

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Factors influencing effectiveness of remote patient monitoring interventions: A realist review

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051844
Article Type:	Original research
Date Submitted by the Author:	31-Mar-2021
Complete List of Authors:	Thomas, Emma; University of Queensland Centre for Online Health, Centre for Online Health, Centre for Health Services Research Taylor, Monica ; University of Queensland, Centre for Online Health, Centre for Health Services Research Banbury, Annie; The University of Queensland, Centre for Online Health, Centre for Health Services Research Snoswell, Centaine; University of Queensland Centre for Online Health, Centre for Online Health, Centre for Health Services Research Haydon, Helen; University of Queensland Centre for Online Health, Centre for Online Health, Centre for Health Services Research Gallegos Rejas , Victor ; University of Queensland Centre for Online Health, Centre for Online Health, Centre for Health Services Research Smith, Anthony; The University of Queensland; University of Southern Denmark, Centre for Innovative Technology Caffery, Liam; University of Queensland Centre for Online Health, Centre for Online Health; The University of Queensland
Keywords:	Telemedicine < BIOTECHNOLOGY & BIOINFORMATICS, PUBLIC HEALTH, Organisation of health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Factors influencing effectiveness of remote patient monitoring interventions: A realist review

Dr Emma E Thomas 1,2e.thomas2@uq.edu.auORCID 0000-0001-8415-0521Ms Monica L Taylor 1,2m.taylor2@uq.edu.auORCID 0000-0001-5333-2955Dr Annie Banbury 1,2a.banbury@uq.edu.auORCID 0000-0001-8841-1215Dr Centaine L Snoswell 1-2c.snoswell@uq.edu.auORCID 0000-0002-4298-9369Dr Helen M Haydon 1,2h.haydon@uq.edu.auORCID 0000-0001-9880-9358Dr Victor Gallegos Rejasv.gallegosrejas@uq.net.auProf Anthony C Smith 1,2a.smith8@uq.edu.auORCID 0000-0002-7756-5136A/Prof Liam J Caffery 1,2l.caffery@uq.edu.auORCID 0000-0003-1899-7534

1. Centre for Online Health, The University of Queensland, Brisbane, Australia.

2. Centre for Health Services Research, The University of Queensland, Brisbane, Australia

3. Centre for Innovative Technology, University of Southern Denmark, Odense, Denmark

Corresponding author: Dr Emma Thomas Centre for Online Health, Ground Floor, Building 33, Princess Alexandra Hospital Woolloongabba QLD Australia 4102 <u>e.thomas2@uq.edu.au</u>, +61 7 31765356

Funding: We thank Clinical Excellence Queensland for providing the financial support to enable this research. Dr Emma Thomas is supported by a Postdoctoral Fellowship (#105215) from the National Heart

Total word count: 4056 words

Key words: telehealth; telemedicine; telecare; remote monitoring; telemonitoring; in-home monitoring; hospitalization; length of stay; realist review

Abstract (258 words)

Objectives: Remote patient monitoring (RPM) is an underutilised telehealth intervention that can enhance self-management of chronic disease and reduce acute care use. However, effectiveness of RPM interventions varies within and between populations. This study aimed to explain the variation in outcomes related to RPM interventions.

Design: Systematic search and realist review

Participants: A systematic literature review was undertaken for studies published from January 2015 to October 2020 reporting RPM and effect on hospitalisations, length of stay, or emergency department presentations. All populations and disease conditions were included.

Primary and secondary outcome measures: Realist review methodology was used to evaluate 91 studies that reported on RPM interventions and the impact on acute hospital use. Outcomes were evaluated to determine contextual factors and potential mechanisms that led to variation in outcomes of acute hospital use.

Results: We found that across a broad range of RPM interventions 31 factors emerged that are likely to impact the effectiveness of RPM innovations. These were synthesised into six theories of intervention success: 1) targeting populations at high risk; 2) accurately detecting a decline in health; 3) providing responsive and timely care; 4) personalising care; 5) enhancing self-management and, 6) ensuring collaborative and coordinated care.

Conclusion:

While RPM interventions are complex, if they are designed with patients, providers and the implementation setting in mind and with the key variables identified within this review incorporated, it is more likely that they will be effective at reducing acute hospital events. *Registration:* The protocol for our review was registered (#CRD42020142523) with the Prospective Register of Systematic Reviews (PROSPERO).

Strengths and limitations

- Our review was strengthened by a comprehensive search and inclusivity of diverse RPM interventions across a broad spectrum of conditions and contexts.
- The novel use of realist review methodology and development of theory-based constructs helped to systematically identify factors impacting upon implementation.
- Included studies within our review had multiple study design issues. Typically, with many of these studies it is not possible (or ethical) to blind participants. Therefore, selection bias may have effected results if health professionals pragmatically selected more willing or engaged patients to participate in the trials.
- While our focus was on acute care use, other aspects of care may have been overlooked that relate to care quality.

Introduction

Non-communicable diseases such as heart disease, chronic obstructive pulmonary disease (COPD), and diabetes accounts for over 70 per cent of global deaths each year.¹ Combined with the added challenge of ageing populations, health systems internationally are under enormous strain to support growing numbers of chronically unwell people.² One of the main drivers of healthcare costs for chronically ill patients results from acute hospital admissions due to their intense resource requirements.

Remote patient monitoring (RPM) is a telehealth innovation that offers significant opportunities to increase the timeliness of care, enhance health outcomes, and potentially reduce hospitalisations and associated healthcare costs.^{3, 4} RPM uses technology to observe a patient's physiological (e.g. heart rate, blood pressure) and behavioural (e.g. medication adherence, physical activity) information from a distance.⁵ With support, many individuals could effectively self-manage chronic conditions in the community.⁶ Further, if alerted early, healthcare providers could intervene when a person's health is declining, potentially preventing costly escalations to hospital. Health professionals can routinely monitor a patient's health data and/or be alerted when measurements exceed a pre-determined threshold. This allows for early intervention and ideally prevention of further exacerbation of a condition. RPM can benefit people with chronic illness as well as other population groups that benefit from continuous monitoring such as the frail and elderly, neonates or post-surgical patients.⁵

Despite the potential benefits of RPM, investigations into its clinical and cost effectiveness have provided mixed results to date. For example, the impact of RPM on the heart failure population has resulted in multiple systematic reviews⁷, meta-analyses^{8,9}, and reviews of reviews.^{10,11} These reviews are generally positive about the potential benefits for patients and health services from RPM services,^{7,8,10,12} but others also report limited or no effect⁹ on reducing morbidity and mortality. A 2018 Cochrane review reported no difference in all-cause mortality in remotely monitored patients with heart failure and a change in hospitalisations ranging from a 64% decrease to a 60% increase.⁹ In our recent review¹³, we provided a synthesis of the available evidence for the effect of RPM on acute care use including hospital admission events, hospital length of stay, and emergency department presentations. We found that RPM was reported to reduce acute care use in approximately 45% of studies. Remaining studies largely reported no change; however, some reported an increase in acute care use. The included 91 studies covered multiple chronic conditions, countries and health care organisations and used various technology and models of care. While RPM can have a positive impact on patient outcomes, certain enables are needed. Clinicians, researchers, and policymakers require more guidance on how to design and implement RPM-facilitated models of care to achieve the greatest benefit. Consequently, further analysis is required to understand underlying mechanisms causing such variation in RPM interventions.¹⁴

We sought to understand what causes variation in outcomes from RPM interventions. While our original review was able to determine the observed effect of RPM on acute care use, we further analysed the existing evidence to try to explain why these effects were observed. Specifically, this study aims to (1) identify factors of RPM interventions that relate to increased and decreased acute care use, and (2) develop recommendations for future RPM intervention design and implementation.

Methods

To achieve the aims of this study we reviewed the same 91 articles included in our recent RPM systematic review, using realist review methodology to identify factors that determine intervention success and failure in various contexts.¹³ Realist review methodology enables exploration of how, why and for whom interventions do and do not work. The basic tenant of realist philosophy is that the effectiveness of an intervention is impacted by the context in which it is implemented which will trigger mechanisms that result in intended and unintended outcomes.¹⁵ Realist reviews are particularly helpful for complex interventions like RPM interventions where the effectiveness is impacted by multiple interacting components such as the intervention design, users, interpersonal relationships and institutions and settings where the intervention is delivered. This review was guided by the work of Pawson et al (2005)¹⁶ and followed guidelines outlined by the Realist and Meta-narrative Evidence Synthesis: Evolving Standards (RAMESES; Appendix A)¹⁷.

We used data from our recent systematic review that compared acute care use between individuals who were and were not monitored using RPM. In brief, search terms for remote monitoring and acute care utilisation were used across three electronic databases: PubMed (MEDLINE)[1966-2020], EMBASE (OvidSP)[1974-2020], and CINAHL (EBSCOHost)[1982-2020]. The search, conducted in October 2020, included articles published in the last five years (2015-2020). Articles were included if they used RPM to monitor an individual's biometrics (e.g. heart rate, blood pressure) from a distance while they are not in hospital. No restrictions were placed on patient age, or disease conditions however full-text studies had to be available in English. Complete details of the original systematic review have been described elsewhere.¹³

Patient and public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

Evidence synthesis

According to the methodology described by Pawson et. al.¹⁶ information was extracted that related to context (settings, populations, intervention delivery); outcomes (positive, negative or null effect on outcome of hospital use), and potential mechanisms or reasons behind the results (e.g. author's interpretation as to why the interventions did or did not work). These data were recorded in an Excel spreadsheet to facilitate a structured analysis. Two researchers (ET, MT) independently extracted this data.

The researchers then collectively examined the articles to detect patterns and developed a compendium of explanatory factors observed in the RPM studies. The researchers compared and discussed their identified factors that led to increased or decreased acute care use being reported in the studies. Findings were then combined into a table showing the number of studies proposing each mechanism and grouped by outcome (e.g. increased or decreased acute care use).

The two researchers then jointly mapped recurrent patterns into explanatory context-mechanismoutcome (CMO) diagrams to illustrate how the different factors interact. Literature was also examined for opposing or conflicting viewpoints. These CMO diagrams were discussed with a third member of the research team (LC) to confirm consistent and logical development. Key findings were synthesised into overarching themes, which are referred to as 'theories' in the realist review approach.¹⁶ Finally, a list of recommendations was developed from the findings and ordered by context to guide future RPM intervention design and implementation.

Results

Ninety-one articles from our previous review were evaluated to determine why RPM increased, decreased, or had no effect on acute care use. Thirty-one factors were identified and mapped onto two outcomes: 1) increased hospital use (21 factors) and 2) reduced hospital use (10 factors) (Figures 1 & 2). Factors were also ordered by the frequency of articles that reported them as possible influences on outcomes (represented by the size of each factor in Figure 1 and 2).

[Insert Figure 1]

Figure 1 Factors associated with RPM intervention studies that reduced acute care use.

The size of each box relates to the number of studies that identified each factor as having an important influence on the outcome.

CIED: Cardiac implantable electronic devices; Pt: patient; RPM: remote patient monitoring

[Insert Figure 2]

Figure 2 Factors associated with RPM interventions studies that increased acute care use.

The size of each box relates to the number of studies that identified each factor as having an important influence on the outcome.

RPM: remote patient monitoring; Pt: patient

Theories about how RPM works

It was identified that successful RPM interventions, in this case those interventions that successfully reduced acute care use, were those that: 1) *target populations at high risk;* 2) *accurately detect a decline in health;* 3) were *responsive* and *provided timely care;* 4) *provided personalised care;* 5) *enhanced self-management* and, 6) *ensured collaborative and coordinated care.* Each of these theories of intervention success are described below.

Target populations at high risk

Appropriate selection of patients for RPM is crucial if a change in acute care use is to be achieved. RPM interventions are likely to have more pronounced effects on acute care use when they are targeted towards populations with a high risk of hospitalisation (e.g. moderate-severe disease severity, multiple comorbidities).¹⁸ Further, it is important for the intervention to be timed with periods of high-risk readmissions (e.g. the first 90 days post an index event). Delaying the delivering of RPM devices to patients may reduce the effect.¹⁹

Patients who are more likely to present to hospital multiple times have a greater chance of reducing admissions due to more timely interventions. In practice, however, clinicians may have reservations about remotely assessing their most vulnerable and unwell patients. As described by Geller et al.,²⁰ *"in clinical practice telemedicine seems to be used mainly in patients with better prognosis, probably due to the belief that those who live longer may receive more (i.e. prolonged) benefit from*

telemonitoring than sicker patients who should be seen in the office more frequently" (pg. 1124). Consequently, clinicians may require additional information on how RPM can be safely delivered in high-risk cohorts.

[Insert Figure 3]

Figure 3. Proposed context-mechanism-outcome: target population

Accurately detect a decline in health

RPM needs to accurately predict disease exacerbations by detecting a change in symptoms that relate to health deteriorations. This has been a challenge in certain populations such as COPD and heart failure patients which may have unpredictable disease progression. In the COPD population, multiple studies reported trying to determine the measurement (e.g. spirometry, oximetry, or a combination) which would mark the onset of an exacerbation,²¹⁻²⁴ however, none came to a definitive conclusion.²⁵ RPM can be used in these population groups to longitudinally track the progression of disease and develop parameters to be tested as predictors for future interventions.²⁶

In the heart failure population, physiological signs may not provide adequate warning of decompensation. Readmission in this cohort can be a complex interplay of multiple factors and is often not solely limited to physiological variables.²⁷ If deterioration occurs too quickly, there is limited opportunity to intervene.²⁸ Therefore, more investigation is required to try and accurately predict health declines for individual patients and accurately pin-point the best way for RPM to be used to support this patient population.

Implantable devices (e.g. pacemakers) have an additional advantage; continuous monitoring enables undiagnosed co-morbid conditions such as atrial fibrillation to be detected enabling pre-emptive intervention.²⁹ It can also improve the efficiency of outpatient clinical care by detecting device or lead malfunctions earlier.³⁰

Provide timely care via a responsive system

Any benefit from RPM is dependent on patients 1) using the system (e.g. timely data entry) and, 2) providers taking appropriate and equally timely action when out-of-range readings occur.²⁹ Therefore, RPM systems that use automated data entry wherever possible are preferable as they can reduce errors and delays due to manual entry. As technology improves, smartphone-based programs are likely to replace standard RPM equipment which may result in more consistent, accurate and timely data from patients.¹⁸ For innovations that rely on manual data entry, RPM innovations need to be easy to use (e.g. enables efficient data entry, transportable) and useful for patients to ensure long term use and engagement.³¹ Additionally, regular monitoring is required. For example, Srivastava et al.¹⁸ routinely monitored data for abnormalities or lack of responses; if a patient did not submit data for three days, a call was initiated by nursing staff.

On the staff end, RPM alerts need to be actioned with timely and appropriate responses; the speed of decision-making and frequency of monitoring is paramount.³² A fast response often requires frequent contact with patients and effective bi-directional communication pathways between staff

and patients. For example, Trucco et al.³³ facilitated communication between families and the oncall team via a dedicated phone number or email address. Multiple studies report the importance of dedicated care (e.g. providing an RPM nurse or dedicated case manager) in improving response time.^{32, 34-37} This is supported by the literature with findings that patients who received either basic or intensive case management spend less time in hospital than those without.³⁸ "Fast tracked" access to primary care providers was used in the intervention reported by Pedone et al.³⁹ when abnormalities were presented, or new symptoms arose. They reported that a new model of care, rather than simply implementing a new technology, was required to obtain sizable benefits in terms of hospitalisation outcomes.³⁹ Where possible, RPM should be embedded into the system and provide seamless interaction between patients and the healthcare system with minimal encumbrance on both ends.¹⁸

[Insert Figure 4]

Figure 4. Proposed context-mechanism-outcome: timely care

Provide personalised care

Providing a patient-centric and personalised approach was also an important factor in determining the success of an RPM intervention in reducing acute care use.¹⁸ Firstly, the development of the RPM innovation needs to be co-designed with patients and their families to ensure it meets their needs and maximise acceptance and uptake.⁴⁰ Training patients on how to use the device will likely also need to be personalised and at times repeated. RPM alerts can also be personalised by using individual data to determine alert thresholds. Koelher et al.⁴¹ recommended defining a risk category for each individual patient based on their positive results (derived from biometric data). One study author requested personalised parameters and treatment guidelines from each patient's treating physician.⁴² Determining appropriate parameters for RPM applications (personalised or not) enables the treating team to be alerted to any biometric measurements that fall outside of the personalised parameter ranges. To enable these personalised parameters to be developed physicians need to be engaged in the RPM process for their patient early. The response by the RPM monitoring team also needs to be tailored; considering the person's medical, social and emotional needs.

Enhance self-management

To successfully reduce acute care use, RPM interventions should include support and education to increase self-management skills. Through developing knowledge, skills and positive behaviours (e.g. medication adherence), patients are more likely to be able to effectively manage their condition with the aid of RPM.⁴³ Additionally, increased awareness of signs and symptoms of disease progression that often occurs when patients use RPM can prompt them to contact their healthcare provider for timely management.⁴³ Providing feedback from RPM data in a way that empowers patients to take control of their own health is important. Koelher et al.⁴¹ reported that this needs to be a comprehensive approach including education and patient involvement when developing management strategies. In some instances, RPM interventions were discontinued once patients were able to correctly correlate their personal symptoms and seek help when required.⁴² Conversely, some RPM interventions that were unsuccessful in reducing hospitalisation events

reported patients becoming overly reliant on the RPM team, for instance alerting the team know when an issue arose rather than developing autonomous self-management skills for their condition. Additionally, some known important factors such as medication adherence were not always measured and present a lost opportunity in many RPM innovations. Medication adherence and timely changes to medications are reported to confer substantial benefits for patients.⁴¹

[Insert Figure 5]

Figure 5. Proposed context-mechanism-outcome: self-management

Ensure collaborative and coordinated care

Successful RPM studies demonstrated increased connection and communication between healthcare staff and patients.³⁰ Multidisciplinary team-based interventions that combine feedback (automated and/or provider-initiated) with other approaches (e.g. coaching, motivational interviews, and shared decision-making) are more likely to result in improvement in adherence.⁴⁴ Involvement of primary care is crucial. As high-risk patients are often managed by primary and specialty care, both hospital and primary care settings should be involved in RPM interventions.⁴⁵ Involvement of key stakeholders is required to improve continuity of care.⁴⁶ Beyond healthcare professionals, the RPM intervention should also aim to include families and carers as key stakeholders in the long-term management of the person's condition. To increase primary carers' acceptance of and adherence to RPM, they must be involved very early on. To institute an initial change of role, staff incentives (e.g. financial payments) may be required.²⁶ Additionally, nursing staff should be considered as having leading roles in RPM interventions.⁴⁷ Further, institutional support is required for these initiatives and reorganisation of care processes should be carefully planned and implemented.⁴⁷

Factors that resulted in increased acute care use

A range of factors were identified as having influence on hospital use (increasing admissions) and subsequent negative clinical outcomes. For example, multiple study authors reported slow alert response times $(N=6)^{31, 48-52}$ and low patient or clinician adherence $(N=11)^{18, 19, 27, 31, 44, 53-58}$ as important factors resulting in no change or an increase in acute care use in the RPM group. There also appears to be a delicate balance between providing a supportive environment that empowers patients to self-manage versus having patients become reliant on the RPM device and/or the monitoring team.

Recommendations for RPM

We synthesised multiple recommendations to assist in the design and implementation of RPM interventions (Figure 6).

When designing RPM devices, it is crucial that the measured biometrics accurately predict disease exacerbations. Alert thresholds need to be carefully determined to ensure they are sensitive to physiological changes without being too high, and where possible tailored to the patient and disease

state. Further, the transmission of data needs to be reliable, and if possible, automatic.

It is essential that RPM devices are co-designed with consumers and providers to improve usability and engagement with the RPM system. It is likely that making the device interactive and building in feedback loops between the patient and clinician will enhance engagement. However, if this increases the provider's workload it may discourage provider engagement. Multidisciplinary team interventions that combine feedback with other approaches like patient education, motivational interviewing, coaching or shared decision-making are likely to be more effective long-term.⁵⁹

At the organisation level, having dedicated professionals responsible for monitoring data and communicating with patients and the healthcare team can improve the timeliness and coordination of care. Studies with nursing staff in these leading and case-management roles appeared to be more effective.⁴⁷ RPM also needs to be embedded into the health system to provide seamless interaction between patients and the healthcare system. This may require reorganisation of care and additional resources (physical and personnel) to support the intervention.

[Insert Figure 6]

Figure 6. Recommendations to enhance RPM and reduce acute care use

Discussion

We found that RPM interventions were successful at reducing acute care use when they incorporated a number of elements including; accurately predicting a decline in health or disease exacerbation, timely response to alerts, personalised patient parameters, and a focus on enhancing patient self-management. Additionally, RPM needed to improve the continuity of care by enhancing collaboration between specialists and primary care. To the best of our knowledge, this is the first review to elucidate why some RPM interventions are more successful than others in reducing acute care use.

RPM interventions are complex because they typically involving multiple components (e.g. data collection, education, feedback) and various stakeholders across different settings (e.g. community, primary and tertiary care). Given the complexity of RPM interventions, it is perhaps unsurprising that RPM studies have resulted in so much variation in the effects demonstrated regarding changes in acute care use. To date, much of the focus of RPM innovations has been on the design and development of the technology.^{60, 61} While functioning technology that accurate detects a decline in health is important, to deliver significant benefits RPM alerts must also lead to an actionable and timely responses. To achieve positive results at the healthcare system level, RPM interventions require a change to the *model of care* rather than simple technology implementation.⁶²

To be successful, the right patients need to be recruited at the right time. Patients with greater disease severity and at high risk of readmissions appear to confer the greatest benefit of RPM interventions in terms of reduced hospitalisation.⁶³ For instance, a recent consensus statement from the Heart Failure Society of America⁶⁴ broadly concluded that heart failure RPM had the most impact when patients were most at risk (e.g., recent hospitalisation, prone to fluid overload, and struggles with medication adherence). Additionally, RPM should target patients who are willing and likely to adhere with RPM regimes. Huygens suggests there is a relationship between perceived disease

controllability and patients' willingness to self-monitor.⁶⁵ Patients with diabetes, asthma and hypertension were most willing to self-monitor. In contrast, patients with rheumatism, migraines and other neurological disorders were less willing. The intervention design can facilitate engagement and use. Hong and Lee⁶³ determined that interventions with an educational component such as selfmanagement programs have greater effects. Another consideration is the patient's social circumstance. One study found that RPM significantly improved outcomes for socially isolated patients,⁶⁶ potentially due to the delay in care access that these patients may face. Conversely, for socially connected patients, outcomes appear to be enhanced by training caregivers.^{28, 67}

In primary care, tailoring advice and monitoring symptoms or exacerbations by keeping logs are key self-management support strategies which are routinely used (i.e. food and blood sugar diaries for diabetics).⁶⁸ The use of RPM can enhance tailored self-management strategies by providing and visualising data to explain the impact of an individual's health behaviour on their vital signs. This can improve a patient's understanding of why and how they need to modify their behaviour.⁵⁹ Patients with low levels of health literacy have the most to gain in improving their self-management knowledge and skills with such interventions. Interventions based on health behaviour models and personalised coaching were most successful.⁶⁹ The findings of this review parallel some of the themes in a review of patient experiences of RPM by Walker et al.⁷⁰ Similarly, self-management and early identification of clinical exacerbations were key to preventing hospitalisation. From the patient perspective, self-management was achieved by increasing confidence and providing a sense of safety. Shared decision making was identified as a key mechanism to preventing hospitalisation.

Patients have previously reported concerns about being lost in the data or losing interpersonal connections with health professionals and a reluctance to try something new, especially if unfamiliar with technology.⁷⁰ Our findings substantiate the importance of co-designing RPM interventions with consumers to ensure they are easy to use and provide useful feedback to maintain adherence and engagement. Building rapport, providing training (sometimes multiple times) and having a two-way interactive relationship between the patient and the RPM team is crucial.

Included studies within our review had multiple study design issues. Typically, with many of these studies it is not possible (or ethical) to blind participants. Therefore, selection bias may have effected results if health professionals pragmatically selected more willing or engaged patients to participate in the trials. However, in real-world clinical settings it is likely (and appropriate) that participants are provided with options regarding their follow-up care. The observer or Hawthorne effect⁷¹ may be at play with participants potentially acting differently due to a belief that they are being watched. Such an effect may reduce with time, and some trial lengths may have been too short for this effect to wear off.

Our review was strengthened by a comprehensive search and inclusivity of diverse RPM interventions across a broad spectrum of conditions and contexts. The novel use of realist review methodology and development of theory-based constructs helped to systematically identify factors impacting upon implementation. However, while our focus was on acute care use, other aspects of care may have been overlooked that relate to care quality. Further, it is possible that reducing hospital admissions may shift care and associated costs to the primary care setting and potentially resulting in additional pressure and stress on different aspects of the system. Additionally, the theories that have been developed are based on both our and the primary study authors' interpretation of findings in many instances and not experimental evidence. Future studies should investigate any unintended consequences of RPM and cost implications resulting from the shifting of care.

Conclusion

RPM interventions have the potential to reduce acute care use when they are targeted to appropriate populations and disease states, designed well, and implemented with patients and providers in mind. This review has highlighted important considerations for developing effective RPM devices, systems and revised models of care. To achieve significant changes in acute care use, RPM data needs to be routinely entered and checked, automated where possible, alerts need to accurately highlight when a person's data is beyond an acceptable range (for that person), and healthcare staff need to respond in a timely and appropriate manner. Further, information and feedback needs be provided to patients in a way that empowers them to self-manage their condition. If designed with these considerations in mind, RPM interventions are more likely to be effective at reduce acute care use.

List of abbreviations

COPD: chronic obstructive pulmonary disease; CMO: context-mechanism-outcome; PROSPERO: Prospective Register of Systematic Reviews; RAMESES: Realist and Meta-narrative Evidence Synthesis: Evolving Standards; RPM: Remote patient monitoring.

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: All authors consent to publication

Availability of data and materials: Not applicable

Competing interests: None to declare

Funding: We thank Clinical Excellence Queensland for providing the financial support to enable this research. Dr Emma Thomas is supported by a Postdoctoral Fellowship (#105215) from the National Heart Foundation of Australia

Authors' contributions: This research was conceptualised by ET. ET, LC, CS, MT contributed to the study design. Searches and data extraction were carried out by ET and MT with support from LC. Data analysis was performed by ET, MT and LC. Manuscript was drafted by ET, MT, AB and LC. Critical review of manuscript was undertaken by HH, CS, AS, VGR. All authors approved the final manuscript.

Acknowledgements: Not applicable

References

1. Bennett JE, Stevens GA, Mathers CD, et al. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. *The Lancet* 2018; 392: 1072-1088.

2. Atun R, Jaffar S, Nishtar S, et al. Improving responsiveness of health systems to non-communicable diseases. *The Lancet* 2013; 381: 690-697.

1	
2	
3	2 Creasurall CL. Craith A.C. Thermos FF, at al. Video and share consultations only
4	3. Snoswell CL, Smith AC, Thomas EE, et al. Video and phone consultations only
5	scratch the surface of what telehealth has to offer. 2020.
6	4. Bradford NK, Caffery LJ and Smith AC. Telehealth services in rural and remote
7	Australia: a systematic review of models of care and factors influencing success and
8	sustainability. <i>Rural and remote health</i> 2016; 16: 245.
9	5. Malasinghe LP, Ramzan N and Dahal K. Remote patient monitoring: a
10	comprehensive study. <i>Journal of Ambient Intelligence and Humanized Computing</i> 2019; 10:
11	57-76.
12	6. Hanlon P, Daines L, Campbell C, et al. Telehealth interventions to support self-
13	management of long-term conditions: a systematic metareview of diabetes, heart failure,
14	asthma, chronic obstructive pulmonary disease, and cancer. <i>Journal of medical Internet</i>
15	research 2017; 19: e172.
16	7. Pandor A, Gomersall T, Stevens JW, et al. Remote monitoring after recent hospital
17	discharge in patients with heart failure: a systematic review and network meta-analysis.
18	Heart 2013; 99: 1717-1726.
19 20	8. Clark RA, Inglis SC, McAlister FA, et al. Telemonitoring or structured telephone
20	support programmes for patients with chronic heart failure: systematic review and meta-
21	analysis. <i>Bmj</i> 2007; 334: 942.
23	9. Flodgren G, Rachas A, Farmer AJ, et al. Interactive telemedicine: effects on
24	professional practice and health care outcomes. Cochrane Database of Systematic Reviews
25	2015.
26	10. Bashi N, Karunanithi M, Fatehi F, et al. Remote monitoring of patients with heart
27	failure: an overview of systematic reviews. <i>Journal of medical Internet research</i> 2017; 19:
28	e18.
29	11. Greenhalgh T and Shaw S. Understanding heart failure; explaining telehealth–a
30	hermeneutic systematic review. <i>BMC cardiovascular disorders</i> 2017; 17: 156.
31	12. Ono M and Varma N. Remote monitoring to Improve long-term prognosis in heart
32	failure patients with implantable cardioverter-defibrillators. <i>Expert review of medical devices</i>
33	2017; 14: 335-342.
34	13. M T, Thomas EE, Snoswell CL, et al. Does remote patient monitoring reduce acute
35	care use? A systematic review. <i>BMJ Open</i> 2021; Accepted 11.02.2021.
36	14. Damschroder LJ and Lowery JC. Evaluation of a large-scale weight management
37	program using the consolidated framework for implementation research (CFIR).
38 39	Implementation Science 2013; 8: 51. DOI: 10.1186/1748-5908-8-51.
40	15. Pawson R, Greenhalgh T, Harvey G, et al. Realist synthesis: an introduction.
40	Manchester: ESRC Research Methods Programme, University of Manchester 2004.
42	16. Pawson R, Greenhalgh T, Harvey G, et al. Realist review-a new method of
43	systematic review designed for complex policy interventions. <i>Journal of health services</i>
44	research & policy 2005; 10: 21-34. 17. Wong G, Greenhalgh T, Westhorp G, et al. RAMESES publication standards: realist
45	
46	syntheses. BMC medicine 2013; 11: 21.
47	18. Srivastava A, Do J-M, Sales VL, et al. Impact of patient-centred home telehealth
48	programme on outcomes in heart failure. <i>Journal of Telemedicine and Telecare</i> 2019; 25:
49	425-430.
50	19. Olivari Z, Giacomelli S, Gubian L, et al. The effectiveness of remote monitoring of
51	elderly patients after hospitalisation for heart failure: The renewing health European project.
52	International Journal of Cardiology 2018; 257: 137-142.
53	20. Geller JC, Lewalter T, Bruun NE, et al. Implant-based multi-parameter telemonitoring
54	of patients with heart failure and a defibrillator with vs. without cardiac resynchronization
55	therapy option: a subanalysis of the IN-TIME trial. <i>Clinical Research in Cardiology</i> 2019;
56 57	108: 1117-1127.
57 58	21. Steer J, Gibson G and Bourke S. Predicting outcomes following hospitalization for acute exacerbations of COPD. <i>QJM: An International Journal of Medicine</i> 2010; 103: 817-
58 59	829.
60	

BMJ Open

22. Seemungal TA, Donaldson GC, Bhowmik A, et al. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. *American journal of respiratory and critical care medicine* 2000; 161: 1608-1613.

23. Pinnock H, Hanley J, McCloughan L, et al. Effectiveness of telemonitoring integrated into existing clinical services on hospital admission for exacerbation of chronic obstructive pulmonary disease: researcher blind, multicentre, randomised controlled trial. *Bmj* 2013; 347: f6070.

24. Mohktar MS, Basilakis J, Redmond SJ, et al. A guideline-based decision support system for generating referral recommendations from routinely recorded home telehealth measurement data. In: *2010 Annual International Conference of the IEEE Engineering in Medicine and Biology* 2010, pp.6166-6169. IEEE.

25. Shany T, Hession M, Pryce D, et al. A small-scale randomised controlled trial of home telemonitoring in patients with severe chronic obstructive pulmonary disease. *Journal of telemedicine and telecare* 2017; 23: 650-656. 2016/07/29. DOI:

10.1177/1357633x16659410.

26. Shany T, Hession M, Pryce D, et al. A small-scale randomised controlled trial of home telemonitoring in patients with severe chronic obstructive pulmonary disease. *Journal of telemedicine and telecare* 2017; 23: 650-656.

27. Ong MK, Romano PS, Edgington S, et al. Effectiveness of remote patient monitoring after discharge of hospitalized patients with heart failure: the better effectiveness after transition–heart failure (BEAT-HF) randomized clinical trial. *JAMA internal medicine* 2016; 176: 310-318.

28. Nouryan CN, Morahan S, Pecinka K, et al. Home Telemonitoring of Community-Dwelling Heart Failure Patients After Home Care Discharge. *Telemedicine journal and ehealth : the official journal of the American Telemedicine Association* 2019; 25: 447-454. 2018/07/24. DOI: 10.1089/tmj.2018.0099.

29. Piccini JP, Mittal S, Snell J, et al. Impact of remote monitoring on clinical events and associated health care utilization: A nationwide assessment. *Heart Rhythm* 2016; 13: 2279-2286.

30. Akar JG, Bao H, Jones PW, et al. Use of remote monitoring is associated with lower risk of adverse outcomes among patients with implanted cardiac defibrillators. *Circulation: Arrhythmia and Electrophysiology* 2015; 8: 1173-1180.

31. Pekmezaris R, Nouryan CN, Schwartz R, et al. A Randomized Controlled Trial Comparing Telehealth Self-Management to Standard Outpatient Management in Underserved Black and Hispanic Patients Living with Heart Failure. *Telemedicine and e-Health* 2019; 25: 917-925.

32. Lyth J, Lind L, Persson HL, et al. Can a telemonitoring system lead to decreased hospitalization in elderly patients? *Journal of Telemedicine and Telecare* 2019: 1357633X19858178.

33. Trucco F, Pedemonte M, Racca F, et al. Tele-monitoring in paediatric and young home-ventilated neuromuscular patients: A multicentre case-control trial. *Journal of telemedicine and telecare* 2019; 25: 414-424.

34. Böhm M, Drexler H, Oswald H, et al. Fluid status telemedicine alerts for heart failure: a randomized controlled trial. *European heart journal* 2016; 37: 3154-3163.

35. De Simone V, Zanotto G, Guarise P, et al. Effects of remote monitoring of cardiac implantable electronic devices after stroke or transient ischemic attack. *Journal of Cardiovascular Medicine* 2019; 20: 551-556.

36. Hale TM, Jethwani K, Kandola MS, et al. A remote medication monitoring system for chronic heart failure patients to reduce readmissions: a two-arm randomized pilot study. *Journal of medical Internet research* 2016; 18: e91.

37. Kurek A, Tajstra M, GADULA-GACEK E, et al. Impact of Remote Monitoring on Long-Term Prognosis in Heart Failure Patients in a Real-World Cohort: Results From All-Comers COMMIT-HF Trial. *Journal of cardiovascular electrophysiology* 2017; 28: 425-431.

1	
1 2	
3	38. Jaarsma T, van der Wal MH, Lesman-Leegte I, et al. Effect of moderate or intensive
4	38. Jaarsma T, van der Wal MH, Lesman-Leegte I, et al. Effect of moderate or intensive disease management program on outcome in patients with heart failure: Coordinating Study
5	Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH). Archives of
6	internal medicine 2008; 168: 316-324.
7	39. Pedone C, Rossi FF, Cecere A, et al. Efficacy of a Physician-Led Multiparametric
8	Telemonitoring System in Very Old Adults with Heart Failure. <i>Journal of the American</i>
9	Geriatrics Society 2015; 63: 1175-1180.
10	40. Clemensen J, Rothmann MJ, Smith AC, et al. Participatory design methods in
11 12	telemedicine research. <i>Journal of telemedicine and telecare</i> 2017; 23: 780-785.
12	41. Koehler F, Koehler K, Deckwart O, et al. Efficacy of telemedical interventional
14	management in patients with heart failure (TIM-HF2): a randomised, controlled, parallel-
15	group, unmasked trial. The Lancet 2018; 392: 1047-1057.
16	42. Thomason TR, Hawkins SY, Perkins KE, et al. Home telehealth and hospital
17	readmissions: a retrospective OASIS-C data analysis. Home healthcare now 2015; 33: 20-
18	26.
19	43. Achelrod D, Schreyögg J and Stargardt T. Health-economic evaluation of home
20	telemonitoring for COPD in Germany: evidence from a large population-based cohort. The
21	European Journal of Health Economics 2017; 18: 869-882.
22 23	44. Alshabani K, Attaway AA, Smith MJ, et al. Electronic inhaler monitoring and
23	healthcare utilization in chronic obstructive pulmonary disease. Journal of telemedicine and
25	telecare 2020; 26: 495-503.
26	45. Orozco-Beltran D, Sánchez-Molla M, Sanchez JJ, et al. Telemedicine in primary care
27	for patients with chronic conditions: the ValCronic Quasi-Experimental Study. <i>Journal of medical Internet research</i> 2017; 19: e400.
28	46. McElroy I, Sareh S, Zhu A, et al. Use of digital health kits to reduce readmission after
29	cardiac surgery. Journal of Surgical Research 2016; 204: 1-7.
30	47. Martín-Lesende I, Orruño E, Mateos M, et al. Telemonitoring in-home complex
31 32	chronic patients from primary care in routine clinical practice: Impact on healthcare
33	resources use. European Journal of General Practice 2017; 23: 136-143.
34	48. Chatwin M, Hawkins G, Panicchia L, et al. Randomised crossover trial of
35	telemonitoring in chronic respiratory patients (TeleCRAFT trial). Thorax 2016; 71: 305-311.
36	49. Lüthje L, Vollmann D, Seegers J, et al. A randomized study of remote monitoring and
37	fluid monitoring for the management of patients with implanted cardiac arrhythmia devices.
38	<i>Ep Europace</i> 2015; 17: 1276-1281.
39	50. Mirón Rubio M, Ceballos Fernández R, Parras Pastor I, et al. Telemonitoring and
40	home hospitalization in patients with chronic obstructive pulmonary disease: study
41 42	TELEPOC. Expert review of respiratory medicine 2018; 12: 335-343.
42	51. Ringbæk T, Green A, Laursen LC, et al. Effect of tele health care on exacerbations
44	and hospital admissions in patients with chronic obstructive pulmonary disease: a
45	randomized clinical trial. <i>International journal of chronic obstructive pulmonary disease</i> 2015; 10: 1801.
46	52. Sink E, Patel K, Groenendyk J, et al. Effectiveness of a novel, automated telephone
47	intervention on time to hospitalisation in patients with COPD: A randomised controlled trial.
48	Journal of Telemedicine and Telecare 2020; 26: 132-139.
49	53. D'ancona G, Safak E, Senges J, et al. Activation of remote monitoring for cardiac
50 51	implantable electronic devices: small dog for tall weeds. <i>Clinical Research in Cardiology</i>
52	2017; 106: 833-839.
53	54. Gingele AJ, Brunner-la Rocca H, Ramaekers B, et al. Telemonitoring in patients with
54	heart failure: Is there a long-term effect? Journal of telemedicine and telecare 2019; 25: 158-
55	166.
56	55. Ishani A, Christopher J, Palmer D, et al. Telehealth by an interprofessional team in
57	patients with CKD: a randomized controlled trial. American Journal of Kidney Diseases 2016;
58	68: 41-49.
59 60	

56. Kenealy TW, Parsons MJ, Rouse APB, et al. Telecare for diabetes, CHF or COPD: effect on quality of life, hospital use and costs. A randomised controlled trial and qualitative evaluation. *PloS one* 2015; 10: e0116188.

57. Nouryan CN, Morahan S, Pecinka K, et al. Home telemonitoring of communitydwelling heart failure patients after home care discharge. *Telemedicine and e-Health* 2019; 25: 447-454.

58. Wagenaar KP, Broekhuizen BD, Jaarsma T, et al. Effectiveness of the European Society of Cardiology/Heart Failure Association website 'heartfailurematters. org'and an e-health adjusted care pathway in patients with stable heart failure: results of the 'e-Vita HF'randomized controlled trial. *European journal of heart failure* 2019; 21: 238-246.

59. Banbury A, Nancarrow S, Dart J, et al. Adding value to remote monitoring: Co-design of a health literacy intervention for older people with chronic disease delivered by telehealth-The telehealth literacy project. *Patient Education and Counseling* 2020; 103: 597-606.

60. Vegesna A, Tran M, Angelaccio M, et al. Remote patient monitoring via non-invasive digital technologies: a systematic review. *Telemedicine and e-Health* 2017; 23: 3-17.

61. Farias FACd, Dagostini CM, Bicca YdA, et al. Remote patient monitoring: a systematic review. *Telemedicine and e-Health* 2020; 26: 576-583.

62. Thomas EE, Haydon HM, Mehrotra A, et al. Building on the momentum: Sustaining telehealth beyond COVID-19. *Journal of telemedicine and telecare* 2020: 1357633X20960638.

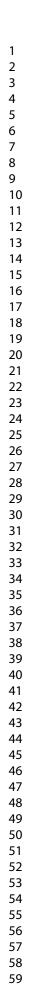
63. Hong Y and Lee SH. Effectiveness of tele-monitoring by patient severity and intervention type in chronic obstructive pulmonary disease patients: A systematic review and meta-analysis. *International Journal of Nursing Studies* 2019; 92: 1-15.

64. Dickinson MG, Allen LA, Albert NA, et al. Remote monitoring of patients with heart failure: a white paper from the Heart Failure Society of America Scientific Statements Committee. *Journal of cardiac failure* 2018; 24: 682-694.

65. Huygens MW, Swinkels IC, de Jong JD, et al. Self-monitoring of health data by patients with a chronic disease: does disease controllability matter? *BMC family practice* 2017; 18: 40.

66. Galinier M, Roubille F, Berdague P, et al. Telemonitoring versus standard of care in heart failure: a randomised multicentre trial. *European Journal of Heart Failure* 2020.

67. Miron Rubio M, Ceballos Fernandez R, Parras Pastor I, et al. Telemonitoring and home hospitalization in patients with chronic obstructive pulmonary disease: study TELEPOC. *Expert review of respiratory medicine* 2018; 12: 335-343. 2018/02/21. DOI: 10.1080/17476348.2018.1442214.

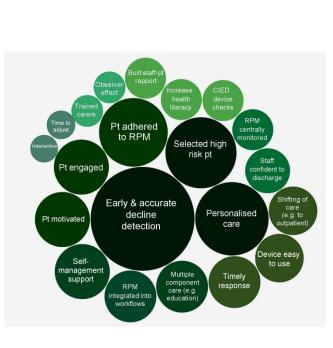

68. Dineen-Griffin S, Garcia-Cardenas V, Williams K, et al. Helping patients help themselves: A systematic review of self-management support strategies in primary health care practice. *PloS one* 2019; 14: e0220116.

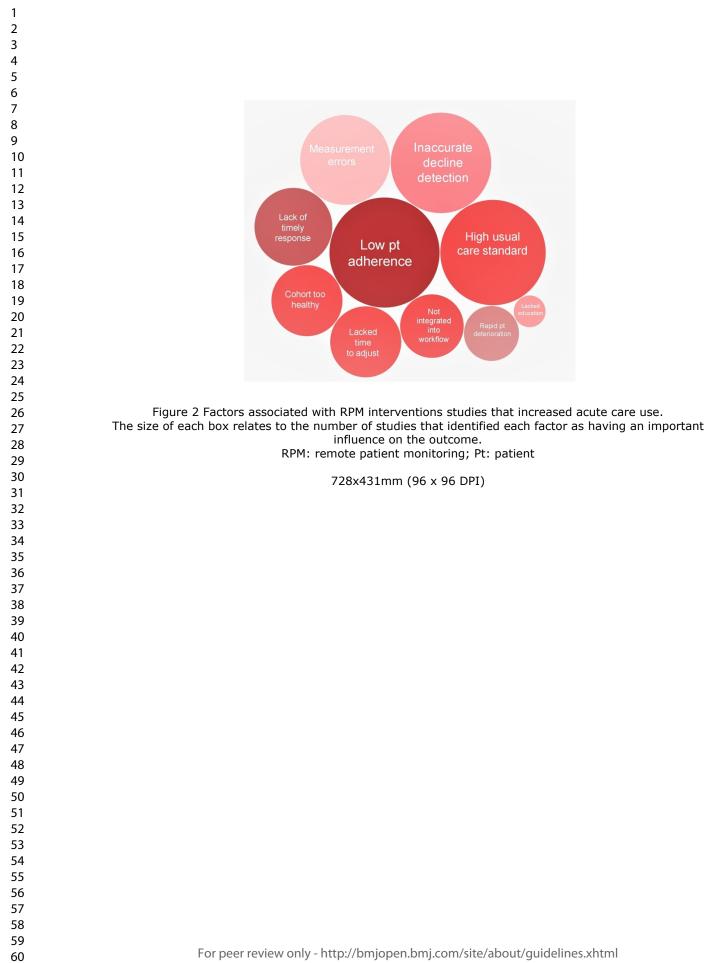
69. Noah B, Keller MS, Mosadeghi S, et al. Impact of remote patient monitoring on clinical outcomes: an updated meta-analysis of randomized controlled trials. *NPJ digital medicine* 2018; 1: 1-12.

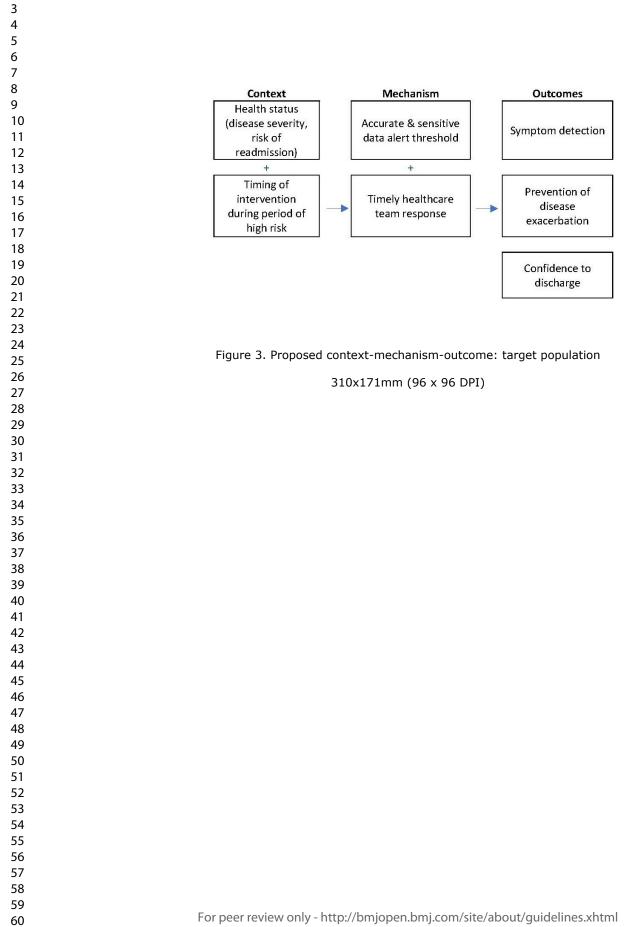
70. Walker RC, Tong A, Howard K, et al. Patient expectations and experiences of remote monitoring for chronic diseases: Systematic review and thematic synthesis of qualitative studies. *International Journal of Medical Informatics* 2019; 124: 78-85. DOI: <u>https://doi.org/10.1016/j.ijmedinf.2019.01.013</u>.

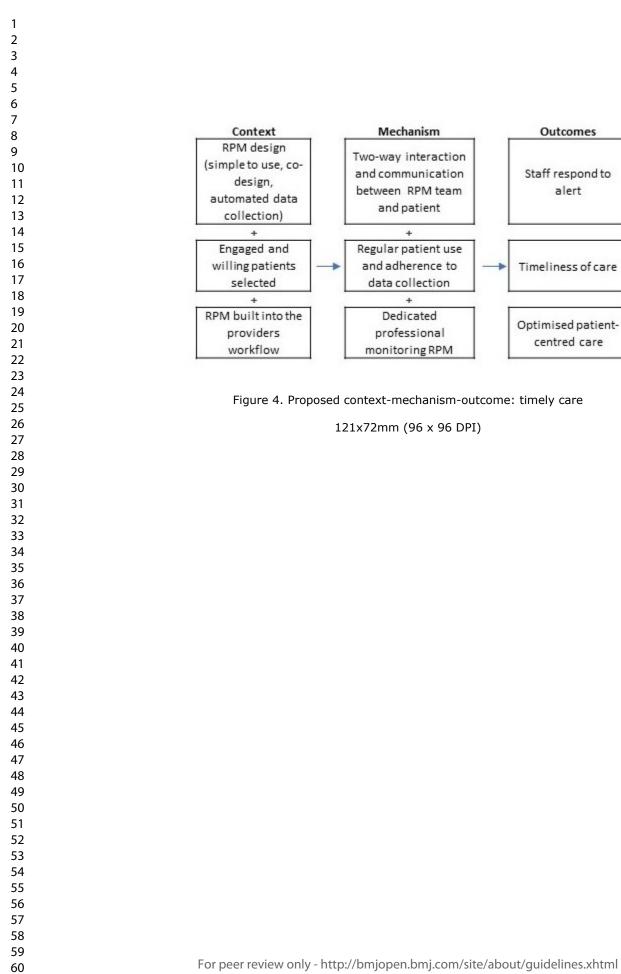
71. Adair JG. The Hawthorne effect: A reconsideration of the methodological artifact. *Journal of Applied Psychology* 1984; 69: 334-345.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

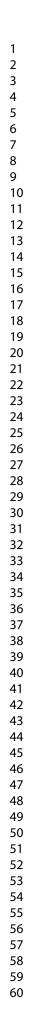



Figure 1 Factors associated with RPM intervention studies that reduced acute care use. The size of each box relates to the number of studies that identified each factor as having an important influence on the outcome.


CIED: Cardiac implantable electronic devices; Pt: patient; RPM: remote patient monitoring


364x215mm (192 x 192 DPI)

High usual


Not integrated into workflow

BMJ Open

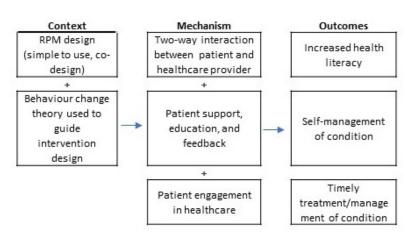


Figure 5. Proposed context-mechanism-outcome: self-management

150x87mm (96 x 96 DPI)

Aspect of care	Factors in intervention success
Organisational	 Have a central monitoring unit/dedicated professional monitoring RPM Integrate RPM into workflow with system to manage alerts Provide incentives to encourage uptake of RPM Enhance coordination between primary and secondary care
Interpersonal	 Encourage two-way interactive communication between pt and team Enhance pt self-management via support, education and feedback Use data from RPM to tailor and personalise care Ensure collaborative and multidisciplinary team involvement (including primary care to increase coordination and continuity)
Intrapersonal (patient or staff)	 Select patients at high risk of readmission (e.g. moderate-severe disease, high healthcare use, comorbidities) Motivate patients and staff to use RPM Increase adherence to RPM through routine data entry checks and frequent follow-ups
Intervention (RPM design)	Co-design with target population Make it simple and easy to use Ensure accurate and sensitive measurements to enable early detection Patient-specific measurements need to be used Enhance self-management (e.g. monitor medication adherence)

Figure 6. Recommendations to enhance RPM and reduce acute care use

192x128mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Appendix A

RAMESES publication standards: realist synthesis

Wong, G., Greenhalgh, T., Westhorp, G. *et al.* RAMESES publication standards: realist syntheses. *BMC Med* **11**, 21 (2013). https://doi.org/10.1186/1741-7015-11-21

ТІТ	TITLE		Pg No.
1		In the title, identify the document as a realist synthesis or review	1
AB	STRACT		
2		While acknowledging publication requirements and house style, abstracts should ideally contain brief details of: the study's background, review question or objectives; search strategy; methods of selection, appraisal, analysis and synthesis of sources; main results; and implications for practice.	2
INT	TRODUCTION		
3	Rationale for review	Explain why the review is needed and what it is likely to contribute to existing understanding of the topic area.	3
4	Objectives and focus of review	State the objective(s) of the review and/or the review question(s). Define and provide a rationale for the focus of the review.	3
ME	THODS		
5	Changes in the review process	Any changes made to the review process that was initially planned should be briefly described and justified.	N/A

Page 25 of 25

 BMJ Open

тіт	LE	Pg No.	
6	Rationale for using realist synthesis	Explain why realist synthesis was considered the most appropriate method to use.	4
7	Scoping the literature	Describe and justify the initial process of exploratory scoping of the literature.	4
8	Searching processes	While considering specific requirements of the journal or other publication outlet, state and provide a rationale for how the iterative searching was done. Provide details on all the sources accessed for information in the review. Where searching in electronic databases has taken place, the details should include, for example, name of database, search terms, dates of coverage and date last searched. If individuals familiar with the relevant literature and/or topic area were contacted, indicate how they were identified and selected.	4
9	Selection and appraisal of documents	Explain how judgements were made about including and excluding data from documents, and justify these.	4. also additional details provided in previously published paper
10	Data extraction	Describe and explain which data or information were extracted from the included documents and justify this selection.	As above
11	Analysis and synthesis processes	Describe the analysis and synthesis processes in detail. This section should include information on the constructs analyzed and describe the analytic process.	As above
RES	SULTS		
12	Document flow diagram	Provide details on the number of documents assessed for eligibility and included in the review with reasons for exclusion at each stage as well as an indication of their source of origin (for example, from searching databases, reference lists and so on). You may consider	This paper included articles from a previously published review that followed the PRISMA guidelines – the flow

TIT	TITLE		Pg No.	
		using the example templates (which are likely to need modification to suit the data) that are provided.	diagram is published within that paper.	
13	Document characteristics	Provide information on the characteristics of the documents included in the review.	4-8	
14	Main findings	Present the key findings with a specific focus on theory building and testing.	4-8	
DIS	CUSSION			
15	Summary of findings	Summarize the main findings, taking into account the review's objective(s), research question(s), focus and intended audience(s).	9	
16	Strengths, limitations and future research directions	Discuss both the strengths of the review and its limitations. These should include (but need not be restricted to) (a) consideration of all the steps in the review process and (b) comment on the overall strength of evidence supporting the explanatory insights which emerged. The limitations identified may point to areas where further work is needed.	10	
17	Comparison with existing literature	Where applicable, compare and contrast the review's findings with the existing literature (for example, other reviews) on the same topic.	9-10	
18	Conclusion and recommendations	List the main implications of the findings and place these in the context of other relevant literature. If appropriate, offer recommendations for policy and practice.	10/11	
19	Funding	Provide details of funding source (if any) for the review, the role played by the funder (if any) and any conflicts of interests of the reviewers.	1	

BMJ Open

BMJ Open

Factors influencing effectiveness of remote patient monitoring interventions: A realist review

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051844.R1
Article Type:	Original research
Date Submitted by the Author:	13-Jun-2021
Complete List of Authors:	Thomas, Emma; University of Queensland Centre for Online Health, Centre for Online Health, Centre for Health Services Research Taylor, Monica ; University of Queensland, Centre for Online Health, Centre for Health Services Research Banbury, Annie; The University of Queensland, Centre for Online Health, Centre for Health Services Research Snoswell, Centaine; University of Queensland Centre for Online Health, Centre for Online Health, Centre for Health Services Research Haydon, Helen; University of Queensland Centre for Online Health, Centre for Online Health, Centre for Health Services Research Gallegos Rejas , Victor ; University of Queensland Centre for Online Health, Centre for Online Health, Centre for Health Services Research Smith, Anthony; The University of Queensland; University of Southern Denmark, Centre for Innovative Technology Caffery, Liam; University of Queensland Centre for Online Health, Centre for Online Health; The University of Queensland
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Patient-centred medicine
Keywords:	Telemedicine < BIOTECHNOLOGY & BIOINFORMATICS, PUBLIC HEALTH, Organisation of health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2		
4		Easters influencing offectiveness of remote notiont menitoring
5 6	1	Factors influencing effectiveness of remote patient monitoring
7 8	2	interventions: A realist review
9	3	
10 11	4	
12	5	Dr Emma E Thomas ^{1,2} e.thomas2@uq.edu.au ORCID 0000-0001-8415-0521
13	6	Ms Monica L Taylor ^{1,2} <u>m.taylor2@uq.edu.au</u> ORCID 0000-0001-5333-2955
14	7	Dr Annie Banbury ^{1,2} a.banbury@uq.edu.au ORCID 0000-0001-8841-1215
15	8	Dr Centaine L Snoswell ¹⁻² c.snoswell@uq.edu.au ORICID 0000-0002-4298-9369
16	9	Dr Helen M Haydon ^{1,2} h.haydon@uq.edu.au ORCID 0000-0001-9880-9358
17	10	Dr Victor Gallegos Rejas v.gallegosrejas@uq.net.au
18 19	11	Prof Anthony C Smith ^{1,2} a.smith8@uq.edu.au ORCID 0000-0002-7756-5136
20	12	A/Prof Liam J Caffery ^{1,2} l.caffery@uq.edu.au ORCID 0000-0003-1899-7534
21	13	
22	14	1. Centre for Online Health, The University of Queensland, Brisbane, Australia.
23	15	2. Centre for Health Services Research, The University of Queensland, Brisbane, Australia
24	16	3. Centre for Innovative Technology, University of Southern Denmark, Odense, Denmark
25 26	17	
26 27	18	
28	19	Corresponding author:
29	20	Dr Emma Thomas
30	21	Centre for Online Health, Ground Floor, Building 33, Princess Alexandra Hospital
31	22	Woolloongabba QLD Australia 4102
32	23	<u>e.thomas2@uq.edu.au</u> , +61 7 31765356
33 34	24 25	
54 35	25 26	
36	20 27	Funding: We thank Clinical Excellence Queensland for providing the financial support to enable this
37	28	
38	28 29	research. Dr Emma Thomas is supported by a Postdoctoral Fellowship (#105215) from the National
39	29	Heart
40	30	
41 42		
43	31	Total word count: 4298 words (exl abstract and refs)
44	32	
45	33	Key words: telehealth; telemedicine; telecare; remote monitoring; telemonitoring; in-home
46	34	monitoring; hospitalization; length of stay; realist review
47	35	momental, hospitalization, length of stay, realist review
48 49		
50	36	
51		
52		
53		
54		
55 56		
50 57		
58		
59		
60		

Abstract (258 words)

- Objectives: Our recent systematic review determined that remote patient monitoring (RPM) interventions can reduce acute care use. However, effectiveness varied within and between populations. Clinicians, researchers, and policymakers require more than evidence of effect; they need guidance on how best to design RPM interventions. Therefore, this study aimed to explore these results further to (1) identify factors of RPM interventions that relate to increased and decreased acute care use, and (2) develop recommendations for future RPM intervention design and implementation. Design: Realist review - a qualitative systematic review method which aims to identify and explain why intervention results vary in different situations. We analysed secondarily the ninety-one studies included in our previous systematic review that reported on RPM interventions and the impact on acute care use. Included studies were published between 2015-2020. Primary and secondary outcome measures: Contextual factors and potential mechanisms that led to variation in acute care use (hospitalisations, length of stay, or emergency department presentations). Results: We found that across a broad range of RPM interventions 31 factors emerged that are likely to impact the effectiveness of RPM innovations on acute care use. These were synthesised into six theories of intervention success: 1) targeting populations at high risk; 2) accurately detecting a decline in health; 3) providing responsive and timely care; 4) personalising care; 5) enhancing self-management and, 6) ensuring collaborative and coordinated care. Conclusion: While RPM interventions are complex, if they are designed with patients, providers and the implementation setting in mind and with the key variables identified within this review incorporated, it is more likely that they will be effective at reducing acute hospital events. Registration: The protocol for our review was registered (#CRD42020142523) with the Prospective Register of Systematic Reviews (PROSPERO). **Strengths and limitations** Our review was strengthened by a comprehensive search and inclusivity of diverse RPM interventions across a broad spectrum of conditions and contexts. The novel use of realist review methodology and development of theory-based constructs • helped to systematically identify factors impacting upon implementation. Included studies within our review had multiple study design issues. Typically, with many of • these studies it is not possible (or ethical) to blind participants. Therefore, selection bias may have effected results if health professionals pragmatically selected more willing or engaged patients to participate in the trials. While our focus was on acute care use, other aspects of care may have been overlooked that relate to care quality.

75 Introduction

5 76 6 ---

Non-communicable diseases such as heart disease, chronic obstructive pulmonary disease (COPD),
and diabetes accounts for over 70 per cent of global deaths each year.¹ Combined with the added
challenge of ageing populations, health systems internationally are under enormous strain to
support growing numbers of chronically unwell people.² One of the main drivers of healthcare costs
for chronically ill patients results from acute hospital admissions due to their intense resource
requirements. Consequently, new models of care are being widely investigated and trialled that
could extend care into the home and prevent unnecessary acute care events.

Remote patient monitoring (RPM) is a telehealth innovation that offers significant opportunities to increase the timeliness of care, enhance health outcomes, and potentially reduce hospitalisations and associated healthcare costs.^{3, 4} RPM uses technology to observe a patient's physiological (e.g. heart rate, blood pressure) and behavioural (e.g. medication adherence, physical activity) information from a distance.⁵ With support, many individuals could effectively self-manage chronic conditions in the community.⁶ Further, if alerted early, healthcare providers could intervene when a person's health is declining, potentially preventing costly escalations to hospital. Health professionals can routinely monitor a patient's health data and/or be alerted when measurements exceed a pre-determined threshold. This allows for early intervention and ideally prevention of further exacerbation of a condition. RPM can benefit people with chronic illness as well as other population groups that benefit from continuous monitoring such as the frail and elderly, neonates or post-surgical patients.⁵

29 97

Despite the potential benefits of RPM, investigations into its clinical and cost effectiveness have provided mixed results to date. For example, the impact of RPM on the heart failure population has resulted in multiple systematic reviews⁷, meta-analyses^{8,9}, and reviews of reviews.^{10,11} These reviews are generally positive about the potential benefits for patients and health services from RPM services,^{7, 8, 10, 12} but others also report limited or no effect⁹ on reducing morbidity and mortality. A 2018 Cochrane review reported no difference in all-cause mortality in remotely monitored patients with heart failure and a change in hospitalisations ranging from a 64% decrease to a 60% increase.⁹

In our recent review¹³, we provided a synthesis of the available evidence for the effect of RPM on acute care use including hospital admission events, hospital length of stay, and emergency department presentations. We found that RPM was reported to reduce acute care use in approximately 45% of studies. Remaining studies largely reported no change; however, some reported an increase in acute care use. The included 91 studies covered multiple chronic conditions, countries and health care organisations and used various technology and models of care. While RPM can have a positive impact on reducing acute care use, certain enables are needed. Clinicians, researchers, and policymakers require more guidance on how to design and implement RPM-facilitated models of care to achieve the greatest benefit. Consequently, further analysis is required to understand underlying mechanisms causing such variation in acute care use across RPM interventions.

We sought to understand what causes variation in outcomes from RPM interventions. Realist review methodology enables exploration of how, why and for whom interventions do and do not work. Consequently, the approach has been used across various health interventions (e.g. medical education programs ¹⁴, school feeding programs¹⁵). The basic tenant of realist philosophy is that the effectiveness of an intervention is impacted by the context in which it is implemented which will trigger mechanisms that result in intended and unintended outcomes.¹⁶ Realist reviews are particularly helpful for complex interventions like RPM interventions where the effectiveness is

impacted by multiple interacting components such as the intervention design, users, interpersonal relationships and institutions and settings where the intervention is delivered.

Specifically, this study aims to (1) identify factors of RPM interventions that relate to increased and decreased acute care use, and (2) develop recommendations for future RPM intervention design and implementation.

Methods

Data extraction

We used data from our recent systematic review¹³ that compared acute care use between individuals who were and were not monitored using RPM. Complete details of the original systematic review have been described elsewhere.¹³ In brief, search terms for remote monitoring and acute care utilisation were used across three electronic databases: PubMed (MEDLINE)[1966-2020], EMBASE (OvidSP)[1974-2020], and CINAHL (EBSCOHost)[1982-2020]. The search, conducted in October 2020, included articles published in the last five years (2015-2020). Articles were included if they used RPM to monitor an individual's biometrics (e.g. heart rate, blood pressure) from a distance while they are not in hospital. No restrictions were placed on patient age, or disease conditions however full-text studies had to be available in English.

We then re-reviewed the same 91 articles included in our original RPM systematic review, using realist review methodology to identify factors that determine intervention success and failure in various contexts. This review was guided by the work of Pawson et al (2005)¹⁷ and followed guidelines outlined by the Realist and Meta-narrative Evidence Synthesis: Evolving Standards (RAMESES; Appendix A)¹⁸. According to the methodology described by Pawson et. al.¹⁷ information was extracted that related to context (settings, populations, intervention delivery); outcomes (positive, negative or null effect on outcome of hospital use), and potential mechanisms or reasons behind the results (e.g. author's interpretation as to why the interventions did or did not work). These data were recorded in an Excel spreadsheet to facilitate a structured analysis. Two researchers (ET, MT) independently extracted these data.

Evidence synthesis

The researchers then collectively examined the articles to detect patterns and developed a compendium of explanatory factors observed in the RPM studies. The researchers compared and discussed their identified factors that led to increased or decreased acute care use being reported in the studies. Findings were then combined into a table showing the number of studies proposing each mechanism and grouped by outcome (e.g. increased or decreased acute care use).

The two researchers then jointly mapped recurrent patterns into explanatory context-mechanism-outcome (CMO) diagrams to illustrate how the different factors interact. Literature was also examined for opposing or conflicting viewpoints. These CMO diagrams were discussed with a third member of the research team (LC) to confirm consistent and logical development. Key findings were synthesised into overarching themes, which are referred to as 'theories' in the realist review approach.¹⁷ Finally, a list of recommendations were developed from the findings and ordered by context to guide future RPM intervention design and implementation.

Patient and public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

1		
2		
3 4	173	Results
5	174	Ninety-one articles from our previous review were evaluated to determine why RPM increased,
6	175	decreased, or had no effect on acute care use. Thirty-one factors were identified and mapped onto
7	176	two outcomes: 1) increased hospital use (21 factors) and 2) reduced hospital use (10 factors)
8	177	(Figures 1 & 2). Factors were also ordered by the frequency of articles that reported them as
9 10	178	possible influences on outcomes (represented by the size of each factor in Figure 1 and 2).
11	470	
12	179	
13	180	[Insert Figure 1]
14 15	101	
16	181	<i>Figure 1</i> Factors associated with RPM intervention studies that reduced acute care use.
17	182	The size of each box relates to the number of studies that identified each factor as having an important
18	183	influence on the outcome.
19	104	CIED. Condition involution by a lastic day issue. Dr. anticarty DDMA associate metions are involved as
20 21	184	CIED: Cardiac implantable electronic devices; Pt: patient; RPM: remote patient monitoring
22	185	
23		
24	186	[Insert Figure 2]
25 26	187	Figure 2 Factors associated with RPM interventions studies that increased acute care use.
20 27		
28	188 189	The size of each box relates to the number of studies that identified each factor as having an important
29	109	influence on the outcome.
30	190	RPM: remote patient monitoring; Pt: patient
31 32	101	
33	191	
34	192	Theories about how RPM works
35	102	It was identified that successful DDM interventions, in this case these interventions that successfully
36 37	193 194	It was identified that successful RPM interventions, in this case those interventions that successfully reduced acute care use, were those that: 1) <i>target populations at high risk;</i> 2) <i>accurately detect a</i>
38	195	decline in health; 3) were responsive and provided timely care; 4) provided personalised care; 5)
39	196	enhanced self-management and, 6) ensured collaborative and coordinated care. Each of these
40	197	theories of intervention success are described below.
41		
42 43	198	
44	199	Target populations at high risk
45		
46	200	Appropriate selection of patients for RPM is crucial if a change in acute care use is to be achieved.
47 48	201	RPM interventions are likely to have more pronounced effects on acute care use when they are
40 49	202	targeted towards populations with a high risk of hospitalisation (e.g. moderate-severe disease
50	203	severity, multiple comorbidities). ¹⁹ Further, it is important for the intervention to be timed with
51	204	periods of high-risk readmissions (e.g. the first 90 days post an index event). Delaying the delivering
52	205	of RPM devices to patients may reduce the effect ²⁰ (See Figure 3).
53 54		
55	206	Patients who are more likely to present to hospital multiple times have a greater chance of reducing
56	207	admissions due to more timely interventions. In practice, however, clinicians may have reservations
57	208	about remotely assessing their most vulnerable and unwell patients. As described by Geller et al., ²¹
58 59	209	"in clinical practice telemedicine seems to be used mainly in patients with better prognosis, probably
59 60	210	due to the belief that those who live longer may receive more (i.e. prolonged) benefit from

1 2		
2	211	telemonitoring than sicker patients who should be seen in the office more frequently" (pg. 1124).
4	211	Consequently, clinicians may require additional information on how RPM can be safely delivered in
5	212	high-risk cohorts.
6 7	213	
8	214	
9	245	
10	215	[Insert Figure 3]
11 12	216	Figure 3. Proposed context-mechanism-outcome: target population
13	217	
14		
15 16	218	Accurately detect a decline in health
17	219	RPM needs to accurately predict disease exacerbations by detecting a change in symptoms that
18	220	relate to health deteriorations. This has been a challenge in certain populations such as COPD and
19	221	heart failure patients which may have unpredictable disease progression. In the COPD population,
20 21	222	multiple studies reported trying to determine the measurement (e.g. spirometry, oximetry, or a
22	223	combination) which would mark the onset of an exacerbation, ²²⁻²⁵ however, none came to a
23	224	definitive conclusion. ²⁶ RPM can be used in these population groups to longitudinally track the
24 25	225	progression of disease and develop parameters to be tested as predictors for future interventions. ²⁷
25 26	223	progression of discuse and develop parameters to be tested as predictors for fature interventions.
27	226	In the heart failure population, physiological signs may not provide adequate warning of
28	227	decompensation. Readmission in this cohort can be a complex interplay of multiple factors and is
29 30	228	often not solely limited to physiological variables. ²⁸ If deterioration occurs too quickly, there is
30 31	229	limited opportunity to intervene. ²⁹ Therefore, more investigation is required to try and accurately
32	230	predict health declines for individual patients and accurately pin-point the best way for RPM to be
33	231	used to support this patient population.
34 35		
36	232	Implantable devices (e.g. pacemakers) have an additional advantage; continuous monitoring enables
37	233	undiagnosed co-morbid conditions such as atrial fibrillation to be detected enabling pre-emptive
38	234	intervention. ³⁰ It can also improve the efficiency of outpatient clinical care by detecting device or
39 40	235	lead malfunctions earlier. ³¹
41	236	
42	230	
43 44	237	Provide timely care via a responsive system
45	238	Any benefit from RPM is dependent on patients 1) using the system (e.g. timely data entry) and, 2)
46	239	providers taking appropriate and equally timely action when out-of-range readings occur. ³⁰
47	240	Therefore, RPM systems that use automated data entry wherever possible are preferable as they
48 49	241	can reduce errors and delays due to manual entry. As technology improves, smartphone-based
50	242	programs are likely to replace standard RPM equipment which may result in more consistent,
51	243	accurate and timely data from patients. ¹⁹ For innovations that rely on manual data entry, RPM
52 53	244	innovations need to be easy to use (e.g. enables efficient data entry, transportable) and useful for
53 54	245	patients to ensure long term use and engagement. ³² Additionally, regular monitoring is required. For
55	246	example, Srivastava et al. ¹⁹ routinely monitored data for abnormalities or lack of responses; if a
56 57	247	patient did not submit data for three days, a call was initiated by nursing staff.
58	248	On the staff end, RPM alerts need to be actioned with timely and appropriate responses; the speed
59	249	of decision-making and frequency of monitoring is paramount. ³³ A fast response often requires
60	250	frequent contact with patients and effective bi-directional communication pathways between staff

and patients. For example, Trucco et al.³⁴ facilitated communication between families and the on-call team via a dedicated phone number or email address. Multiple studies report the importance of dedicated care (e.g. providing an RPM nurse or dedicated case manager) in improving response time.^{33, 35-38} This is supported by the literature with findings that patients who received either basic or intensive case management spend less time in hospital than those without.³⁹ "Fast tracked" access to primary care providers was used in the intervention reported by Pedone et al.⁴⁰ when abnormalities were presented, or new symptoms arose. They reported that a new model of care, rather than simply implementing a new technology, was required to obtain sizable benefits in terms of hospitalisation outcomes.⁴⁰ Where possible, RPM should be embedded into the system and provide seamless interaction between patients and the healthcare system with minimal encumbrance on both ends.¹⁹ The proposed context-mechanism-outcome diagram is provided in Figure 4.

- [Insert Figure 4]
- Figure 4. Proposed context-mechanism-outcome: timely care
- Provide personalised care

Providing a patient-centric and personalised approach was also an important factor in determining the success of an RPM intervention in reducing acute care use.¹⁹ Firstly, the development of the RPM innovation needs to be co-designed with patients and their families to ensure it meets their needs and maximise acceptance and uptake.⁴¹ Training patients on how to use the device will likely also need to be personalised and at times repeated. RPM alerts can also be personalised by using individual data to determine alert thresholds. Koelher et al.⁴² recommended defining a risk category for each individual patient based on their positive results (derived from biometric data). One study author requested personalised parameters and treatment guidelines from each patient's treating physician.⁴³ Determining appropriate parameters for RPM applications (personalised or not) enables the treating team to be alerted to any biometric measurements that fall outside of the personalised parameter ranges. To enable these personalised parameters to be developed physicians need to be engaged in the RPM process for their patient early. The response by the RPM monitoring team also needs to be tailored; considering the person's medical, social and emotional needs.

Enhance self-management

To successfully reduce acute care use, RPM interventions should include support and education to increase self-management skills. Through developing knowledge, skills and positive behaviours (e.g. medication adherence), patients are more likely to be able to effectively manage their condition with the aid of RPM (see Figure 5).⁴⁴ Additionally, increased awareness of signs and symptoms of disease progression that often occurs when patients use RPM can prompt them to contact their healthcare provider for timely management.⁴⁴ Providing feedback from RPM data in a way that empowers patients to take control of their own health is important. Koelher et al.⁴² reported that this needs to be a comprehensive approach including education and patient involvement when developing management strategies. In some instances, RPM interventions were discontinued once patients were able to correctly correlate their personal symptoms and seek help when required.⁴³

Page 9 of 25

1

BMJ Open

2		
3	293	Conversely, some RPM interventions that were unsuccessful in reducing hospitalisation events
4 5	294	reported patients becoming overly reliant on the RPM team, for instance alerting the team know
6	295	when an issue arose rather than developing autonomous self-management skills for their condition.
7	296	Additionally, some known important factors such as medication adherence were not always
8	297	measured and present a lost opportunity in many RPM innovations. Medication adherence and
9	298	timely changes to medications are reported to confer substantial benefits for patients. ⁴²
10 11	290	
12	299	[Insert Figure 5]
13		
14	300	
15 16	301	Figure 5. Proposed context-mechanism-outcome: self-management
17	302	
18	302	
19 20	303	Ensure collaborative and coordinated care
20	304	Successful RPM studies demonstrated increased connection and communication between
22	305	healthcare staff and patients. ³¹ Multidisciplinary team-based interventions that combine feedback
23	306	(automated and/or provider-initiated) with other approaches (e.g. coaching, motivational
24 25	307	
25 26		interviews, and shared decision-making) are more likely to result in improvement in adherence. ⁴⁵
27	308	Involvement of primary care is crucial. As high-risk patients are often managed by primary and
28	309	specialty care, both hospital and primary care settings should be involved in RPM interventions. ⁴⁶
29	310	Involvement of key stakeholders is required to improve continuity of care. ⁴⁷ Beyond healthcare
30 31	311	professionals, the RPM intervention should also aim to include families and carers as key
32	312	stakeholders in the long-term management of the person's condition. To increase primary carers'
33	313	acceptance of and adherence to RPM, they must be involved very early on. To institute an initial
34	314	change of role, staff incentives (e.g. financial payments) may be required. ²⁷ Additionally, nursing
35 36	315	staff should be considered as having leading roles in RPM interventions. ⁴⁸ Further, institutional
30 37	316	support is required for these initiatives and reorganisation of care processes should be carefully
38	317	planned and implemented. ⁴⁸
39		
40 41	318	Factors that resulted in increased acute care use
42	319	A range of factors were identified as having a negative influence on hospital use (increasing
43	320	admissions) (Figure 2). Many of the identified factors are the reverse of what has been described
44	321	above. For example, not targeting populations at high risk, not integrating RPM into the workflow or
45 46	322	using systems that have measurement errors. For example, multiple study authors reported slow
40 47	323	alert response times (N=6) ^{32, 49-53} and low patient or clinician adherence (N=11) $^{19, 20, 28, 32, 45, 54-59}$ as
48	324	important factors resulting in no change or an increase in acute care use in the RPM group. There
49	325	also appears to be a delicate balance between providing a supportive environment that empowers
50	326	patients to self-manage versus having patients become reliant on the RPM device and/or the
51 52	327	monitoring team.
53		
54	328	
55	329	Recommendations for RPM
56 57		
57 58	330	We synthesised multiple recommendations to assist in the design and implementation of RPM
59	331	interventions (Figure 6).
60		

When designing RPM devices, it is crucial that the measured biometrics accurately predict disease exacerbations. Alert thresholds need to be carefully determined to ensure they are sensitive to physiological changes without being too high, and where possible tailored to the patient and disease state. Further, the transmission of data needs to be reliable, and if possible, automatic. It is essential that RPM devices are co-designed with consumers and providers to improve usability and engagement with the RPM system. It is likely that making the device interactive and building in feedback loops between the patient and clinician will enhance engagement. However, if this increases the provider's workload it may discourage provider engagement. Multidisciplinary team interventions that combine feedback with other approaches like patient education, motivational interviewing, coaching or shared decision-making are likely to be more effective long-term.⁶⁰ At the organisation level, having dedicated professionals responsible for monitoring data and communicating with patients and the healthcare team can improve the timeliness and coordination of care. Studies with nursing staff in these leading and case-management roles appeared to be more effective.⁴⁸ RPM also needs to be embedded into the health system to provide seamless interaction between patients and the healthcare system. This may require reorganisation of care and additional resources (physical and personnel) to support the intervention. [Insert Figure 6] Figure 6. Recommendations to enhance RPM and reduce acute care use Discussion We found that RPM interventions were successful at reducing acute care use when they incorporated a number of elements including; accurately predicting a decline in health or disease exacerbation, timely response to alerts, personalised patient parameters, and a focus on enhancing patient self-management. Additionally, RPM needed to improve the continuity of care by enhancing collaboration between specialists and primary care. To the best of our knowledge, this is the first review to elucidate why some RPM interventions are more successful than others in reducing acute care use. RPM interventions are complex because they typically involving multiple components (e.g. data collection, education, feedback) and various stakeholders across different settings (e.g. community, primary and tertiary care). Given the complexity of RPM interventions, it is perhaps unsurprising that RPM studies have resulted in so much variation in the effects demonstrated regarding changes in acute care use. To date, much of the focus of RPM innovations has been on the design and development of the technology.^{61, 62} While functioning technology that accurate detects a decline in health is important, to deliver significant benefits RPM alerts must also lead to an actionable and timely responses. To achieve positive results at the healthcare system level, RPM interventions require a change to the model of care rather than simple technology implementation.⁶³ To be successful, the right patients need to be recruited at the right time. Patients with greater disease severity and at high risk of readmissions appear to confer the greatest benefit of RPM

interventions in terms of reduced acute care use.⁶⁴ For instance, a recent consensus statement from the Heart Failure Society of America⁶⁵ broadly concluded that heart failure RPM had the most impact

when patients were most at risk (e.g., recent hospitalisation, prone to fluid overload, and struggles
with medication adherence). Additionally, RPM should target patients who are willing and likely to
adhere with RPM regimes.

While our study focuses on acute hospital use, other authors have investigated patient-related factors that may support long-term monitoring of conditions. For example, Huygens suggests there is a relationship between perceived disease controllability and patients' willingness to self-monitor.⁶⁶ Patients with diabetes, asthma and hypertension were most willing to self-monitor. In contrast, patients with rheumatism, migraines and other neurological disorders were less willing. The intervention design can facilitate engagement and use. Hong and Lee⁶⁴ determined that interventions with an educational component such as self-management programs have greater effects. Another consideration is the patient's social circumstance. One study found that RPM significantly improved outcomes for socially isolated patients,⁶⁷ potentially due to the delay in care access that these patients may face. Conversely, for socially connected patients, outcomes appear to be enhanced by training caregivers.^{29, 68}

Interventions based on health behaviour models and personalised coaching were most successful.⁶⁹ The findings of this review parallel some of the themes in a review of patient experiences of RPM by Walker et al.⁷⁰ Similarly, self-management and early identification of clinical exacerbations were key to preventing hospitalisation. From the patient perspective, self-management was achieved by increasing confidence and providing a sense of safety. Shared decision making was identified as a key mechanism to preventing hospitalisation. Conversely, interventions that provided information but did not equip patients to self-manage were potentially at greater risk of having patients become overly reliant on the RPM team.

Patients have previously reported concerns about being lost in the data or losing interpersonal connections with health professionals and a reluctance to try something new, especially if unfamiliar with technology.⁷⁰ Our findings substantiate the importance of co-designing RPM interventions with consumers to ensure they are easy to use and provide useful feedback to maintain adherence and engagement. Building rapport, providing training (sometimes multiple times) and having a two-way interactive relationship between the patient and the RPM team is crucial. Alternatively, a lack of education and timely response were identified as factors that increased acute care use.

Included studies within our review had multiple study design issues. Typically, with many of these studies it is not possible (or ethical) to blind participants. Therefore, selection bias may have effected results if health professionals pragmatically selected more willing or engaged patients to participate in the trials. However, in real-world clinical settings it is likely (and appropriate) that participants are provided with options regarding their follow-up care. The observer or Hawthorne effect⁷¹ may be at play with participants potentially acting differently due to a belief that they are being watched. Such an effect may reduce with time, and some trial lengths may have been too short for this effect to wear off. Potentially the higher number of studies reporting positive outcomes may be due to a reporting bias within the literature; consequently, there were a higher number of factors discussed in relation to reducing (n=21) rather than increasing acute care use (n=10).

Our review was strengthened by a comprehensive search and inclusivity of diverse RPM interventions across a broad spectrum of conditions and contexts. The novel use of realist review methodology and development of theory-based constructs helped to systematically identify factors impacting upon implementation. However, while our focus was on acute care use, other aspects of care may have been overlooked that relate to care quality. Further, it is possible that reducing hospital admissions may shift care and associated costs to the primary care setting and potentially result in additional pressure and stress on different aspects of the system. Additionally, the theories that have been developed are based on both our and the primary study authors' interpretation of findings in many instances and not experimental evidence.

Conclusion

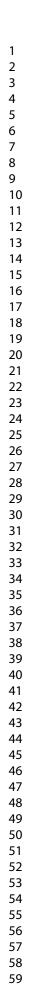
RPM interventions have the potential to reduce acute care use when they are targeted to appropriate populations and disease states, designed well, and implemented with patients and providers in mind. This review has highlighted important considerations for developing effective RPM devices, systems and telehealth models of care. To achieve significant changes in acute care use, RPM data needs to be routinely entered and checked, automated where possible, alerts need to accurately highlight when a person's data is beyond an acceptable range (for that person), and healthcare staff need to respond in a timely and appropriate manner. Further, information and feedback needs be provided to patients in a way that empowers them to self-manage their condition. If designed with these considerations in mind, RPM interventions are more likely to be effective at reduce acute care use. Future studies should investigate any unintended consequences of RPM and cost implications resulting from the shifting of care.

List of abbreviations

COPD: chronic obstructive pulmonary disease; CMO: context-mechanism-outcome; PROSPERO: Prospective Register of Systematic Reviews; RAMESES: Realist and Meta-narrative Evidence Synthesis: Evolving Standards; RPM: Remote patient monitoring.

Declarations

Ethics approval and consent to participate: Not applicable Consent for publication: All authors consent to publication Availability of data and materials: Not applicable Competing interests: None to declare Funding: We thank Clinical Excellence Queensland for providing the financial support to enable this research. Dr Emma Thomas is supported by a Postdoctoral Fellowship (#105215) from the National Heart Foundation of Australia Authors' contributions: This research was conceptualised by ET. ET, LC, CS, MT contributed to the study design. Searches and data extraction were carried out by ET and MT with support from LC. Data analysis was performed by ET, MT and LC. Manuscript was drafted by ET, MT, AB and LC. Critical review of manuscript was undertaken by HH, CS, AS, VGR. All authors approved the final manuscript. Acknowledgements: Not applicable

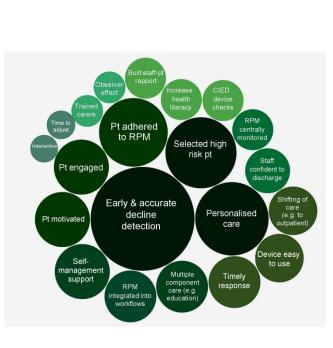

1 2		
3		Deferences
4 5	460	References
6	461 462	1. Bennett JE, Stevens GA, Mathers CD, et al. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development
7 8	462 463	Goal target 3.4. The Lancet 2018; 392: 1072-1088.
9	464	2. Atun R, Jaffar S, Nishtar S, et al. Improving responsiveness of health systems to
10	465	non-communicable diseases. The Lancet 2013; 381: 690-697.
11	466	3. Snoswell CL, Smith AC, Thomas EE, et al. Video and phone consultations only
12 13	467 468	scratch the surface of what telehealth has to offer. <i>The Conversation</i> 2020; Available: https://theconversation.com/video-and-phone-consultations-only-scratch-the-surface-of-
14	469	what-telehealth-has-to-offer-146580.
15	470	4. Bradford NK, Caffery LJ and Smith AC. Telehealth services in rural and remote
16 17	471	Australia: a systematic review of models of care and factors influencing success and
17 18	472	sustainability. <i>Rural and remote health</i> 2016; 16: 245.
19	473	5. Malasinghe LP, Ramzan N and Dahal K. Remote patient monitoring: a
20	474 475	comprehensive study. <i>Journal of Ambient Intelligence and Humanized Computing</i> 2019; 10: 57-76.
21	476	6. Hanlon P, Daines L, Campbell C, et al. Telehealth interventions to support self-
22 23	477	management of long-term conditions: a systematic metareview of diabetes, heart failure,
24	478	asthma, chronic obstructive pulmonary disease, and cancer. Journal of medical Internet
25	479	research 2017; 19: e172.
26	480	7. Pandor A, Gomersall T, Stevens JW, et al. Remote monitoring after recent hospital discharge in patients with heart failure: a systematic review and network meta-analysis.
27 28	481 482	Heart 2013; 99: 1717-1726.
20	483	8. Clark RA, Inglis SC, McAlister FA, et al. Telemonitoring or structured telephone
30	484	support programmes for patients with chronic heart failure: systematic review and meta-
31	485	analysis. <i>Bmj</i> 2007; 334: 942.
32 33	486	9. Flodgren G, Rachas A, Farmer AJ, et al. Interactive telemedicine: effects on
34	487 488	professional practice and health care outcomes. <i>Cochrane Database of Systematic Reviews</i> 2015.
35	488 489	10. Bashi N, Karunanithi M, Fatehi F, et al. Remote monitoring of patients with heart
36	490	failure: an overview of systematic reviews. <i>Journal of medical Internet research</i> 2017; 19:
37 38	491	e18.
39	492	11. Greenhalgh T and Shaw S. Understanding heart failure; explaining telehealth–a
40	493	hermeneutic systematic review. <i>BMC cardiovascular disorders</i> 2017; 17: 156. 12. Ono M and Varma N. Remote monitoring to Improve long-term prognosis in heart
41	494 495	12. Ono M and Varma N. Remote monitoring to Improve long-term prognosis in heart failure patients with implantable cardioverter-defibrillators. <i>Expert review of medical devices</i>
42 43	496	2017; 14: 335-342.
43 44	497	13. Taylor ML, Thomas EE, Snoswell CL, et al. Does remote patient monitoring reduce
45	498	acute care use? A systematic review. BMJ open 2021; 11: e040232.
46	499	14. Wong G, Greenhalgh T and Pawson R. Internet-based medical education: a realist
47	500 501	review of what works, for whom and in what circumstances. <i>BMC medical education</i> 2010; 10: 1-10.
48 49	501	15. Greenhalgh T, Kristjansson E and Robinson V. Realist review to understand the
50	503	efficacy of school feeding programmes. <i>Bmj</i> 2007; 335: 858-861.
51	504	16. Pawson R, Greenhalgh T, Harvey G, et al. Realist synthesis: an introduction.
52 53	505	Manchester: ESRC Research Methods Programme, University of Manchester 2004.
54	506	17. Pawson R, Greenhalgh T, Harvey G, et al. Realist review-a new method of
55	507 508	systematic review designed for complex policy interventions. <i>Journal of health services</i> research & policy 2005; 10: 21-34.
56	508	18. Wong G, Greenhalgh T, Westhorp G, et al. RAMESES publication standards: realist
57	510	syntheses. BMC medicine 2013; 11: 21.
58 59		
60		

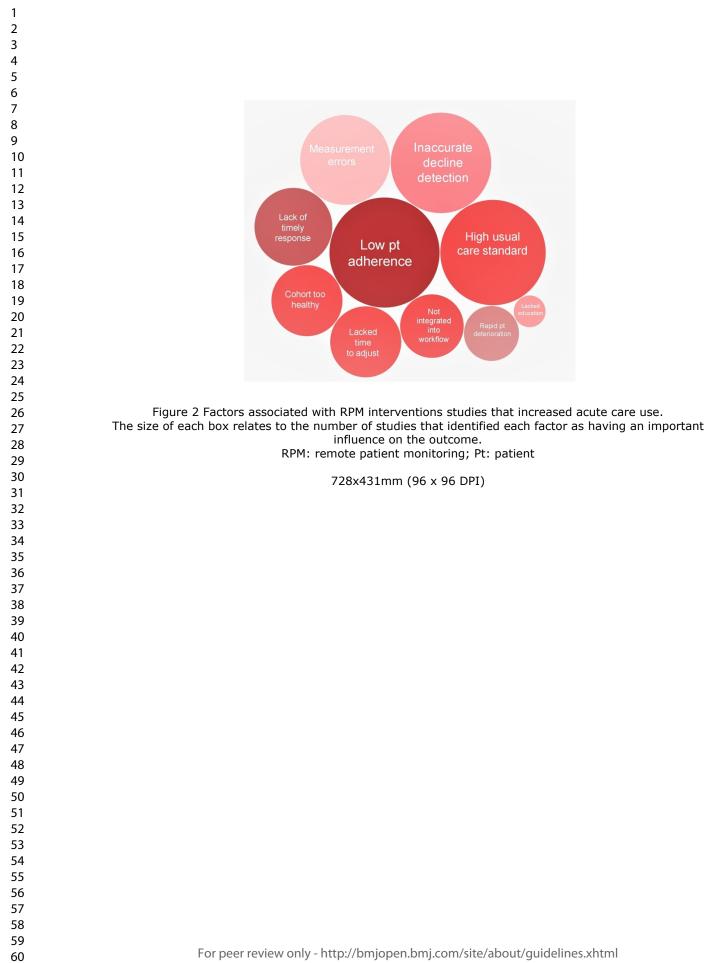
19. Srivastava A, Do J-M, Sales VL, et al. Impact of patient-centred home telehealth programme on outcomes in heart failure. Journal of Telemedicine and Telecare 2019; 25: 425-430. 20. Olivari Z, Giacomelli S, Gubian L, et al. The effectiveness of remote monitoring of elderly patients after hospitalisation for heart failure: The renewing health European project. International Journal of Cardiology 2018; 257: 137-142. Geller JC, Lewalter T, Bruun NE, et al. Implant-based multi-parameter telemonitoring 21. of patients with heart failure and a defibrillator with vs. without cardiac resynchronization therapy option: a subanalysis of the IN-TIME trial. Clinical Research in Cardiology 2019; 108: 1117-1127. 22. Steer J, Gibson G and Bourke S. Predicting outcomes following hospitalization for acute exacerbations of COPD. QJM: An International Journal of Medicine 2010; 103: 817-829. 23. Seemungal TA, Donaldson GC, Bhowmik A, et al. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine 2000; 161: 1608-1613. 24. Pinnock H. Hanley J. McCloughan L. et al. Effectiveness of telemonitoring integrated into existing clinical services on hospital admission for exacerbation of chronic obstructive pulmonary disease: researcher blind, multicentre, randomised controlled trial. Bmj 2013; 347: f6070. Mohktar MS, Basilakis J, Redmond SJ, et al. A guideline-based decision support 25. system for generating referral recommendations from routinely recorded home telehealth measurement data. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010, pp.6166-6169. IEEE. Shany T, Hession M, Pryce D, et al. A small-scale randomised controlled trial of 26. home telemonitoring in patients with severe chronic obstructive pulmonary disease. Journal of telemedicine and telecare 2017; 23: 650-656. 2016/07/29. DOI: 10.1177/1357633x16659410. 27. Shany T, Hession M, Pryce D, et al. A small-scale randomised controlled trial of home telemonitoring in patients with severe chronic obstructive pulmonary disease. Journal of telemedicine and telecare 2017; 23: 650-656. Ong MK, Romano PS, Edgington S, et al. Effectiveness of remote patient monitoring 28. after discharge of hospitalized patients with heart failure: the better effectiveness after transition-heart failure (BEAT-HF) randomized clinical trial. JAMA internal medicine 2016; 176: 310-318. 29. Nourvan CN, Morahan S, Pecinka K, et al. Home Telemonitoring of Community-Dwelling Heart Failure Patients After Home Care Discharge. Telemedicine journal and e-health : the official journal of the American Telemedicine Association 2019; 25: 447-454. 2018/07/24. DOI: 10.1089/tmj.2018.0099. Piccini JP, Mittal S, Snell J, et al. Impact of remote monitoring on clinical events and 30. associated health care utilization: A nationwide assessment. Heart Rhythm 2016; 13: 2279-2286. Akar JG, Bao H, Jones PW, et al. Use of remote monitoring is associated with lower 31. risk of adverse outcomes among patients with implanted cardiac defibrillators. Circulation: Arrhythmia and Electrophysiology 2015; 8: 1173-1180. 32. Pekmezaris R, Nouryan CN, Schwartz R, et al. A Randomized Controlled Trial Comparing Telehealth Self-Management to Standard Outpatient Management in Underserved Black and Hispanic Patients Living with Heart Failure. Telemedicine and e-Health 2019; 25: 917-925. Lyth J, Lind L, Persson HL, et al. Can a telemonitoring system lead to decreased 33. hospitalization in elderly patients? Journal of Telemedicine and Telecare 2019: 1357633X19858178. 34. Trucco F, Pedemonte M, Racca F, et al. Tele-monitoring in paediatric and young home-ventilated neuromuscular patients: A multicentre case-control trial. Journal of telemedicine and telecare 2019; 25: 414-424.

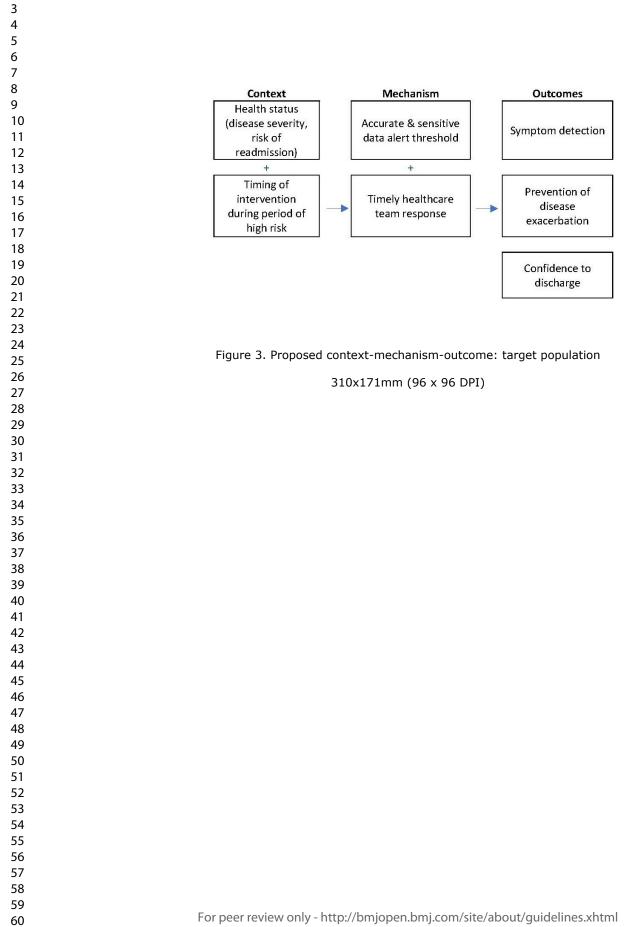
1		
2 3		
4	566	35. Böhm M, Drexler H, Oswald H, et al. Fluid status telemedicine alerts for heart failure:
5	567 568	a randomized controlled trial. <i>European heart journal</i> 2016; 37: 3154-3163. 36. De Simone V, Zanotto G, Guarise P, et al. Effects of remote monitoring of cardiac
6	569	implantable electronic devices after stroke or transient ischemic attack. <i>Journal of</i>
7	570	Cardiovascular Medicine 2019; 20: 551-556.
8	571	37. Hale TM, Jethwani K, Kandola MS, et al. A remote medication monitoring system for
9 10	572	chronic heart failure patients to reduce readmissions: a two-arm randomized pilot study.
10	573	Journal of medical Internet research 2016; 18: e91.
12	574	38. Kurek A, Tajstra M, GADULA-GACEK E, et al. Impact of Remote Monitoring on
13	575	Long-Term Prognosis in Heart Failure Patients in a Real-World Cohort: Results From
14	576	All-Comers COMMIT-HF Trial. Journal of cardiovascular electrophysiology 2017; 28: 425-
15	577	431.
16	578	39. Jaarsma T, van der Wal MH, Lesman-Leegte I, et al. Effect of moderate or intensive
17	579	disease management program on outcome in patients with heart failure: Coordinating Study
18 19	580	Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH). Archives of
20	581 582	<i>internal medicine</i> 2008; 168: 316-324. 40. Pedone C, Rossi FF, Cecere A, et al. Efficacy of a Physician-Led Multiparametric
21	582 583	Telemonitoring System in Very Old Adults with Heart Failure. <i>Journal of the American</i>
22	584	Geriatrics Society 2015; 63: 1175-1180.
23	585	41. Clemensen J, Rothmann MJ, Smith AC, et al. Participatory design methods in
24	586	telemedicine research. Journal of telemedicine and telecare 2017; 23: 780-785.
25	587	42. Koehler F, Koehler K, Deckwart O, et al. Efficacy of telemedical interventional
26 27	588	management in patients with heart failure (TIM-HF2): a randomised, controlled, parallel-
28	589	group, unmasked trial. <i>The Lancet</i> 2018; 392: 1047-1057.
29	590	43. Thomason TR, Hawkins SY, Perkins KE, et al. Home telehealth and hospital
30	591	readmissions: a retrospective OASIS-C data analysis. Home healthcare now 2015; 33: 20-
31	592	26.
32	593	44. Achelrod D, Schreyögg J and Stargardt T. Health-economic evaluation of home
33 34	594 595	telemonitoring for COPD in Germany: evidence from a large population-based cohort. <i>The European Journal of Health Economics</i> 2017; 18: 869-882.
35	596	45. Alshabani K, Attaway AA, Smith MJ, et al. Electronic inhaler monitoring and
36	597	healthcare utilization in chronic obstructive pulmonary disease. Journal of telemedicine and
37	598	telecare 2020; 26: 495-503.
38	599	46. Orozco-Beltran D, Sánchez-Molla M, Sanchez JJ, et al. Telemedicine in primary care
39	600	for patients with chronic conditions: the ValCronic Quasi-Experimental Study. Journal of
40	601	medical Internet research 2017; 19: e400.
41 42	602	47. McElroy I, Sareh S, Zhu A, et al. Use of digital health kits to reduce readmission after
42	603	cardiac surgery. Journal of Surgical Research 2016; 204: 1-7.
44	604	48. Martín-Lesende I, Orruño E, Mateos M, et al. Telemonitoring in-home complex
45	605 606	chronic patients from primary care in routine clinical practice: Impact on healthcare resources use. <i>European Journal of General Practice</i> 2017; 23: 136-143.
46	606 607	49. Chatwin M, Hawkins G, Panicchia L, et al. Randomised crossover trial of
47	608	telemonitoring in chronic respiratory patients (TeleCRAFT trial). <i>Thorax</i> 2016; 71: 305-311.
48 40	609	50. Lüthje L, Vollmann D, Seegers J, et al. A randomized study of remote monitoring and
49 50	610	fluid monitoring for the management of patients with implanted cardiac arrhythmia devices.
50	611	<i>Ep Europace</i> 2015; 17: 1276-1281.
52	612	51. Mirón Rubio M, Ceballos Fernández R, Parras Pastor I, et al. Telemonitoring and
53	613	home hospitalization in patients with chronic obstructive pulmonary disease: study
54	614	TELEPOC. Expert review of respiratory medicine 2018; 12: 335-343.
55	615	52. Ringbæk T, Green A, Laursen LC, et al. Effect of tele health care on exacerbations
56 57	616	and hospital admissions in patients with chronic obstructive pulmonary disease: a
57 58	617 618	randomized clinical trial. International journal of chronic obstructive pulmonary disease 2015;
59	618	10: 1801.
60		

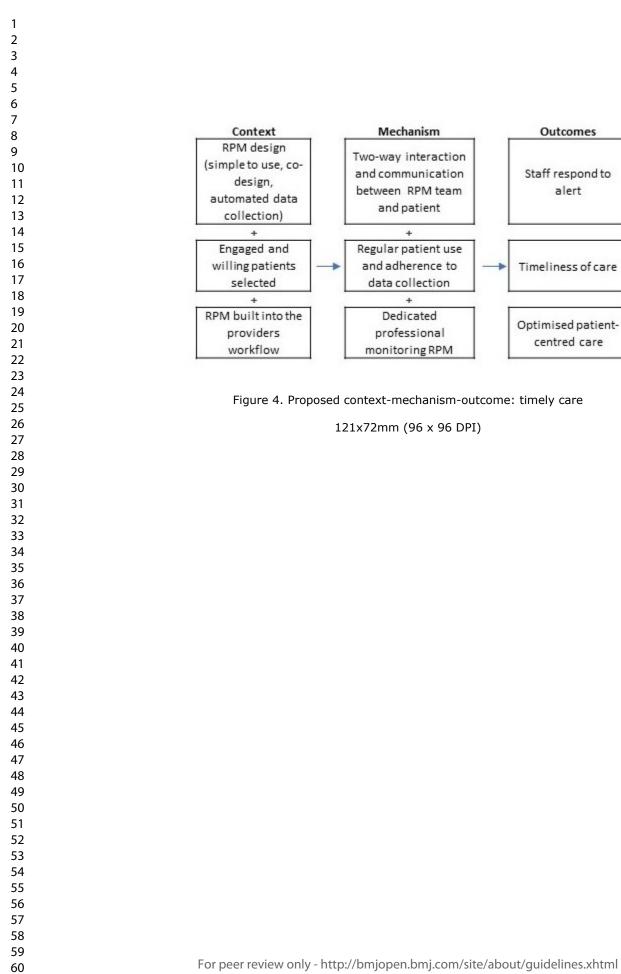
53. Sink E. Patel K. Groenendyk J. et al. Effectiveness of a novel, automated telephone intervention on time to hospitalisation in patients with COPD: A randomised controlled trial. Journal of Telemedicine and Telecare 2020; 26: 132-139. 54. D'ancona G, Safak E, Senges J, et al. Activation of remote monitoring for cardiac implantable electronic devices: small dog for tall weeds. Clinical Research in Cardiology 2017; 106: 833-839. Gingele AJ, Brunner-la Rocca H, Ramaekers B, et al. Telemonitoring in patients with 55. heart failure: Is there a long-term effect? Journal of telemedicine and telecare 2019; 25: 158-166. Ishani A, Christopher J, Palmer D, et al. Telehealth by an interprofessional team in 56. patients with CKD: a randomized controlled trial. American Journal of Kidney Diseases 2016; 68: 41-49. 57. Kenealy TW, Parsons MJ, Rouse APB, et al. Telecare for diabetes, CHF or COPD: effect on quality of life, hospital use and costs. A randomised controlled trial and qualitative evaluation. PloS one 2015; 10: e0116188. Nouryan CN, Morahan S, Pecinka K, et al. Home telemonitoring of community-58. dwelling heart failure patients after home care discharge. *Telemedicine and e-Health* 2019; 25: 447-454. 59. Wagenaar KP, Broekhuizen BD, Jaarsma T, et al. Effectiveness of the European Society of Cardiology/Heart Failure Association website 'heartfailurematters. org'and an e-health adjusted care pathway in patients with stable heart failure: results of the 'e-Vita HF'randomized controlled trial. European journal of heart failure 2019; 21: 238-246. Banbury A, Nancarrow S, Dart J, et al. Adding value to remote monitoring: Co-design 60. of a health literacy intervention for older people with chronic disease delivered by telehealth-The telehealth literacy project. Patient Education and Counseling 2020; 103: 597-606. Vegesna A, Tran M, Angelaccio M, et al. Remote patient monitoring via non-invasive 61. digital technologies: a systematic review. Telemedicine and e-Health 2017; 23: 3-17. 62. Farias FACd, Dagostini CM, Bicca YdA, et al. Remote patient monitoring: a systematic review. Telemedicine and e-Health 2020; 26: 576-583. Thomas EE, Haydon HM, Mehrotra A, et al. Building on the momentum: Sustaining 63. telehealth beyond COVID-19. Journal of telemedicine and telecare 2020: 1357633X20960638. 64. Hong Y and Lee SH. Effectiveness of tele-monitoring by patient severity and intervention type in chronic obstructive pulmonary disease patients: A systematic review and meta-analysis. International Journal of Nursing Studies 2019; 92: 1-15. Dickinson MG, Allen LA, Albert NA, et al. Remote monitoring of patients with heart 65. failure: a white paper from the Heart Failure Society of America Scientific Statements Committee. Journal of cardiac failure 2018; 24: 682-694. Huygens MW, Swinkels IC, de Jong JD, et al. Self-monitoring of health data by 66. patients with a chronic disease: does disease controllability matter? BMC family practice 2017; 18: 40. Galinier M. Roubille F. Berdaque P. et al. Telemonitoring versus standard of care in 67. heart failure: a randomised multicentre trial. European Journal of Heart Failure 2020. Miron Rubio M, Ceballos Fernandez R, Parras Pastor I, et al. Telemonitoring and 68. home hospitalization in patients with chronic obstructive pulmonary disease: study TELEPOC. Expert review of respiratory medicine 2018; 12: 335-343. 2018/02/21. DOI: 10.1080/17476348.2018.1442214. Noah B, Keller MS, Mosadeghi S, et al. Impact of remote patient monitoring on 69. clinical outcomes: an updated meta-analysis of randomized controlled trials. NPJ digital medicine 2018: 1: 1-12. Walker RC, Tong A, Howard K, et al. Patient expectations and experiences of remote 70. monitoring for chronic diseases: Systematic review and thematic synthesis of gualitative studies. International Journal of Medical Informatics 2019; 124: 78-85. DOI: https://doi.org/10.1016/j.ijmedinf.2019.01.013.

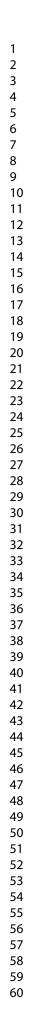
2		
3 4	673	71. Adair JG. The Hawthorne effect: A reconsideration of the methodological artifact.
5 6	674	Journal of Applied Psychology 1984; 69: 334-345.
7	675	
8 9	676	
10 11	677	
12 13	678	
14	679	
15 16		
17 18		
19		
20 21		
22 23		
24 25		
26		
27 28		
29 30		
31 32		
33 34		
35		
36 37		
38 39		
40 41		
42 43		
44		
45 46		
47 48		
49 50		
51		
52 53		
54 55		
56 57		
58		
59 60		




Figure 1 Factors associated with RPM intervention studies that reduced acute care use. The size of each box relates to the number of studies that identified each factor as having an important influence on the outcome.


CIED: Cardiac implantable electronic devices; Pt: patient; RPM: remote patient monitoring


364x215mm (192 x 192 DPI)


High usual

Not integrated into workflow

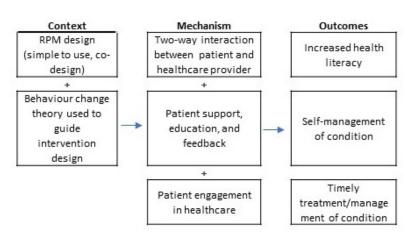


Figure 5. Proposed context-mechanism-outcome: self-management

150x87mm (96 x 96 DPI)

Aspect of care	Factors in intervention success
Organisational	 Have a central monitoring unit/dedicated professional monitoring RPM Integrate RPM into workflow with system to manage alerts Provide incentives to encourage uptake of RPM Enhance coordination between primary and secondary care
Interpersonal	 Encourage two-way interactive communication between pt and team Enhance pt self-management via support, education and feedback Use data from RPM to tailor and personalise care Ensure collaborative and multidisciplinary team involvement (including primary care to increase coordination and continuity)
Intrapersonal (patient or staff)	 Select patients at high risk of readmission (e.g. moderate-severe disease, high healthcare use, comorbidities) Motivate patients and staff to use RPM Increase adherence to RPM through routine data entry checks and frequent follow-ups
Intervention (RPM design)	Co-design with target population Make it simple and easy to use Ensure accurate and sensitive measurements to enable early detection Patient-specific measurements need to be used Enhance self-management (e.g. monitor medication adherence)

Figure 6. Recommendations to enhance RPM and reduce acute care use

192x128mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Appendix A

RAMESES publication standards: realist synthesis

Wong, G., Greenhalgh, T., Westhorp, G. *et al.* RAMESES publication standards: realist syntheses. *BMC Med* **11**, 21 (2013). https://doi.org/10.1186/1741-7015-11-21

ТІТ	ſLE	Pg No.	
1		1	
AB	STRACT		
2		While acknowledging publication requirements and house style, abstracts should ideally contain brief details of: the study's background, review question or objectives; search strategy; methods of selection, appraisal, analysis and synthesis of sources; main results; and implications for practice.	2
INT	TRODUCTION		
3	Rationale for review	Explain why the review is needed and what it is likely to contribute to existing understanding of the topic area.	3
4	Objectives and focus of review	State the objective(s) of the review and/or the review question(s). Define and provide a rationale for the focus of the review.	3
ME	THODS		
5	Changes in the review process	Any changes made to the review process that was initially planned should be briefly described and justified.	N/A

Page 25 of 25

 BMJ Open

тіт	LE	Pg No.	
6	Rationale for using realist synthesis	Explain why realist synthesis was considered the most appropriate method to use.	4
7	Scoping the literature	Describe and justify the initial process of exploratory scoping of the literature.	4
8	Searching processes	While considering specific requirements of the journal or other publication outlet, state and provide a rationale for how the iterative searching was done. Provide details on all the sources accessed for information in the review. Where searching in electronic databases has taken place, the details should include, for example, name of database, search terms, dates of coverage and date last searched. If individuals familiar with the relevant literature and/or topic area were contacted, indicate how they were identified and selected.	4
9	Selection and appraisal of documents	Explain how judgements were made about including and excluding data from documents, and justify these.	4. also additional details provided in previously published paper
10	Data extraction	Describe and explain which data or information were extracted from the included documents and justify this selection.	As above
11	Analysis and synthesis processes	Describe the analysis and synthesis processes in detail. This section should include information on the constructs analyzed and describe the analytic process.	As above
RES	SULTS		
12	Document flow diagram	Provide details on the number of documents assessed for eligibility and included in the review with reasons for exclusion at each stage as well as an indication of their source of origin (for example, from searching databases, reference lists and so on). You may consider	This paper included articles from a previously published review that followed the PRISMA guidelines – the flow

тіт	LE	Pg No.	
		using the example templates (which are likely to need modification to suit the data) that are provided.	diagram is published within that paper.
13	Document characteristics	Provide information on the characteristics of the documents included in the review.	4-8
14	Main findings	Present the key findings with a specific focus on theory building and testing.	4-8
DIS	CUSSION		
15	Summary of findings	Summarize the main findings, taking into account the review's objective(s), research question(s), focus and intended audience(s).	9
16	Strengths, limitations and future research directions	Discuss both the strengths of the review and its limitations. These should include (but need not be restricted to) (a) consideration of all the steps in the review process and (b) comment on the overall strength of evidence supporting the explanatory insights which emerged. The limitations identified may point to areas where further work is needed.	10
17	Comparison with existing literature	Where applicable, compare and contrast the review's findings with the existing literature (for example, other reviews) on the same topic.	9-10
18	Conclusion and recommendations	List the main implications of the findings and place these in the context of other relevant literature. If appropriate, offer recommendations for policy and practice.	10/11
19	Funding	Provide details of funding source (if any) for the review, the role played by the funder (if any) and any conflicts of interests of the reviewers.	1

BMJ Open

Factors influencing effectiveness of remote patient monitoring interventions: A realist review

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051844.R2
Article Type:	Original research
Date Submitted by the Author:	06-Aug-2021
Complete List of Authors:	Thomas, Emma; The University of Queensland, Centre for Online Health, Centre for Health Services Research Taylor, Monica ; The University of Queensland, Centre for Online Health, Centre for Health Services Research Banbury, Annie; The University of Queensland, Centre for Online Health, Centre for Health Services Research Snoswell, Centaine; The University of Queensland, Centre for Online Health, Centre for Health Services Research Haydon, Helen; The University of Queensland, Centre for Online Health, Centre for Health Services Research Gallegos Rejas , Victor ; The University of Queensland, Centre for Online Health, Centre for Health Services Research Smith, Anthony; The University of Queensland, Centre for Online Health, Centre for Health Services Research Smith, Anthony; The University of Queensland, Centre for Online Health, Centre for Health Services Research Smith, Anthony; The University of Queensland, Centre for Online Health, Centre for Health Services Research; University of Southern Denmark, Centre for Innovative Technology Caffery, Liam; The University of Queensland, Centre for Online Health, Centre for Health Services Research
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Patient-centred medicine
Keywords:	Telemedicine < BIOTECHNOLOGY & BIOINFORMATICS, PUBLIC HEALTH, Organisation of health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4		
5 6	1	Factors influencing effectiveness of remote patient monitoring
7 8	2	interventions: A realist review
9	3	
10	4	
11 12	5	Dr Emma E Thomas ^{1,2} e.thomas2@uq.edu.au ORCID 0000-0001-8415-0521
12	6	Ms Monica L Taylor ^{1,2} <u>m.taylor2@uq.edu.au</u> ORCID 0000-0001-5333-2955
14	7	Dr Annie Banbury ^{1,2} <u>a.banbury@uq.edu.au</u> ORCID 0000-0001-8841-1215
15	8	Dr Centaine L Snoswell ¹⁻² c.snoswell@uq.edu.au ORICID 0000-0002-4298-9369
16	9	Dr Helen M Haydon ^{1,2} h.haydon@uq.edu.au ORCID 0000-0001-9880-9358
17	10	Dr Victor Gallegos Rejas v.gallegosrejas@uq.net.au
18	11	Prof Anthony C Smith ^{1,2} a.smith8@uq.edu.au ORCID 0000-0002-7756-5136
19 20	12	A/Prof Liam J Caffery ^{1,2} Lcaffery@uq.edu.au ORCID 0000-0003-1899-7534
20 21	13	
22	14	1. Centre for Online Health, The University of Queensland, Brisbane, Australia.
23	15	2. Centre for Health Services Research, The University of Queensland, Brisbane, Australia
24	16	3. Centre for Innovative Technology, University of Southern Denmark, Odense, Denmark
25	17	
26	18	
27 28	19	Corresponding author:
28 29	20	Dr Emma Thomas
30	21	Centre for Online Health, Ground Floor, Building 33, Princess Alexandra Hospital
31	22	Woolloongabba QLD Australia 4102
32	23	e.thomas2@uq.edu.au, +61 7 31765356
33	24	
34	25	
35 36	26	
37	27	Funding: We thank Clinical Excellence Queensland for providing the financial support to enable this
38	28	research. Dr Emma Thomas is supported by a Postdoctoral Fellowship (#105215) from the National
39	29	Heart Foundation of Australia.
40	30	
41		
42 43	31	Total word count: 4298 words (exl abstract and refs)
43 44	32	
45	32 33	Key words: telehealth; telemedicine; telecare; remote monitoring; telemonitoring; in-home
46	33 34	monitoring; hospitalization; length of stay; realist review
47	34 35	monitoring, nospitalization, length of stay, realist review
48	55	
49 50	36	
50		
52		
53		
54		
55		
56 57		
57 58		
59		
60		

Abstract (300 words)

Objectives: Our recent systematic review determined that remote patient monitoring (RPM) interventions can reduce acute care use. However, effectiveness varied within and between populations. Clinicians, researchers, and policymakers require more than evidence of effect; they need guidance on how best to design and implement RPM interventions. Therefore, this study aimed to explore these results further to (1) identify factors of RPM interventions that relate to increased and decreased acute care use, and (2) develop recommendations for future RPM interventions. Design: Realist review - a qualitative systematic review method which aims to identify and explain why intervention results vary in different situations. We analysed secondarily ninety-one studies included in our previous systematic review that reported on RPM interventions and the impact on acute care use. Online databases PubMed, EMBASE and CINAHL were searched in October 2020. Included studies were published in English during 2015-2020 and used RPM to monitor an individual's biometric data (e.g. heart rate, blood pressure) from a distance. Primary and secondary outcome measures: Contextual factors and potential mechanisms that led to variation in acute care use (hospitalisations, length of stay, or emergency department presentations). Results: Across a range of RPM interventions 31 factors emerged that impact the effectiveness of RPM innovations on acute care use. These were synthesised into six theories of intervention success: 1) targeting populations at high risk; 2) accurately detecting a decline in health; 3) providing responsive and timely care; 4) personalising care; 5) enhancing self-management and, 6) ensuring collaborative and coordinated care. Conclusion: While RPM interventions are complex, if they are designed with patients, providers and the implementation setting in mind and incorporate the key variables identified within this review, it is more likely that they will be effective at reducing acute hospital events. Registration: The review protocol was registered with PROSPERO (#CRD42020142523). **Strengths and limitations** Our review was strengthened by a comprehensive search and inclusivity of diverse RPM • interventions across a broad spectrum of conditions and contexts. The novel use of realist review methodology and development of theory-based constructs • helped to systematically identify factors impacting implementation. Included studies within our review had multiple study design issues. Typically, with many of • these studies it is not possible (or ethical) to blind participants. Therefore, selection bias may have affected results if health professionals pragmatically selected more willing or engaged patients to participate in the trials. While our focus was on acute care use, other aspects of care may have been overlooked that relate to care quality.

76 Introduction

Non-communicable diseases such as heart disease, chronic obstructive pulmonary disease (COPD), and diabetes accounts for over 70 per cent of global deaths each year.¹ Combined with the added challenge of ageing populations, health systems internationally are under enormous strain to support growing numbers of chronically unwell people.² One of the main drivers of healthcare costs for chronically ill patients results from acute hospital admissions due to their intense resource requirements. Consequently, new models of care are being widely investigated and trialled that could extend care into the home and prevent unnecessary acute care events.

Remote patient monitoring (RPM) is a telehealth innovation that offers significant opportunities to increase the timeliness of care, enhance health outcomes, and potentially reduce hospitalisations and associated healthcare costs.^{3, 4} RPM uses technology to observe a patient's physiological (e.g. heart rate, blood pressure) and behavioural (e.g. medication adherence, physical activity) information from a distance.⁵ With support, many individuals could effectively self-manage chronic conditions in the community.⁶ Further, if alerted early, healthcare providers could intervene when a person's health is declining, potentially preventing costly escalations to hospital. Health professionals can routinely monitor a patient's health data and/or be alerted when measurements exceed a pre-determined threshold. This allows for early intervention and ideally prevention of further exacerbation of a condition. RPM can benefit people with chronic illness as well as other population groups that benefit from continuous monitoring such as the frail and elderly, neonates or post-surgical patients.⁵

29 98

Despite the potential benefits of RPM, investigations into its clinical and cost effectiveness have provided mixed results to date. For example, the impact of RPM on the heart failure population has resulted in multiple systematic reviews⁷, meta-analyses^{8,9}, and reviews of reviews.^{10,11} These reviews are generally positive about the potential benefits for patients and health services from RPM services,^{7, 8, 10, 12} but others also report limited or no affect⁹ on reducing morbidity and mortality. A 2018 Cochrane review reported no difference in all-cause mortality in remotely monitored patients with heart failure and a change in hospitalisations ranging from a 64% decrease to a 60% increase.⁹

In our recent review¹³, we provided a synthesis of the available evidence for the effect of RPM on acute care use including hospital admission events, hospital length of stay, and emergency department presentations. We found that RPM was reported to reduce acute care use in approximately 45% of studies. Remaining studies largely reported no change; however, some reported an increase in acute care use. The included 91 studies covered multiple chronic conditions, countries and health care organisations and used various technology and models of care. While RPM can have a positive impact on reducing acute care use, certain enablers are needed. Clinicians, researchers, and policymakers require more guidance on how to design and implement RPM-facilitated models of care to achieve the greatest benefit. Consequently, further analysis is required to understand underlying mechanisms causing such variation in acute care use across RPM interventions.

We sought to understand what causes variation in outcomes from RPM interventions. Realist review methodology enables exploration of how, why and for whom interventions do and do not work. Consequently, the approach has been used across various health interventions (e.g. medical education programs ¹⁴, school feeding programs¹⁵). The basic tenet of realist philosophy is that the effectiveness of an intervention is impacted by the context in which it is implemented which may trigger mechanisms that result in intended and unintended outcomes.¹⁶ Realist reviews are particularly helpful for complex interventions like RPM interventions where the effectiveness is

impacted by multiple interacting components such as the intervention design, users, interpersonal relationships and institutions and settings where the intervention is delivered.

Specifically, this study aimed to (1) identify factors of RPM interventions that relate to increased and decreased acute care use, and (2) develop recommendations for future RPM intervention design and implementation.

Methods

Data extraction

We used data from our recent systematic review¹³ that compared acute care use between individuals who were and were not monitored using RPM. Complete details of the original systematic review have been described elsewhere.¹³ In brief, search terms for remote monitoring and acute care utilisation were used across three electronic databases: PubMed (MEDLINE)[1966-2020], EMBASE (OvidSP)[1974-2020], and CINAHL (EBSCOHost)[1982-2020]. The search, conducted in October 2020, included articles published in the last five years (2015-2020). Articles were included if they used RPM to monitor an individual's biometrics (e.g. heart rate, blood pressure) from a distance while they are not in hospital. No restrictions were placed on patient age, or disease

conditions however full-text studies had to be available in English.

We then re-reviewed the same 91 articles included in our original RPM systematic review, using realist review methodology to identify factors that determine intervention success and failure in various contexts. This review was guided by the work of Pawson et al. (2005)¹⁷ and followed guidelines outlined by the Realist and Meta-narrative Evidence Synthesis: Evolving Standards (RAMESES; Appendix A)¹⁸. Following the methodology described by Pawson et. al.,¹⁷ information was extracted that related to context (settings, populations, intervention delivery), outcomes (positive, negative or null affect on outcome of hospital use), and potential mechanisms or reasons behind the results (e.g. author's interpretation as to why the interventions did or did not work). These data were recorded in an Excel spreadsheet to facilitate a structured analysis. Two researchers (ET, MT) independently extracted these data.

Evidence synthesis

The researchers then collectively examined the articles to detect patterns and developed a compendium of explanatory factors observed in the RPM studies. The researchers compared and discussed their identified factors that led to increased or decreased acute care use being reported in the studies. Findings were then combined into a table showing the number of studies proposing each mechanism and grouped by outcome (e.g. increased or decreased acute care use).

The two researchers then jointly mapped recurrent patterns into explanatory context-mechanism-outcome (CMO) diagrams to illustrate how the different factors interact. Literature was also examined for opposing or conflicting viewpoints. These CMO diagrams were discussed with a third member of the research team (LC) to confirm consistent and logical development. Key findings were synthesised into overarching themes, which are referred to as 'theories' in the realist review approach.¹⁷ Finally, a list of recommendations were developed from the findings and ordered by context to guide future RPM intervention design and implementation.

Patient and public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

2		
3	174	Results
4 5	175	Ninety-one articles from our previous review were evaluated to determine why RPM increased,
6	176	decreased, or had no affect on acute care use. Thirty-one factors were identified and mapped onto
7	177	two outcomes: 1) increased hospital use (21 factors) and 2) reduced hospital use (10 factors)
8	178	(Figures 1 & 2). Factors were also ordered by the frequency of articles that reported them as
9		
10	179	possible influences on outcomes (represented by the size of each factor in Figure 1 and 2).
11 12	180	
13 14	181	[Insert Figure 1]
15 16	182	Figure 1 Factors associated with RPM intervention studies that reduced acute care use.
17 18 19	183 184	The size of each box relates to the number of studies that identified each factor as having an important influence on the outcome.
20 21	185	CIED: Cardiac implantable electronic devices; Pt: patient; RPM: remote patient monitoring
22	186	
23 24	187	[Insert Figure 2]
25 26	188	Figure 2 Factors associated with RPM interventions studies that increased acute care use.
27 28 29	189 190	The size of each box relates to the number <mark>o</mark> f studies that identified each factor as having an important influence on the outcome.
30 31	191	RPM: remote patient monitoring; Pt: patient
32 33	192	
34 35	193	Theories about how RPM works
36	194	It was identified that successful RPM interventions, in this case those interventions that successfully
37	195	reduced acute care use, were those that: 1) target populations at high risk; 2) accurately detect a
38	196	decline in health; 3) were responsive and provided timely care; 4) provided personalised care; 5)
39	197	enhanced self-management and, 6) ensured collaborative and coordinated care. Each of these
40 41	198	theories of intervention success are described below.
42	199	
43 44	200	Target populations at high risk
45 46	201	Appropriate selection of patients for RPM is crucial if a change in acute care use is to be achieved.
47	202	RPM interventions are likely to have more pronounced effects on acute care use when they are
48	203	targeted towards populations with a high risk of hospitalisation (e.g. moderate-severe disease
49	204	severity, multiple comorbidities). ¹⁹ Further, it is important for the intervention to be timed with
50		
51 52	205	periods of high-risk readmissions (e.g. the first 90 days post an index event). Delaying the delivering
53	206	of RPM devices to patients may reduce the effect ²⁰ (See Figure 3).
54 55	207	Patients who are more likely to present to hospital multiple times have a greater chance of reducing
56	208	admissions due to more timely interventions. In practice, however, clinicians may have reservations
57	209	about remotely assessing their most vulnerable and unwell patients. As described by Geller et al., ²¹
58	210	"in clinical practice telemedicine seems to be used mainly in patients with better prognosis, probably
59 60	211	due to the belief that those who live longer may receive more (i.e. prolonged) benefit from

1		
2 3	212	tolements the side section to the should be even in the office mere frequently " (sec. 1124)
4	212	telemonitoring than sicker patients who should be seen in the office more frequently" (pg. 1124).
5	213	Consequently, clinicians may require additional information on how RPM can be safely delivered in
6 7	214	high-risk cohorts.
7 8	215	
9		
10	216	[Insert Figure 3]
11 12	217	Figure 3. Proposed context-mechanism-outcome: target population
12	218	
14	210	
15	219	Accurately detect a decline in health
16 17	220	RPM needs to accurately predict disease exacerbations by detecting a change in symptoms that
18	220	relate to health deteriorations. This has been a challenge in certain populations such as COPD and
19	221	heart failure patients which may have unpredictable disease progression. In the COPD population,
20	222	multiple studies reported trying to determine the measurement (e.g. spirometry, oximetry, or a
21 22		
23	224	combination) which would mark the onset of an exacerbation, ²²⁻²⁵ however, none came to a
24	225	definitive conclusion. ²⁶ RPM can be used in these population groups to longitudinally track the
25	226	progression of disease and develop parameters to be tested as predictors for future interventions. ²⁷
26 27	227	In the heart failure population, physiological signs may not provide adequate warning of
28	228	decompensation. Readmission in this cohort can be a complex interplay of multiple factors and is
29	229	often not solely limited to physiological variables. ²⁸ If deterioration occurs too quickly, there is
30 31	230	limited opportunity to intervene. ²⁹ Therefore, more investigation is required to try and accurately
32	231	predict health declines for individual patients and accurately pin-point the best way for RPM to be
33	232	used to support this patient population.
34	252	
35 36	233	Implantable devices (e.g. pacemakers) have an additional advantage; continuous monitoring enables
37	234	undiagnosed co-morbid conditions such as atrial fibrillation to be detected enabling pre-emptive
38	235	intervention. ³⁰ It can also improve the efficiency of outpatient clinical care by detecting device or
39	236	lead malfunctions earlier. ³¹
40 41		
42	237	
43	238	Provide timely care via a responsive system
44 45	• • • •	
45 46	239	Any benefit from RPM is dependent on patients 1) using the system (e.g. timely data entry) and, 2)
47	240	providers taking appropriate and equally timely action when out-of-range readings occur. ³⁰
48	241 242	Therefore, RPM systems that use automated data entry wherever possible are preferable as they can reduce errors and delays due to manual entry. As technology improves, smartphone-based
49 50	242 243	programs are likely to replace standard RPM equipment which may result in more consistent,
50 51	245 244	accurate and timely data from patients. ¹⁹ For innovations that rely on manual data entry, RPM
52	245	innovations need to be easy to use (e.g. enable efficient data entry, transportable) and useful for
53	246	patients to ensure long term use and engagement. ³² Additionally, regular monitoring is required. For
54 55	247	example, Srivastava et al. ¹⁹ routinely monitored data for abnormalities or lack of responses; if a
56	248	patient did not submit data for three days, a call was initiated by nursing staff.
57		
58	249	On the staff end, RPM alerts need to be actioned with timely and appropriate responses; the speed
59 60	250	of decision-making and frequency of monitoring is paramount. ³³ A fast response often requires
	251	frequent contact with patients and effective bi-directional communication pathways between staff

and patients. For example, Trucco et al.³⁴ facilitated communication between families and the on-call team via a dedicated phone number or email address. Multiple studies report the importance of dedicated care (e.g. providing an RPM nurse or dedicated case manager) in improving response time.^{33, 35-38} This is supported by the literature with findings that patients who received either basic or intensive case management spend less time in hospital than those without.³⁹ "Fast tracked" access to primary care providers was used in the intervention reported by Pedone et al.⁴⁰ when abnormalities were presented, or new symptoms arose. They reported that a new model of care, rather than simply implementing a new technology, was required to obtain sizable benefits in terms of hospitalisation outcomes.⁴⁰ Where possible, RPM should be embedded into the system and provide seamless interaction between patients and the healthcare system with minimal encumbrance on both ends.¹⁹ The proposed context-mechanism-outcome diagram is provided in Figure 4.

- [Insert Figure 4]
- Figure 4. Proposed context-mechanism-outcome: timely care

Provide personalised care

Providing a patient-centric and personalised approach was also an important factor in determining the success of an RPM intervention in reducing acute care use.¹⁹ Firstly, the development of the RPM innovation needs to be co-designed with patients and their families to ensure it meets their needs and maximises acceptance and uptake.⁴¹ Training patients on how to use the device will likely also need to be personalised and at times repeated. RPM alerts can also be personalised by using individual data to determine alert thresholds. Koelher et al.⁴² recommended defining a risk category for each individual patient based on their positive results (derived from biometric data). One study author requested personalised parameters and treatment guidelines from each patient's treating physician.⁴³ Determining appropriate parameters for RPM applications (personalised or not) enables the treating team to be alerted to any biometric measurements that fall outside of the parameter ranges. To enable personalised parameters to be developed, physicians need to be engaged in the RPM process for their patient early. The response by the RPM monitoring team also needs to be tailored; considering the person's medical, social and emotional needs.

Enhance self-management

To successfully reduce acute care use, RPM interventions should include support and education to increase self-management skills. Through developing knowledge, skills and positive behaviours (e.g. medication adherence), patients are more likely to be able to effectively manage their condition with the aid of RPM (see Figure 5).⁴⁴ Additionally, increased awareness of signs and symptoms of disease progression that often occurs when patients use RPM can prompt them to contact their healthcare provider for timely management.⁴⁴ Providing feedback from RPM data in a way that empowers patients to take control of their own health is important. Koelher et al.⁴² reported that this needs to be a comprehensive approach including education and patient involvement when developing management strategies. In some instances, RPM interventions were discontinued once patients were able to correctly correlate their personal symptoms and seek help when required.⁴³

Page 9 of 25

BMJ Open

1 2		
2 3	204	Conversely, some DDM interventions that were unsuccessful in reducing bespitalisation events
4	294 205	Conversely, some RPM interventions that were unsuccessful in reducing hospitalisation events
5	295	reported patients becoming overly reliant on the RPM team, for instance, alerting the team when an
6 7	296	issue arose rather than developing autonomous self-management skills for their condition.
8	297	Additionally, some known important factors such as medication adherence were not always
9	298	measured and present a lost opportunity in many RPM innovations. Medication adherence and
10	299	timely changes to medications are reported to confer substantial benefits for patients. ⁴²
11 12	300	[Insert Figure 5]
12	500	
14	301	
15	302	Figure 5. Proposed context-mechanism-outcome: self-management
16 17		
17	303	
19	304	Ensure collaborative and coordinated care
20		
21 22	305	Successful RPM studies demonstrated increased connection and communication between
22	306	healthcare staff and patients. ³¹ Multidisciplinary team-based interventions that combine feedback
24	307	(automated and/or provider-initiated) with other approaches (e.g. coaching, motivational
25	308	interviews, and shared decision-making) are more likely to result in improvement in adherence. ⁴⁵
26 27	309	Involvement of primary care is crucial. As high-risk patients are often managed by primary and
27	310	specialty care, both hospital and primary care settings should be involved in RPM interventions. ⁴⁶
29	311	Involvement of key stakeholders is required to improve continuity of care. ⁴⁷ Beyond healthcare
30	312	professionals, the RPM intervention should also aim to include families and carers as key
31 32	313	stakeholders in the long-term management of the person's condition. To increase primary carers'
32 33	314	acceptance of and adherence to RPM, they must be involved very early on. To institute an initial
34	315	change of role, staff incentives (e.g. financial payments) may be required. ²⁷ Additionally, nursing
35	316	staff should be considered as having leading roles in RPM interventions. ⁴⁸ Further, institutional
36 37	317	support is required for these initiatives and reorganisation of care processes should be carefully
37 38	318	planned and implemented. ⁴⁸
39		
40	319	Factors that resulted in increased acute care use
41 42	220	A range of factors were identified as begins a possible influence on bestital use (increasing
42 43	320 321	A range of factors were identified as having a negative influence on hospital use (increasing
44	321	admissions) (Figure 2). Many of the identified factors are the reverse of what has been described above. For example, not targeting populations at high risk, not integrating RPM into the workflow, or
45	323	using systems that have measurement errors. For example, multiple study authors reported slow
46 47	324	alert response times (N=6) ^{32, 49-53} and low patient or clinician adherence (N=11) $^{19, 20, 28, 32, 45, 54-59}$ as
48	325	important factors resulting in no change or an increase in acute care use in the RPM group. There
49	326	also appears to be a delicate balance between providing a supportive environment that empowers
50	327	patients to self-manage versus having patients become reliant on the RPM device and/or the
51 52	328	monitoring team.
52 53		
54	329	
55	330	Recommendations for RPM
56 57		
57 58	331	We synthesised multiple recommendations to assist in the design and implementation of RPM
59	332	interventions (Figure 6).
60		

When designing RPM devices, it is crucial that the measured biometrics accurately predict disease exacerbations. Alert thresholds need to be carefully determined to ensure they are sensitive to physiological changes without being too high, and where possible tailored to the patient and disease state. Further, the transmission of data needs to be reliable, and if possible, automatic. It is essential that RPM devices are co-designed with consumers and providers to improve usability and engagement with the RPM system. It is likely that making the device interactive and building in feedback loops between the patient and clinician will enhance engagement. However, if this increases the provider's workload it may discourage provider engagement. Multidisciplinary team interventions that combine feedback with other approaches like patient education, motivational interviewing, coaching or shared decision-making are likely to be more effective long-term.⁶⁰ At the organisation level, having dedicated professionals responsible for monitoring data and communicating with patients and the healthcare team can improve the timeliness and coordination of care. Studies with nursing staff in these leading and case-management roles appeared to be more effective.⁴⁸ RPM also needs to be embedded into the health system to provide seamless interaction between patients and the healthcare system. This may require reorganisation of care and additional resources (physical and personnel) to support the intervention. [Insert Figure 6] Figure 6. Recommendations to enhance RPM and reduce acute care use Discussion We found that RPM interventions were successful at reducing acute care use when they incorporated a number of elements including: accurately predicting a decline in health or disease exacerbation, timely response to alerts, personalised patient parameters, and a focus on enhancing patient self-management. Additionally, collaboration between specialists and primary care provides was required to improve the continuity of care To the best of our knowledge, this is the first review to elucidate why some RPM interventions are more successful than others in reducing acute care use. RPM interventions are complex because they typically involving multiple components (e.g. data collection, education, feedback) and various stakeholders across different settings (e.g. community, primary and tertiary care). Given the complexity of RPM interventions, it is perhaps unsurprising that RPM studies have resulted in so much variation in the effects demonstrated regarding changes in acute care use. To date, much of the focus of RPM innovations has been on the design and development of the technology.^{61, 62} While functioning technology that accurate detects a decline in health is important, to deliver significant benefits RPM alerts must also lead to an actionable and timely responses. To achieve positive results at the healthcare system level, RPM interventions require a change to the model of care rather than simple technology implementation.⁶³ To be successful, the right patients need to be recruited at the right time. Patients with greater disease severity and at high risk of readmissions appear to confer the greatest benefit of RPM

interventions in terms of reduced acute care use.⁶⁴ For instance, a recent consensus statement from

the Heart Failure Society of America⁶⁵ broadly concluded that heart failure RPM had the most impact

when patients were most at risk (e.g., recent hospitalisation, prone to fluid overload, and struggles
with medication adherence). Additionally, RPM should target patients who are willing and likely to
adhere with RPM regimes.

While our study focuses on acute hospital use, other authors have investigated patient-related factors that may support long-term monitoring of conditions. For example, Huygens suggests there is a relationship between perceived disease controllability and patients' willingness to self-monitor.⁶⁶ Patients with diabetes, asthma and hypertension were most willing to self-monitor. In contrast, patients with rheumatism, migraines and other neurological disorders were less willing. The intervention design can facilitate engagement and use. Hong and Lee⁶⁴ determined that interventions with an educational component such as self-management programs have greater effects. Another consideration is the patient's social circumstance. One study found that RPM significantly improved outcomes for socially isolated patients,⁶⁷ potentially due to the delay in care access that these patients may face. Conversely, for socially connected patients, outcomes appear to be enhanced by training caregivers.^{29, 68}

Interventions based on health behaviour models and personalised coaching were most successful.⁶⁹ The findings of this review parallel some of the themes in a review of patient experiences of RPM by Walker et al.⁷⁰ Similarly, self-management and early identification of clinical exacerbations were key to preventing hospitalisation. From the patient perspective, self-management was achieved by increasing confidence and providing a sense of safety. Shared decision making was identified as a key mechanism to preventing hospitalisation. Conversely, interventions that provided information but did not equip patients to self-manage were potentially at greater risk of having patients become overly reliant on the RPM team.

Patients have previously reported concerns about being lost in the data or losing interpersonal connections with health professionals and a reluctance to try something new, especially if unfamiliar with technology.⁷⁰ Our findings substantiate the importance of co-designing RPM interventions with consumers to ensure they are easy to use and provide useful feedback to maintain adherence and engagement. Building rapport, providing training (sometimes multiple times) and having a two-way interactive relationship between the patient and the RPM team is crucial. Alternatively, a lack of education and timely response were identified as factors that increased acute care use.

Included studies within our review had multiple study design issues. Typically, with many of these studies it is not possible (or ethical) to blind participants. Therefore, selection bias may have affected results if health professionals pragmatically selected more willing or engaged patients to participate in the trials. However, in real-world clinical settings it is likely (and appropriate) that participants are provided with options regarding their follow-up care. The observer or Hawthorne effect⁷¹ may be at play with participants potentially acting differently due to a belief that they are being watched. Such an effect may reduce with time, and some trial lengths may have been too short for this effect to wear off. Potentially the higher number of studies reporting positive outcomes may be due to a reporting bias within the literature; consequently, there were a higher number of factors discussed in relation to reducing (n=21) rather than increasing acute care use (n=10).

Our review was strengthened by a comprehensive search and inclusivity of diverse RPM interventions across a broad spectrum of conditions and contexts. The novel use of realist review methodology and development of theory-based constructs helped to systematically identify factors impacting upon implementation. However, while our focus was on acute care use, other aspects of care may have been overlooked that relate to care quality. Further, it is possible that reducing hospital admissions may shift care and associated costs to the primary care setting and potentially result in additional pressure and stress on different aspects of the system. Additionally, the theories that have been developed are based on both our and the primary study authors' interpretation of findings in many instances and not experimental evidence.

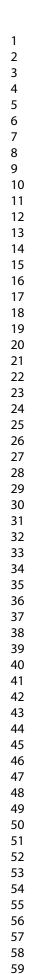
Conclusion

RPM interventions have the potential to reduce acute care use when they are targeted to appropriate populations and disease states, designed well, and implemented with patients and providers in mind. This review has highlighted important considerations for developing effective RPM devices, systems, and telehealth models of care. To achieve significant changes in acute care use, RPM data needs to be routinely entered and checked, automated where possible, alerts need to accurately highlight when a person's data is beyond an acceptable range (for that person), and healthcare staff need to respond in a timely and appropriate manner. Further, information and feedback needs be provided to patients in a way that empowers them to self-manage their condition. If designed with these considerations in mind, RPM interventions are more likely to be effective at reducing acute care use. Future studies should investigate any unintended consequences of RPM and cost implications resulting from the shifting of care.

List of abbreviations

COPD: chronic obstructive pulmonary disease; CMO: context-mechanism-outcome; PROSPERO: Prospective Register of Systematic Reviews; RAMESES: Realist and Meta-narrative Evidence Synthesis: Evolving Standards; RPM: Remote patient monitoring.

Declarations


Ethics approval and consent to participate: Not applicable Consent for publication: All authors consent to publication Availability of data and materials: Not applicable Competing interests: None to declare Funding: We thank Clinical Excellence Queensland for providing the financial support to enable this research. Dr Emma Thomas is supported by a Postdoctoral Fellowship (#105215) from the National Heart Foundation of Australia Authors' contributions: This research was conceptualised by ET. ET, LC, CS, MT contributed to the study design. Searches and data extraction were carried out by ET and MT with support from LC. Data analysis was performed by ET, MT and LC. Manuscript was drafted by ET, MT, AB and LC. Critical review of manuscript was undertaken by HH, CS, AS, VGR. All authors approved the final manuscript. Acknowledgements: Not applicable

1			
2 3			
4	461	Re	eferences
5 6	462	1.	Bennett JE, Stevens GA, Mathers CD, et al. NCD Countdown 2030: worldwide trends in non-
7	463		communicable disease mortality and progress towards Sustainable Development Goal target
8	464		3.4. The Lancet 2018; 392: 1072-1088.
9 10	465	2.	Atun R, Jaffar S, Nishtar S, et al. Improving responsiveness of health systems to non-
10	466		communicable diseases. <i>The Lancet</i> 2013; 381: 690-697.
12	467	3.	Snoswell CL, Smith AC, Thomas EE, et al. Video and phone consultations only scratch the surface
13	468		of what telehealth has to offer. <i>The Conversation</i> 2020; Available:
14	469 470		https://theconversation.com/video-and-phone-consultations-only-scratch-the-surface-of-what- telehealth-has-to-offer-146580.
15 16	470	4.	Bradford NK, Caffery LJ and Smith AC. Telehealth services in rural and remote Australia: a
17	472	ч.	systematic review of models of care and factors influencing success and sustainability. <i>Rural and</i>
18	473		remote health 2016; 16: 245.
19	474	5.	Malasinghe LP, Ramzan N and Dahal K. Remote patient monitoring: a comprehensive study.
20	475		Journal of Ambient Intelligence and Humanized Computing 2019; 10: 57-76.
21 22	476	6.	Hanlon P, Daines L, Campbell C, et al. Telehealth interventions to support self-management of
22	477		long-term conditions: a systematic metareview of diabetes, heart failure, asthma, chronic
24	478		obstructive pulmonary disease, and cancer. Journal of medical Internet research 2017; 19: e172.
25	479	7.	Pandor A, Gomersall T, Stevens JW, et al. Remote monitoring after recent hospital discharge in
26	480		patients with heart failure: a systematic review and network meta-analysis. Heart 2013; 99:
27	481		1717-1726.
28 29	482	8.	Clark RA, Inglis SC, McAlister FA, et al. Telemonitoring or structured telephone support
30	483		programmes for patients with chronic heart failure: systematic review and meta-analysis. Bmj
31	484 495	0	2007; 334: 942.
32	485 486	9.	Flodgren G, Rachas A, Farmer AJ, et al. Interactive telemedicine: effects on professional practice and health care outcomes. <i>Cochrane Database of Systematic Reviews</i> 2015.
33	480 487	10	Bashi N, Karunanithi M, Fatehi F, et al. Remote monitoring of patients with heart failure: an
34 35	488	10.	overview of systematic reviews. Journal of medical Internet research 2017; 19: e18.
36	489	11.	Greenhalgh T and Shaw S. Understanding heart failure; explaining telehealth–a hermeneutic
37	490		systematic review. <i>BMC cardiovascular disorders</i> 2017; 17: 156.
38	491	12.	Ono M and Varma N. Remote monitoring to Improve long-term prognosis in heart failure
39	492		patients with implantable cardioverter-defibrillators. Expert review of medical devices 2017; 14:
40 41	493		335-342.
42	494	13.	Taylor ML, Thomas EE, Snoswell CL, et al. Does remote patient monitoring reduce acute care
43	495		use? A systematic review. BMJ open 2021; 11: e040232.
44	496	14.	Wong G, Greenhalgh T and Pawson R. Internet-based medical education: a realist review of
45 46	497	4 -	what works, for whom and in what circumstances. <i>BMC medical education</i> 2010; 10: 1-10.
46 47	498 400	15.	Greenhalgh T, Kristjansson E and Robinson V. Realist review to understand the efficacy of school
48	499 500	16	feeding programmes. <i>Bmj</i> 2007; 335: 858-861. Pawson R, Greenhalgh T, Harvey G, et al. Realist synthesis: an introduction. <i>Manchester: ESRC</i>
49	500 501	10.	Research Methods Programme, University of Manchester 2004.
50	501	17	Pawson R, Greenhalgh T, Harvey G, et al. Realist review-a new method of systematic review
51 52	503		designed for complex policy interventions. <i>Journal of health services research & policy</i> 2005; 10:
52 53	504		21-34.
55 54	505	18.	Wong G, Greenhalgh T, Westhorp G, et al. RAMESES publication standards: realist syntheses.
55	506		BMC medicine 2013; 11: 21.
56	507	19.	Srivastava A, Do J-M, Sales VL, et al. Impact of patient-centred home telehealth programme on
57 58	508		outcomes in heart failure. Journal of Telemedicine and Telecare 2019; 25: 425-430.
58 59			
60			
I			

1 2			
3	F00	20	Oliveri 7 Ciacomelli 5 Cubian L et al. The effectiveness of remote menitoring of elderly
4	509	20.	Olivari Z, Giacomelli S, Gubian L, et al. The effectiveness of remote monitoring of elderly
5	510		patients after hospitalisation for heart failure: The renewing health European project.
6	511 512	21	International Journal of Cardiology 2018; 257: 137-142.
7	512	21.	Geller JC, Lewalter T, Bruun NE, et al. Implant-based multi-parameter telemonitoring of patients
8	513		with heart failure and a defibrillator with vs. without cardiac resynchronization therapy option:
9	514	~~	a subanalysis of the IN-TIME trial. <i>Clinical Research in Cardiology</i> 2019; 108: 1117-1127.
10	515	22.	Steer J, Gibson G and Bourke S. Predicting outcomes following hospitalization for acute
11 12	516	• •	exacerbations of COPD. <i>QJM: An International Journal of Medicine</i> 2010; 103: 817-829.
13	517	23.	Seemungal TA, Donaldson GC, Bhowmik A, et al. Time course and recovery of exacerbations in
14	518		patients with chronic obstructive pulmonary disease. American journal of respiratory and
15	519		<i>critical care medicine</i> 2000; 161: 1608-1613.
16	520	24.	Pinnock H, Hanley J, McCloughan L, et al. Effectiveness of telemonitoring integrated into
17	521		existing clinical services on hospital admission for exacerbation of chronic obstructive
18	522		pulmonary disease: researcher blind, multicentre, randomised controlled trial. <i>Bmj</i> 2013; 347:
19	523		f6070.
20	524	25.	Mohktar MS, Basilakis J, Redmond SJ, et al. A guideline-based decision support system for
21 22	525		generating referral recommendations from routinely recorded home telehealth measurement
22	526		data. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
24	527		2010, pp.6166-6169. IEEE.
25	528	26.	Shany T, Hession M, Pryce D, et al. A small-scale randomised controlled trial of home
26	529		telemonitoring in patients with severe chronic obstructive pulmonary disease. Journal of
27	530		telemedicine and telecare 2017; 23: 650-656. 2016/07/29. DOI: 10.1177/1357633x16659410.
28	531	27.	Shany T, Hession M, Pryce D, et al. A small-scale randomised controlled trial of home
29	532		telemonitoring in patients with severe chronic obstructive pulmonary disease. Journal of
30	533		telemedicine and telecare 2017; 23: 650-656.
31 32	534	28.	Ong MK, Romano PS, Edgington S, et al. Effectiveness of remote patient monitoring after
33	535		discharge of hospitalized patients with heart failure: the better effectiveness after transition-
34	536		heart failure (BEAT-HF) randomized clinical trial. JAMA internal medicine 2016; 176: 310-318.
35	537	29.	Nouryan CN, Morahan S, Pecinka K, et al. Home Telemonitoring of Community-Dwelling Heart
36	538		Failure Patients After Home Care Discharge. Telemedicine journal and e-health : the official
37	539		journal of the American Telemedicine Association 2019; 25: 447-454. 2018/07/24. DOI:
38	540		10.1089/tmj.2018.0099.
39	541	30.	Piccini JP, Mittal S, Snell J, et al. Impact of remote monitoring on clinical events and associated
40	542		health care utilization: A nationwide assessment. <i>Heart Rhythm</i> 2016; 13: 2279-2286.
41 42	543	31.	Akar JG, Bao H, Jones PW, et al. Use of remote monitoring is associated with lower risk of
43	544		adverse outcomes among patients with implanted cardiac defibrillators. Circulation: Arrhythmia
44	545		and Electrophysiology 2015; 8: 1173-1180.
45	546	32.	Pekmezaris R, Nouryan CN, Schwartz R, et al. A Randomized Controlled Trial Comparing
46	547		Telehealth Self-Management to Standard Outpatient Management in Underserved Black and
47	548		Hispanic Patients Living with Heart Failure. <i>Telemedicine and e-Health</i> 2019; 25: 917-925.
48	549	33.	Lyth J, Lind L, Persson HL, et al. Can a telemonitoring system lead to decreased hospitalization in
49	550		elderly patients? Journal of Telemedicine and Telecare 2019: 1357633X19858178.
50	551	34.	Trucco F, Pedemonte M, Racca F, et al. Tele-monitoring in paediatric and young home-
51 52	552		ventilated neuromuscular patients: A multicentre case-control trial. Journal of telemedicine and
53	553		telecare 2019; 25: 414-424.
54	554	35.	Böhm M, Drexler H, Oswald H, et al. Fluid status telemedicine alerts for heart failure: a
55	555		randomized controlled trial. European heart journal 2016; 37: 3154-3163.
56	556	36.	De Simone V, Zanotto G, Guarise P, et al. Effects of remote monitoring of cardiac implantable
57	557		electronic devices after stroke or transient ischemic attack. Journal of Cardiovascular Medicine
58	558		2019; 20: 551-556.
59			
60			

1			
2 3		27	
4	559	37.	Hale TM, Jethwani K, Kandola MS, et al. A remote medication monitoring system for chronic
5	560		heart failure patients to reduce readmissions: a two-arm randomized pilot study. <i>Journal of</i>
6	561	20	medical Internet research 2016; 18: e91.
7	562	38.	Kurek A, Tajstra M, GADULA-GACEK E, et al. Impact of Remote Monitoring on Long-Term
8	563		Prognosis in Heart Failure Patients in a Real-World Cohort: Results From All-Comers
9	564	20	COMMIT-HF Trial. Journal of cardiovascular electrophysiology 2017; 28: 425-431.
10 11	565	39.	Jaarsma T, van der Wal MH, Lesman-Leegte I, et al. Effect of moderate or intensive disease
12	566		management program on outcome in patients with heart failure: Coordinating Study Evaluating
13	567		Outcomes of Advising and Counseling in Heart Failure (COACH). Archives of internal medicine
14	568		2008; 168: 316-324.
15	569	40.	Pedone C, Rossi FF, Cecere A, et al. Efficacy of a Physician-Led Multiparametric Telemonitoring
16	570		System in Very Old Adults with Heart Failure. <i>Journal of the American Geriatrics Society</i> 2015;
17	571		63: 1175-1180.
18	572	41.	Clemensen J, Rothmann MJ, Smith AC, et al. Participatory design methods in telemedicine
19	573		research. Journal of telemedicine and telecare 2017; 23: 780-785.
20	574	42.	Koehler F, Koehler K, Deckwart O, et al. Efficacy of telemedical interventional management in
21 22	575		patients with heart failure (TIM-HF2): a randomised, controlled, parallel-group, unmasked trial.
23	576		The Lancet 2018; 392: 1047-1057.
24	577	43.	Thomason TR, Hawkins SY, Perkins KE, et al. Home telehealth and hospital readmissions: a
25	578		retrospective OASIS-C data analysis. Home healthcare now 2015; 33: 20-26.
26	579	44.	Achelrod D, Schreyögg J and Stargardt T. Health-economic evaluation of home telemonitoring
27	580		for COPD in Germany: evidence from a large population-based cohort. The European Journal of
28	581		Health Economics 2017; 18: 869-882.
29	582	45.	Alshabani K, Attaway AA, Smith MJ, et al. Electronic inhaler monitoring and healthcare
30	583		utilization in chronic obstructive pulmonary disease. <i>Journal of telemedicine and telecare</i> 2020;
31 32	584		26: 495-503.
33	585	46.	Orozco-Beltran D, Sánchez-Molla M, Sanchez JJ, et al. Telemedicine in primary care for patients
34	586		with chronic conditions: the ValCronic Quasi-Experimental Study. Journal of medical Internet
35	587		research 2017; 19: e400.
36	588	47.	McElroy I, Sareh S, Zhu A, et al. Use of digital health kits to reduce readmission after cardiac
37	589		surgery. Journal of Surgical Research 2016; 204: 1-7.
38	590	48.	Martín-Lesende I, Orruño E, Mateos M, et al. Telemonitoring in-home complex chronic patients
39	591		from primary care in routine clinical practice: Impact on healthcare resources use. European
40	592		Journal of General Practice 2017; 23: 136-143.
41 42	593	49.	Chatwin M, Hawkins G, Panicchia L, et al. Randomised crossover trial of telemonitoring in
42	594		chronic respiratory patients (TeleCRAFT trial). <i>Thorax</i> 2016; 71: 305-311.
44	595	50.	Lüthje L, Vollmann D, Seegers J, et al. A randomized study of remote monitoring and fluid
45	596		monitoring for the management of patients with implanted cardiac arrhythmia devices. Ep
46	597		Europace 2015; 17: 1276-1281.
47	598	51.	Mirón Rubio M, Ceballos Fernández R, Parras Pastor I, et al. Telemonitoring and home
48	599		hospitalization in patients with chronic obstructive pulmonary disease: study TELEPOC. Expert
49	600		review of respiratory medicine 2018; 12: 335-343.
50	601	52.	Ringbæk T, Green A, Laursen LC, et al. Effect of tele health care on exacerbations and hospital
51 52	602		admissions in patients with chronic obstructive pulmonary disease: a randomized clinical trial.
52	603		International journal of chronic obstructive pulmonary disease 2015; 10: 1801.
54	604	53.	Sink E, Patel K, Groenendyk J, et al. Effectiveness of a novel, automated telephone intervention
55	605		on time to hospitalisation in patients with COPD: A randomised controlled trial. Journal of
56	606		Telemedicine and Telecare 2020; 26: 132-139.
57	607	54.	D'ancona G, Safak E, Senges J, et al. Activation of remote monitoring for cardiac implantable
58	608		electronic devices: small dog for tall weeds. Clinical Research in Cardiology 2017; 106: 833-839.
59			
60			

1			
2			
3	609	55.	Gingele AJ, Brunner-la Rocca H, Ramaekers B, et al. Telemonitoring in patients with heart
4 5	610		failure: Is there a long-term effect? Journal of telemedicine and telecare 2019; 25: 158-166.
6	611	56.	Ishani A, Christopher J, Palmer D, et al. Telehealth by an interprofessional team in patients with
7	612		CKD: a randomized controlled trial. American Journal of Kidney Diseases 2016; 68: 41-49.
8	613	57.	Kenealy TW, Parsons MJ, Rouse APB, et al. Telecare for diabetes, CHF or COPD: effect on quality
9	614		of life, hospital use and costs. A randomised controlled trial and qualitative evaluation. <i>PloS one</i>
10	615		2015; 10: e0116188.
11	616	58.	Nouryan CN, Morahan S, Pecinka K, et al. Home telemonitoring of community-dwelling heart
12	617		failure patients after home care discharge. <i>Telemedicine and e-Health</i> 2019; 25: 447-454.
13	618	59.	Wagenaar KP, Broekhuizen BD, Jaarsma T, et al. Effectiveness of the European Society of
14 15	619		Cardiology/Heart Failure Association website 'heartfailurematters. org'and an e-health adjusted
16	620		care pathway in patients with stable heart failure: results of the 'e-Vita HF'randomized
17	621		controlled trial. European journal of heart failure 2019; 21: 238-246.
18	622	60.	Banbury A, Nancarrow S, Dart J, et al. Adding value to remote monitoring: Co-design of a health
19	623		literacy intervention for older people with chronic disease delivered by telehealth-The
20	624		telehealth literacy project. Patient Education and Counseling 2020; 103: 597-606.
21	625	61.	Vegesna A, Tran M, Angelaccio M, et al. Remote patient monitoring via non-invasive digital
22	626		technologies: a systematic review. <i>Telemedicine and e-Health</i> 2017; 23: 3-17.
23	627	62.	Farias FACd, Dagostini CM, Bicca YdA, et al. Remote patient monitoring: a systematic review.
24 25	628		Telemedicine and e-Health 2020; 26: 576-583.
25 26	629	63.	Thomas EE, Haydon HM, Mehrotra A, et al. Building on the momentum: Sustaining telehealth
20	630		beyond COVID-19. Journal of telemedicine and telecare 2020: 1357633X20960638.
28	631	64.	
29	632		chronic obstructive pulmonary disease patients: A systematic review and meta-analysis.
30	633		International Journal of Nursing Studies 2019; 92: 1-15.
31	634	65.	Dickinson MG, Allen LA, Albert NA, et al. Remote monitoring of patients with heart failure: a
32	635		white paper from the Heart Failure Society of America Scientific Statements Committee. Journal
33	636		of cardiac failure 2018; 24: 682-694.
34 35	637	66.	Huygens MW, Swinkels IC, de Jong JD, et al. Self-monitoring of health data by patients with a
36	638		chronic disease: does disease controllability matter? BMC family practice 2017; 18: 40.
37	639	67.	Galinier M, Roubille F, Berdague P, et al. Telemonitoring versus standard of care in heart failure:
38	640		a randomised multicentre trial. European Journal of Heart Failure 2020.
39	641	68.	
40	642		hospitalization in patients with chronic obstructive pulmonary disease: study TELEPOC. Expert
41	643		review of respiratory medicine 2018; 12: 335-343. 2018/02/21. DOI:
42	644		10.1080/17476348.2018.1442214.
43	645	69.	Noah B, Keller MS, Mosadeghi S, et al. Impact of remote patient monitoring on clinical
44 45	646		outcomes: an updated meta-analysis of randomized controlled trials. <i>NPJ digital medicine</i> 2018;
46	647		1: 1-12.
47	648	70.	Walker RC, Tong A, Howard K, et al. Patient expectations and experiences of remote monitoring
48	649		for chronic diseases: Systematic review and thematic synthesis of qualitative studies.
49	650		International Journal of Medical Informatics 2019; 124: 78-85. DOI:
50	651		https://doi.org/10.1016/j.ijmedinf.2019.01.013.
51	652	71.	Adair JG. The Hawthorne effect: A reconsideration of the methodological artifact. <i>Journal of</i>
52	653		Applied Psychology 1984; 69: 334-345.
53			
54 55	654		
55 56	655		
57	000		
58			
59			
60			

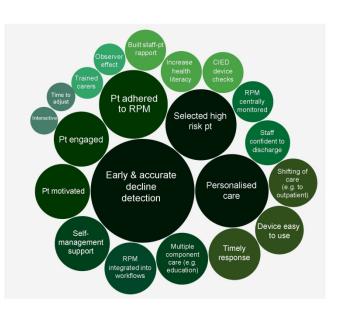
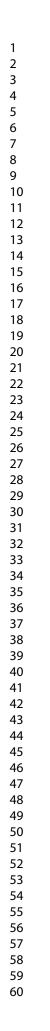



Figure 1 Factors associated with RPM intervention studies that reduced acute care use. The size of each box relates to the number of studies that identified each factor as having an important influence on the outcome.

CIED: Cardiac implantable electronic devices; Pt: patient; RPM: remote patient monitoring

364x215mm (192 x 192 DPI)

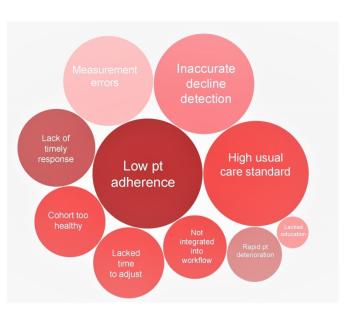
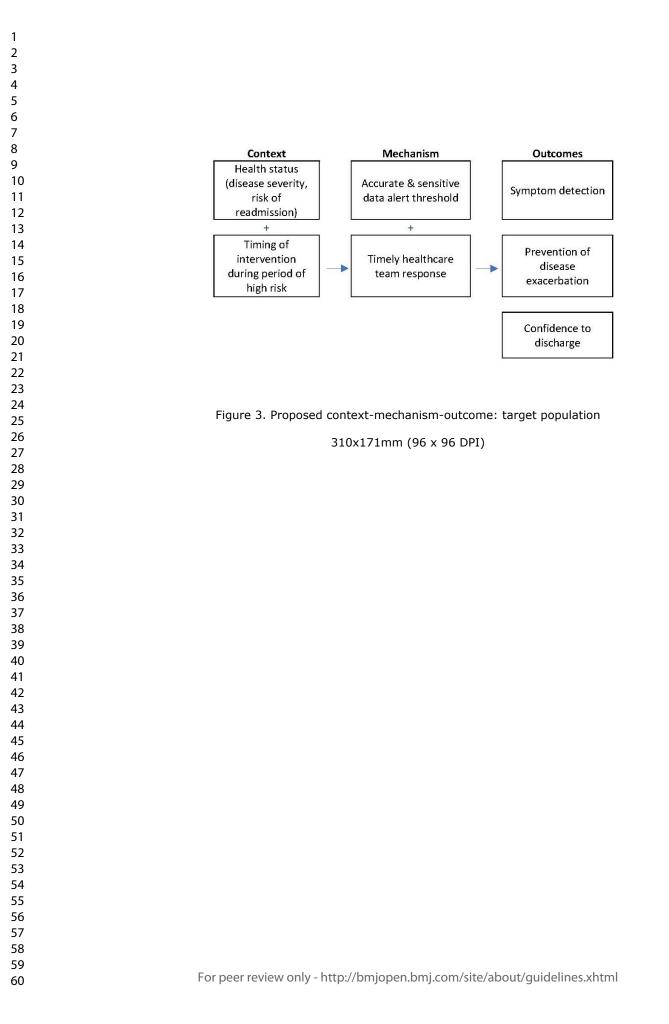



Figure 2 Factors associated with RPM interventions studies that increased acute care use. The size of each box relates to the number of studies that identified each factor as having an important influence on the outcome. RPM: remote patient monitoring; Pt: patient

728x431mm (96 x 96 DPI)

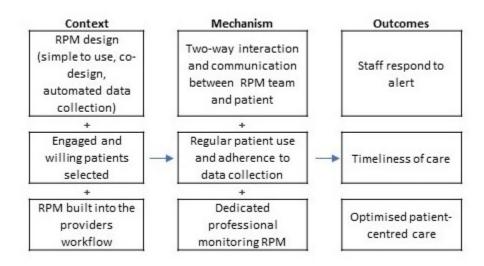
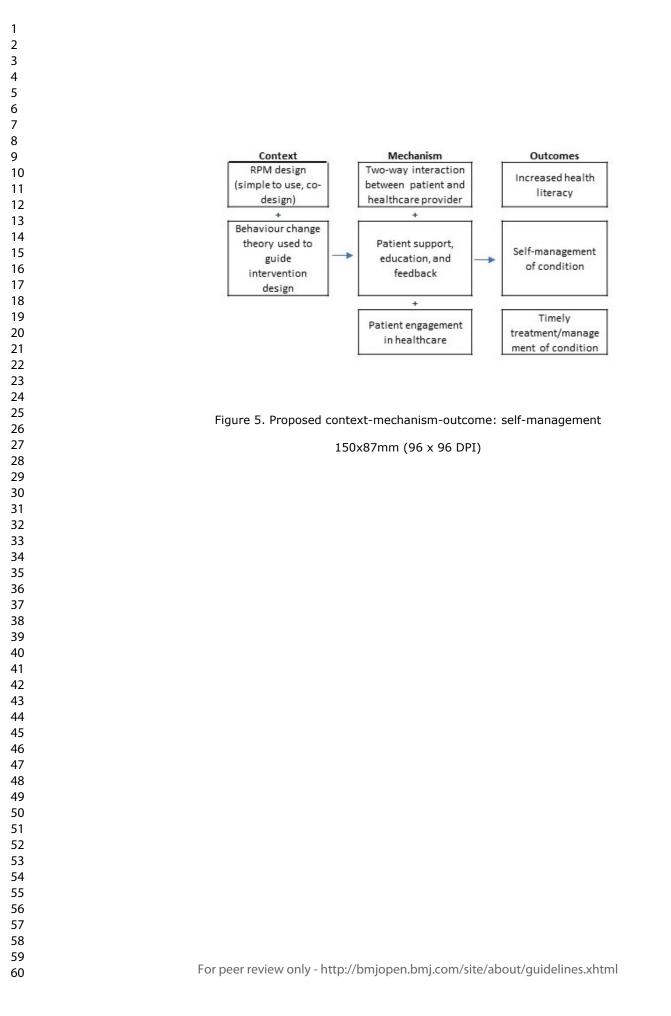
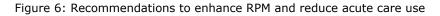




Figure 4. Proposed context-mechanism-outcome: timely care

121x72mm (96 x 96 DPI)

Aspect of care	Factors in intervention success
Interpersonal	 Encourage two-way interactive communication between pt and team Enhance pt self-management through support, education & feedback Use data from RPM to tailor & personalise care Ensure collaborative and multidisciplinary team involvement (including primary care to increase coordination and continuity)
	 Select patients at high risk of readmission (e.g. moderate-severe disease, high healthcare use, comorbidities) Motivate patients & staff to use RPM Increase adherence to RPM through routine data entry checks & frequent follow-ups
Intervention (RPM design)	 Co-design with target population Make it simple and easy to use Ensure accurate & sensitive measurements to enable early detection Patient-specific measurements need to be used Enhance self-management (e.g. monitor medication adherence)

489x284mm (59 x 59 DPI)

BMJ Open		
Aspect of care	Factors in intervention success	
Interpersonal	 Encourage two-way interactive communication between pt Enhance pt self-management through support, education & Use data from RPM to tailor & personalise care Ensure collaborative and multidisciplinary team involvemer (including primary care to increase coordination and contin 	k feedba nt
	 Select patients at high risk of readmission (e.g. moderate-se disease, high healthcare use, comorbidities) Motivate patients & staff to use RPM Increase adherence to RPM through routine data entry chee frequent follow-ups 	
Intervention	Co-design with target population	
(RPM design)	 Make it simple and easy to use Ensure accurate & sensitive measurements to enable early Patient-specific measurements need to be used 	detectio
	Enhance self-management (e.g. monitor medication adhere	ence)
	 Ensure accurate & sensitive measurements to enable early Patient-specific measurements need to be used 	
100.001	(50 50 50)	
489x284mr	(59 x 59 DPI)	

Appendix A

RAMESES publication standards: realist synthesis

Wong, G., Greenhalgh, T., Westhorp, G. *et al.* RAMESES publication standards: realist syntheses. *BMC Med* **11**, 21 (2013). https://doi.org/10.1186/1741-7015-11-21

ТІТ	ſLE	Pg No.	
1		In the title, identify the document as a realist synthesis or review	1
AB	STRACT		
2		While acknowledging publication requirements and house style, abstracts should ideally contain brief details of: the study's background, review question or objectives; search strategy; methods of selection, appraisal, analysis and synthesis of sources; main results; and implications for practice.	2
INT	TRODUCTION		
3	Rationale for review	Explain why the review is needed and what it is likely to contribute to existing understanding of the topic area.	3
4	Objectives and focus of review	State the objective(s) of the review and/or the review question(s). Define and provide a rationale for the focus of the review.	3
ME	THODS		
5	Changes in the review process	Any changes made to the review process that was initially planned should be briefly described and justified.	N/A

Page 25 of 25

 BMJ Open

тіт	LE	Pg No.	
6	Rationale for using realist synthesis	Explain why realist synthesis was considered the most appropriate method to use.	4
7	Scoping the literature	Describe and justify the initial process of exploratory scoping of the literature.	4
8	Searching processes	While considering specific requirements of the journal or other publication outlet, state and provide a rationale for how the iterative searching was done. Provide details on all the sources accessed for information in the review. Where searching in electronic databases has taken place, the details should include, for example, name of database, search terms, dates of coverage and date last searched. If individuals familiar with the relevant literature and/or topic area were contacted, indicate how they were identified and selected.	4
9	Selection and appraisal of documents	Explain how judgements were made about including and excluding data from documents, and justify these.	4. also additional details provided in previously published paper
10	Data extraction	Describe and explain which data or information were extracted from the included documents and justify this selection.	As above
11	Analysis and synthesis processes	Describe the analysis and synthesis processes in detail. This section should include information on the constructs analyzed and describe the analytic process.	As above
RES	SULTS		
12	Document flow diagram	Provide details on the number of documents assessed for eligibility and included in the review with reasons for exclusion at each stage as well as an indication of their source of origin (for example, from searching databases, reference lists and so on). You may consider	This paper included articles from a previously published review that followed the PRISMA guidelines – the flow

TIT	LE	Pg No.	
		using the example templates (which are likely to need modification to suit the data) that are provided.	diagram is published within that paper.
13	Document characteristics	Provide information on the characteristics of the documents included in the review.	4-8
14	Main findings	Present the key findings with a specific focus on theory building and testing.	4-8
DIS	CUSSION		
15	Summary of findings	Summarize the main findings, taking into account the review's objective(s), research question(s), focus and intended audience(s).	9
16	Strengths, limitations and future research directions	Discuss both the strengths of the review and its limitations. These should include (but need not be restricted to) (a) consideration of all the steps in the review process and (b) comment on the overall strength of evidence supporting the explanatory insights which emerged. The limitations identified may point to areas where further work is needed.	10
17	Comparison with existing literature	Where applicable, compare and contrast the review's findings with the existing literature (for example, other reviews) on the same topic.	9-10
18	Conclusion and recommendations	List the main implications of the findings and place these in the context of other relevant literature. If appropriate, offer recommendations for policy and practice.	10/11
19	Funding	Provide details of funding source (if any) for the review, the role played by the funder (if any) and any conflicts of interests of the reviewers.	1