Networked partisanship and framing: a socio-semantic network analysis of the Italian debate on migration - S3 Appendix

Tommaso Radicioni^{*1,2}, Fabio Saracco², Elena Pavan³, Tiziano Squartini²

1 Scuola Normale Superiore, P.zza dei Cavalieri 7, 56126 Pisa (Italy)

2 IMT School for Advanced Studies, P.zza S. Francesco 19, 55100 Lucca (Italy)

3 University of Trento, via Verdi 26, 38122 Trento (Italy)

*tommaso.radicioni@sns.it

S3 Appendix. Bipartite networks projection and validation. This section provides a brief overview of the algorithm we have implemented to project our bipartite ² networks on a single layer (be it the one of verified users or the one of the hashtags). Generally speaking, this procedure outputs a monopartite projection by linking any two ⁴ nodes, belonging to the same layer, if the number of their common neighbors is statistically significant; it can be summarized into three steps. ⁶

First, a measure quantifying the degree of similarity between two nodes is needed. Given any two nodes α and β of the same layer \bot , their similarity is provided by the total number of co-occurrences, i.e. the number of common neighbors $V^*_{\alpha\beta}$, computable as $V_{\alpha\beta}^* = \sum_{j=1}^{N_{\top}} V_{\alpha\beta}^j = \sum_{j=1}^{N_{\top}} m_{\alpha j} m_{\beta j}$. The term $V_{\alpha\beta}^j = m_{\alpha j} m_{\beta j}$ denotes the 'single' common neighbor, defined by the nodes α and β with j belonging to the opposite layer; 11 its value is 1 if nodes α and β share node j as a common neighbor and 0 otherwise.

Second, the statistical significance of any two nodes similarity needs to be quantified. 13 To this aim, observations have to be compared against a proper null model that can be ¹⁴ defined within the mathematical framework of the so-called Exponential Random 15 Graphs. This framework is based on a very general principle rooted in statistical 16 physics $[1]$, prescribing to employ the conservative benchmarks that are induced by the $\frac{1}{12}$ maximization of Shannon entropy. In mathematical notation, given the ensemble $\mathcal M$ of $\mathfrak n$ networks and the probability $P(\mathbf{M})$ of occurrence of a network $\mathbf{M} \in \mathcal{M}$, the Shannon 19 entropy is 20

$$
S = -\sum_{\mathbf{M} \in \mathcal{M}} P(\mathbf{M}) \ln P(\mathbf{M}) \tag{1}
$$

where the sum runs over the set of all possible bipartite graphs with, respectively, N_{T} 21 nodes on the \top layer and N_{\perp} nodes on the \perp layer - as the real network system \mathbf{M}^* . As 22 the entropy-maximization procedure is carried out in a constrained framework, let us 23 define the constraints of the Bipartite Configuration Model (BiCM) $[2]$, i.e. the null $\frac{24}{4}$ model adopted in the present paper. In this specific model, the ensemble average of the 25 degrees of users and hashtags (i.e. $k_i^* = \sum_{\alpha} m_{i\alpha}$, $\forall i$ and $h_{\alpha}^* = \sum_{i} m_{i\alpha}$, $\forall \alpha$, 26 respectively) are considered as fixed. Upon introducing the Lagrange multipliers θ and 27 η to enforce the proper constraints and ψ to ensure the normalization of the probability, 28 the recipe prescribes to maximize the Lagrangian function 29

$$
\mathcal{L} = S - \psi \left[1 - \sum_{\mathbf{M} \in \mathcal{M}} P(\mathbf{M}) \right] - \sum_{i=1}^{N_{\top}} \theta_i [k_i^* - \langle k_i \rangle] - \sum_{\alpha=1}^{N_{\perp}} \eta_{\alpha} [h_{\alpha}^* - \langle h_{\alpha} \rangle] \tag{2}
$$

with respect to $P(M)$. This leads to: $30₃₀$

$$
P(\mathbf{M}|\boldsymbol{\theta}, \boldsymbol{\eta}) = \prod_{i=1}^{N_{\top}} \prod_{\alpha=1}^{N_{\perp}} p_{i\alpha}^{m_{i\alpha}} (1 - p_{i\alpha})^{1 - m_{i\alpha}}
$$
(3)

where $x_i \equiv e^{-\theta_i}$, $y_\alpha \equiv e^{-\eta_\alpha}$ and the quantity $p_{i\alpha} \equiv \frac{x_i y_\alpha}{1 + x_i y_\alpha}$ is the probability that user i si and hashtag α are connected (i.e. that $m_{i\alpha} = 1$).

Links independence under the BiCM implies that 1) the presence of a co-occurrence $\frac{33}{2}$ (i.e. $m_{\alpha j} m_{\beta i} = 1$) can be described as the outcome of a Bernoulli trial whose β probability reads $f_{\text{Ber}}(m_{\alpha j}m_{\beta i}=1) = p_{\alpha j}p_{\beta j}$ and that 2) the term $V_{\alpha\beta}$ is the sum of ³⁵ independent Bernoulli trials, each one characterized by a different probability. The $\frac{36}{100}$ behavior of such a random variable is described by the Poisson-Binomial (PB) $\frac{37}{20}$ distribution. Thus, quantifying the statistical significance of the similarity of nodes α 38 and β amounts at computing 39

$$
p-value(V^*_{\alpha\beta}) = \sum_{V_{\alpha\beta} \ge V^*_{\alpha\beta}} f_{\text{PB}}(V_{\alpha\beta});\tag{4}
$$

this procedure is repeated for each pair of nodes, hence obtaining $\binom{N_{\perp}}{2}$ p-values.

Third, in order to understand which p-values are significant, a validation procedure ⁴¹ for testing simultaneously multiple hypotheses is needed. The choice of the present $\frac{42}{42}$ paper has been directed towards the False Discovery Rate (FDR) [\[3\]](#page-1-3) which prescribes $\frac{43}{45}$ to, first of all, sort the $\binom{N_{\perp}}{2}$ p-values in increasing order, i.e. p-value₁ $\leq \ldots \leq$ p-value_n, 44 and, then, identify the largest integer \hat{i} satisfying the condition p-value $\hat{i} \leq \frac{\hat{i}t}{n}$, where t 45 represents the single-test significance level (in our case, it is set to 0.01). All p-values 46 that are less than, or equal to, p-value $_{\hat{i}}$ are, thus, kept, meaning that all the $\frac{47}{47}$ corresponding node pairs are linked in the resulting monopartite projection. ⁴⁸

 $References$ 49

- 1. Cimini G, Squartini T, Saracco F, Garlaschelli D, Gabrielli A, Caldarelli G. The ⁵⁰ statistical physics of real-world networks. Nature Reviews Physics. ⁵¹ 2019;1(1):58–71. doi:10.1038/s42254-018-0002-6. ⁵²
- 2. Saracco F, Clemente RD, Gabrielli A, Squartini T. Randomizing bipartite 53 networks: the case of the World Trade Web. Scientific Reports. 2015;5:10595. doi:10.1038/srep10595. 55
- 3. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and 56 powerful approach to multiple testing. J R Stat Soc B. 1995;57(1):289–300. $\frac{57}{20}$