 18]. 259 However, age and BMI did not correlate with AKI in our study, which is inconsistent 260 261 with the findings from Wang J's studies[19]. This discrepancy can be explained by the difference in mean age and BMI between the studies, which were both lower in our study 262 population. The results of the sensitivity analysis suggested that single-dose (40 mg or 80 263 mg) parecoxib might have potential protective effects against postoperative AKI in 264

differentially ranked AKI. eGFR <90 mL·min⁻¹·1.73 m^{(2) -1} represented the population with preoperative glomerular filtration impairment, while non-hypertension and blood-loss<1000ml, represented people with relatively stable intraoperative circulation and relatively good renal perfusion pressure. The subgroup analysis showed parecoxib might reduce the AKI risk in these patients. Numerous studies have investigated the association between NSAIDs and AKI[10 20]. An updated Cochrane systematic review and meta-analysis published by Bell S in 2018 indicated that NSAIDs have uncertain effects on the rate of AKI and may slightly increase serum creatinine in patients with normal kidney function following surgery[20]. In another meta-analysis (Ungprasert P, 2015), a significant risk of AKI was observed with most traditional NSAIDs but not with two COX-2 specific inhibitors (rofecoxib and celecoxib) [10]. A pooled analysis of 28 randomized clinical trials investigating the safety of parecoxib for the management of postoperative pain showed that its associated risk of renal failure and impairment was 1%, similar to that with the placebo (0.9%)[21]. However, our study indicated that intraoperative single-dose parecoxib (40 mg or 80 mg) might provide potential protective effects against postoperative AKI in patients aged 18-60 years who underwent non-cardiac surgery. Moreover, this is not the first time a renoprotective effect has been postulated for parecoxib. For example, the study of Takaku M et al. also showed that a single-dose of parecoxib (20 mg/kg) reduced tubular renal injury and serum inflammatory cytokines level (interleukin (IL)-1 α , IL- β , IL6, and tumor necrosis factor (TNF)- α) in an ischemic rat model[22]. Moreover, several animal studies(Takaku M 2018, Feitoza CQ 2005, Feitoza CQ 2004, Candelario-Jalil E 2007)

BMJ Open

have suggested that pretreatment with COX-2 inhibitors improved outcomes in function and histology in not only the kidney but also other organs after ischemia[22-25]. To the best of our knowledge, this is the first clinical report to suggest that single-dose (40 mg or 80 mg) parecoxib may be renoprotective in patients aged 18–60 years who underwent non-cardiac surgery.

The mechanism by which parecoxib decreases the risk of postoperative AKI is unknown. However, one possible underlying mechanism is likely related to inflammation. A previous study by Murashima M et al. showed that inflammation is a predictor of postoperative AKI and a mediator of increased mortality after AKI in non-cardiac surgery [26]. However, perioperative parecoxib reduced local and systemic inflammatory cytokines postoperatively [27 28]. Another possible mechanism is associated with hemodynamic change. COX-1 contributes to controlling renal GFR, whereas COX-2 is involved in sodium and water excretion[7]. COX-2 inhibitors are associated with mild hypertension owing to modest sodium retention in the first few days of therapy[29]. The renoprotective mechanism of parecoxib may be related to its anti-inflammatory effects and sodium regulation.

Our study had some limitations that are worth mentioning. First, this was a retrospective single-center observational study; thus, it may have had some selection bias. Second, the timing of the serum creatinine measurement was based on clinical discretion; thus, it may vary with different doctors. Third, we simply chose patients aged 18-60 years who underwent non-cardiac surgery as the target to research. Fourthly, due to the nature of the retrospective study, some unknown or unmeasured confounders, and those

309	excluded patients who had missing data may interfere with the outcomes. Therefore, our	
310	results should be extrapolated cautiously.	
311		
312	Conclusions	
313	In conclusion, in non-cardiac surgery patients, a single dose of parecoxib (40 mg or 80	
314	mg) may be associated with a modest reduction of postoperative AKI in those aged 18-	
315	60 years. However, these short-term effects may not represent the benefit of this drug in	
316	the long term. Furthermore, more comprehensive studies are needed to confirm the effects	
317	of parecoxib on the risk of postoperative AKI.	
318		
319	Figure legends	
320	Fig 1. Enrollment of patients undergoing non-cardiac surgery. The numbers in brackets	
321	represent patients excluded for the reasons described earlier.	
322		
323	Acknowledgments	
324	Acknowledgments We thank Dr. Xing Liu for the technical consultation.	
325		
326	Author's Contributions	
327	Yongzhong Tang helped in designing the study, analyzing and interpreting the data, and	
328	drafting and revising the manuscript. Pingping Zeng and Yan Liao helped in collecting,	
329	analyzing and interpreting the data, and drafting and revising the manuscript. Zheng Qin,	
330	Hao Zhang and Bo Li helped in analyzing and interpreting the data. Wen Ouyang helped	

331	in Supervising, Funding acquisition and drafting and revising the manuscript. Dan Li
332	helped in designing the study, analyzing and interpreting the data, and drafting and
3	revising the manuscript.
34	
35	Funding: This work was supported by the National Key R&D Program of China (grant
6	number 2018YFC2001800), Project of Health and Health Commission of Hunan
7	Province (grant number 20201802), Hunan Province Key Laboratory Project (grant
8	number 2018TP1009), and the Research and Innovation Funds from Xiangya Bigdata
89	Foundation of Central South University.
)	
1	Competing interests: The authors declare they have no competing interests.
2	
5	Patient Consent for publication: Not applicable.
4	
5	Ethics approval: This study was approved by the ethics committee of the third Xiangya
6	hospital of Central South University (2020S264). Because of the observational nature of
7	the study, informed consent was waived.
18	
9	Data sharing statement: The data used and analyzed in this study are available from
	the corresponding author on reasonable request.

351 **REFERENCES**

1 2 3

4 5

6 7

8

9

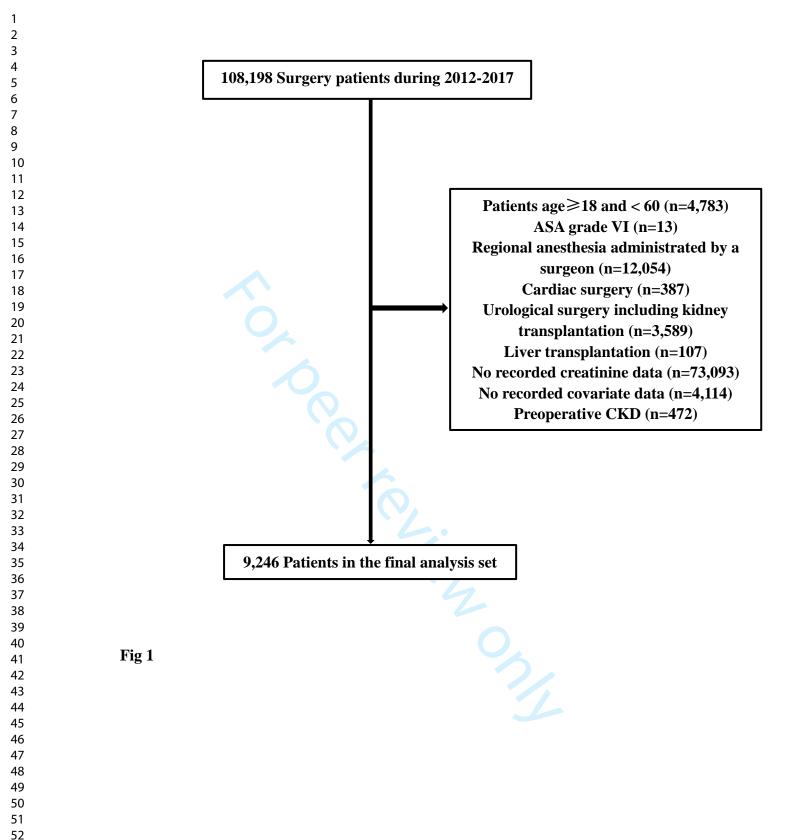
10

15

16

17

18


19

- 352 1. Romagnoli S, Ricci Z. Postoperative acute kidney injury. Minerva anestesiologica 2015;81(6):684-96
- 2. Ortega-Loubon C, Fernandez-Molina M, Carrascal-Hinojal Y, et al. Cardiac surgery-associated acute
 kidney injury. Annals of cardiac anaesthesia 2016;19(4):687-98 doi: 10.4103/0971 9784.191578[published Online First: Epub Date]].
- 11 356 3. Bell S, Ross VC, Zealley KA, et al. Management of post-operative acute kidney injury. QJM : monthly 12 357 journal of the Association of Physicians 2017;110(11):695-700 doi: 13 358 10.1093/gjmed/hcw175[published Online First: Epub Date]]. 14
 - 4. Iyigun M, Aykut G, Tosun M, et al. Perioperative risk factors of acute kidney injury after non-cardiac
 surgery: A multicenter, prospective, observational study in patients with low grade American
 Society of Anesthesiologists physical status. American journal of surgery 2019;218(3):457-61 doi:
 10.1016/j.amjsurg.2019.01.031[published Online First: Epub Date]].
- 203635. Turan A, Cohen B, Adegboye J, et al. Mild Acute Kidney Injury after Noncardiac Surgery Is Associated21364with Long-term Renal Dysfunction: A Retrospective Cohort Study. Anesthesiology 2020 doi:2336510.1097/ALN.00000000003109[published Online First: Epub Date]].
- 243666. Cuniberti B, Odore R, Barbero R, et al. In vitro and ex vivo pharmacodynamics of selected non-steroidal25367anti-inflammatory drugs in equine whole blood. Veterinary journal 2012;191(3):327-33 doi:2636810.1016/j.tvjl.2011.03.016[published Online First: Epub Date]].
- 369 7. Lucas GNC, Leitao ACC, Alencar RL, et al. Pathophysiological aspects of nephropathy caused by non 370 steroidal anti-inflammatory drugs. Jornal brasileiro de nefrologia : 'orgao oficial de Sociedades
 371 Brasileira e Latino-Americana de Nefrologia 2019;41(1):124-30 doi: 10.1590/2175-8239-JBN 372 2018-0107[published Online First: Epub Date]].
- 33 373 8. Mitchell JA, Warner TD. COX isoforms in the cardiovascular system: understanding the activities of non 374 steroidal anti-inflammatory drugs. Nature reviews Drug discovery 2006;5(1):75-86 doi:
 375 10.1038/nrd1929[published Online First: Epub Date]].
- 37 376 9. Sriperumbuduri S, Hiremath S. The case for cautious consumption: NSAIDs in chronic kidney disease. 38 377 Current opinion in nephrology and hypertension 2019;28(2):163-70 doi: 39 378 10.1097/MNH.0000000000000473[published Online First: Epub Date]. 40
- 41 379 10. Ungprasert P, Cheungpasitporn W, Crowson CS, et al. Individual non-steroidal anti-inflammatory drugs 42 380 and risk of acute kidney injury: A systematic review and meta-analysis of observational studies. 43 381 European journal of internal medicine 2015;26(4):285-91 doi: 44 382 10.1016/j.ejim.2015.03.008[published Online First: Epub Date]|. 45
- 4638311. Amabile CM, Spencer AP. Parecoxib for parenteral analgesia in postsurgical patients. The Annals of47384pharmacotherapy 2004;**38**(5):882-6 doi: 10.1345/aph.1D283[published Online First: Epub Date]].
 - 385 12. Khwaja A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin Pract
 386 2012;120(4):C179-C84 doi: 10.1159/000339789[published Online First: Epub Date]|.
- 51
52
5338713. Kim M, Brady JE, Li G. Variations in the risk of acute kidney injury across intraabdominal surgery
and analgesia 2014;119(5):1121-32 doi:53388procedures. Anesthesia and analgesia 2014;119(5):1121-32 doi:5438910.1213/ANE.0000000000425[published Online First: Epub Date]].
- 5539014. Biteker M, Dayan A, Tekkesin AI, et al. Incidence, risk factors, and outcomes of perioperative acute56391kidney injury in noncardiac and nonvascular surgery. American journal of surgery583922014;207(1):53-9 doi: 10.1016/j.amjsurg.2013.04.006[published Online First: Epub Date]].
- 59 393 15. Vaara ST, Bellomo R. Postoperative renal dysfunction after noncardiac surgery. Current opinion in 60

Page 25 of 31

1		24
2 3	394	critical care 2017; 23 (5):440-46 doi: 10.1097/MCC.000000000000439[published Online First:
4 5	395	Epub Date] .
6	396	16. Nishimoto M, Murashima M, Kokubu M, et al. Positive association between intra-operative fluid
7	397	balance and post-operative acute kidney injury in non-cardiac surgery: the NARA-AKI cohort
8 9	398	study. Journal of nephrology 2020; 33 (3):561-68 doi: 10.1007/s40620-019-00688-x[published
9 10	399	Online First: Epub Date] .
11	400	17. Mathis MR, Naik BI, Freundlich RE, et al. Preoperative Risk and the Association between Hypotension
12 13	401	and Postoperative Acute Kidney Injury. Anesthesiology 2019 doi:
14	402	10.1097/ALN.0000000000003063[published Online First: Epub Date] .
15	403	18. Cho E, Kim SC, Kim MG, et al. The incidence and risk factors of acute kidney injury after hepatobiliary
16 17	404	surgery: a prospective observational study. Bmc Nephrol 2014; 15 doi: Artn 169
17	405	10.1186/1471-2369-15-169[published Online First: Epub Date] .
19	406	19. Wang J, Yu W, Zhai G, et al. Independent risk factors for postoperative AKI and the impact of the AKI
20 21	407	on 30-day postoperative outcomes in patients with type A acute aortic dissection: an updated
21	408	meta-analysis and meta-regression. Journal of thoracic disease 2018;10(5):2590-98 doi:
23	409	10.21037/jtd.2018.05.47[published Online First: Epub Date] .
24 25	410	20. Bell S, Rennie T, Marwick CA, et al. Effects of peri-operative nonsteroidal anti-inflammatory drugs on
25 26	411	post-operative kidney function for adults with normal kidney function. The Cochrane database
27	412	of systematic reviews 2018;11:CD011274 doi: 10.1002/14651858.CD011274.pub2[published
28	413	Online First: Epub Date] .
29 30	414	21. Schug SA, Parsons B, Li C, et al. The safety profile of parecoxib for the treatment of postoperative pain:
31	415	a pooled analysis of 28 randomized, double-blind, placebo-controlled clinical trials and a review
32	416	of over 10 years of postauthorization data. Journal of pain research 2017;10:2451-59 doi:
33 34	417	10.2147/JPR.S136052[published Online First: Epub Date] .
35	418	22. Takaku M, da Silva AC, Iritsu NI, et al. Effects of a Single Dose of Parecoxib on Inflammatory Response
36	419	and Ischemic Tubular Injury Caused by Hemorrhagic Shock in Rats. Pain research and treatment
37 38	420	2018; 2018 :8375746 doi: 10.1155/2018/8375746[published Online First: Epub Date] .
39	421	23. Feitoza CQ, Camara NO, Pinheiro HS, et al. Cyclooxygenase 1 and/or 2 blockade ameliorates the renal
40	422	tissue damage triggered by ischemia and reperfusion injury. International immunopharmacology
41 42	423	2005; 5 (1):79-84 doi: 10.1016/j.intimp.2004.09.024[published Online First: Epub Date] .
43	424	24. Feitoza CQ, Sanders H, Cenedeze M, et al. Pretreatment with indomethacin protects from acute renal
44	425	failure following ischemia-reperfusion injury. Transplant P 2002;34(7):2979-80 doi: Pii S0041-
45 46	426	1345(02)03507-8
40 47	427	Doi 10.1016/S0041-1345(02)03507-8[published Online First: Epub Date] .
48	428	25. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, et al. Post-ischaemic treatment with the
49 50	429	cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte
50	430	infiltration following transient focal cerebral ischaemia in rats. Journal of neurochemistry
52	431	2007; 100 (4):1108-20 doi: 10.1111/j.1471-4159.2006.04280.x[published Online First: Epub
53 54	432 433	Date] . 26. Murashima M, Nishimoto M, Kokubu M, et al. Inflammation as a predictor of acute kidney injury and
54 55	433	mediator of higher mortality after acute kidney injury in non-cardiac surgery. Scientific reports
56	434 435	2019; 9 (1):20260 doi: 10.1038/s41598-019-56615-4[published Online First: Epub Date]].
57 50	435	2019,9(1).20200 uol. 10.1038/541398-019-50015-4[published Online First. Epub Date]]. 27. Chong SJ, Wong YC, Wu J, et al. Parecoxib reduces systemic inflammation and acute lung injury in
58 59	430	burned animals with delayed fluid resuscitation. International journal of inflammation
60	7.57	samea anniais with delayed hald resuscitation. International journal of infidimitation

1 ว		25
2 3	438	2014; 2014 :972645 doi: 10.1155/2014/972645[published Online First: Epub Date] .
4 5	439	28. Zhu Y, Wang S, Wu H, et al. Effect of perioperative parecoxib on postoperative pain and local
6	440	inflammation factors PGE2 and IL-6 for total knee arthroplasty: a randomized, double-blind,
7 8	441	placebo-controlled study. European journal of orthopaedic surgery & traumatology : orthopedie
9	442	traumatologie 2014; 24 (3):395-401 doi: 10.1007/s00590-013-1203-4[published Online First:
10	443	Epub Date] .
11 12	444 445	29. Hegazy R, Alashhab M, Amin M. Cardiorenal Effects of Newer NSAIDs (Celecoxib) versus Classic NSAIDs
13	445 446	(Ibuprofen) in Patients with Arthritis. Journal of toxicology 2011; 2011 :862153 doi: 10.1155/2011/862153[published Online First: Epub Date]].
14 15	440	
16	447	
17 18		
19		
20		
21 22		
23		
24 25		
26		
27		
28 29		
30		
31 32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43		
44 45		
46		
47 48		
49		
50 51		
52		
53 54		
54 55		
56		
57 58		
59		
60		

Supplemental Table 1. Baseline characteristics of patients aged 18–60 years with and without acute kidney injury (AKI)

	without AKI	With AKI	
Clinical features			p-value
	(n=8686)	(n=560)	
Age (years)	44.25±10.43	45.06±10.18	0.074
ВМІ	22.93±4.93	22.54±3.83	0.07
eGFR	101.98±16.38	94.41±19.78	< 0.001
Male	4267 (49.13%)	300 (53.57%)	0.041
Smoking	1213 (13.97%)	105 (18.75%)	0.002
Alcohol consumption	822 (9.46%)	74 (13.21%)	0.004
Anemia	1538 (17.71%)	161 (28.75%)	<0.001
Hypertension	1884 (21.69%)	211 (37.68%)	< 0.001
Diabetes mellitus	509 (5.86%)	52 (9.29%)	< 0.001
ACEI	189 (2.18%)	21 (3.75%)	0.015
ARB	116 (1.34%)	13 (2.32%)	0.054
ССВ	1125 (12.95%)	119 (21.25%)	<0.001
Diuretics	77 (0.89%)	19 (3.39%)	< 0.001
ASA grade			< 0.001
I–II	6633 (76.36%)	317 (56.61%)	
III–V	2053 (23.64%)	243 (43.39%)	
Anesthesia method			<0.001

Page 29 of 31

BMJ Open

1 2		2		
3 4 5	General anesthesia	7735 (89.05%)	531 (94.82%)	
6 7	Non-general anesthesia	951 (10.95%)	29 (5.18%)	
8 9 10	Emergency	1395 (16.06%)	130 (23.21%)	< 0.001
11 12 13	Surgical Grade			< 0.001
14 15	1	245 (2.82%)	14 (2.50%)	
16 17 18	2	2746 (31.61%)	118 (21.07%)	
19 20	3	5349 (61.58%)	386 (68.93%)	
21 22 23	4	346 (3.98%)	42 (7.50%)	
24 25 26	Operative time (min)			<0.001
27 28	≤ 60	1338 (15.4%)	63 (11.25%)	
29 30 31	61–120	2176 (25.05%)	111 (19.82%)	
32 33 34	121–180	2032 (23.39%)	135 (24.11%)	
34 35 36	>180	3140 (36.15%)	251 (44.82%)	
37 38 39	Intraoperative erythrocyte			<0.001
40 41	Transfusion, mL (%)			<0.001
42 43 44	<100	6735 (77.54)	339 (60.54)	
45 46 47	100–600	868 (9.99)	82 (14.64)	
48 49	601–1000	508 (5.85)	42 (7.50)	
50 51 52	>1000	575 (6.62)	97 (17.32)	
53 54	Amount of Blood loss, mL			<0.001
55 56 57	(%)			<u>\0.001</u>
58 59	<100	2623 (30.20)	131 (23.39)	
60				

100–600	4771 (54.93)	292 (52.14)	
601–1000	670 (7.71)	60 (10.71)	
>1000	622 (7.16)	77 (13.75)	
Amount of fluid infusion	916.67 (625.00–	1125.00 (703.12-	<0.00
(10 mL/24 h)	1432.29)	1604.17)	<0.00
Amount of fluid out	333.33 (145.83–541.67)	375.00 (208.33–	< 0.00
(10 mL/24 h)	555.55 (145.65–541.07)	687.50)	<0.001
Intraoperative Hypotension	930 (10.71%)	81 (14.46%)	0.00
Vasoactive drugs	664 (7.64%)	71 (12.68%)	<0.00
Parecoxib	934 (10.75%)	39 (6.96%)	0.00
Admission to ICU	376 (4.33%)	57 (10.18%)	<0.00
Death	32 (0.37%)	26 (4.64%)	< 0.00

AKI: acute kidney injury, BMI: body mass index, eGFR: estimated glomerular filtration rate, ACEI: angiotensin-converting enzyme inhibitors, ARB: angiotensin receptor blockers, CCB: calcium-channel blockers, ASA: American Society of Anesthesiologists, Non-general anesthesia include neuraxial anesthesia (spinal or epidural) and nerve block anesthesia, ICU: intensive care unit. Data are expressed as the number of patients (%) or mean \pm standard deviation (SD).

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5-6
		(b) For matched studies, give matching criteria and number of exposed and unexposed	-
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6
Bias	9	Describe any efforts to address potential sources of bias	5
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6-7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	6-7
		(d) If applicable, explain how loss to follow-up was addressed	7
		(e) Describe any sensitivity analyses	7

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	7
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	7
		(c) Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Report numbers of outcome events or summary measures over time	8-11
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	14-17
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8-17
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	18-19
Discussion			
Key results	18	Summarise key results with reference to study objectives	20-22
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	22
Generalisability	21	Discuss the generalisability (external validity) of the study results	-
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	23
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.