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Color coding of measures studied For added readability, in S5, S6 and S7 Figs,
just like in Fig 3, the color of the background encodes the parameter studied:
probability of outbreak in blue, duration until outbreak in green, and final total number
of people infected when there is an outbreak in red.

Error bars. The error bars represent the 95% confidence interval. More specifically,
most of our measures are averages of values, with one value for each run of the
simulation (e.g. the probability of outbreak is an average of 0-1 values). The standard
deviation of the estimate of the mean is approximately equal to the (estimated)
standard deviation of the values, divided by the square root of the number of samples.
Error bars are set to be 5 times this standard deviation. Because of Chebyshev’s
inequality, this corresponds to a 1− 1/52 = 96% confidence interval.

Details about the networks

See S1, S2, S3 and S4 Figs.

Results for all contact networks

See S5, S6, S7 and S8 Figs.

Technical details about the simulation

Rounding reals to integers while preserving the mean of the distribution
Since the process is discrete, with one discrete step equal to one day, time steps should
be defined as integers. To round real random variables drawn from Gamma
distributions into integers without changing the mean of the distribution, we used
randomized rounding. For example, if X = 5.4 then with probability 40% it is rounded
to 6 and with the complementary probability 60% it is rounded to 5, ensuring the
average rounded value equals 5.4.

Number of executions performed The simulations presented here were performed
as follows: for each possible index case of the graph nodes, for each possible day when
that person gets infected, do 20 random executions. Because the the On-Off and
Rotating strategies have a period of 2 weeks, there are 14 possibilities for the starting
day. Consequently, for the high school contact graph, all the results are obtained by
averaging over 327× 14× 20 = 91560 random executions. For the workplace contact
graph, the results are obtained by averaging over 60760 simulations, and for primary
schools, the results are obtained by averaging over 67760 simulations.

Probabilistic coupling of executions For easier qualitative comparison of
simulation results for different strategies, we used a probabilistic coupling of the random
executions. In each run, the following values are coupled: patient initially infected, day
of the initial infection, apparition of symptoms for each person, length of each exposed
and infectious period for each person, super-spreading transmission factor for each day
and each person. Moreover, to decide whether a transmission occurs, we compare the
transmission probability with a uniformly random value between 0 and 1. For each
(directed) edge of the contact graph, a random value is sampled whenever the origin is
infectious and the other endpoint is susceptible; we couple the sequence of those random
values. With these choices, we couple six executions: one for each strategy and the one
when there is no strategy.
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Reproducibility of the simulations Our simulation code uses a fixed seed for the
random generator so that all simulations can be reproduced. Each simulation run is
identified by its index. More precisely, the k-th simulation run (run k for short)

concerns person i =
�

k
14×20

�
(persons are sorted by increasing id) and starts at day

j = k mod 14.

Systematic sensitivity analysis of model parameters

Parameters are described in Table 2

Graph of persistent contacts See S9, S10, S11 and S12 Figs.

Quantifying the heterogeneity of transmissions. In the high school contact
graph, the number X of persons infected by the index case follows a negative binomial
distribution with mean Rlocal

0 = 1.25 and dispersion K ∼ 0.5 (See Table 2; those values
are obtained by suitable calibration of parameters p0 and psuper). In particular, X
equals 0 with probability ∼ 0.5, equals 1 with probability ∼ 0.2, and equals 2 with
probability ∼ 0.1. Thus, with the complementary probability 20%, we have X ≥ 3.
Thus, 20% of the situations lead to a fraction of
(1.25− 0.5× 0− 0.2× 1− 0.1× 2)/1.25 = 68% of the infections by the case index. See
S13 Fig for a sensitivity analysis w.r.t. p0 and psuper.

Surprisingly, in panel (b) of S13 Fig we observe that, the more dispersion in the
shape of super-spreaders, the less the probability of outbreak and the fewer people get
infected. This can be explained intuitively by thinking about an extreme case of
dispersion. Imagine that with probability 1/1000, there is a super-spreading factor of
1000, and with the complementary probability 999/1000, the super-spreading factor
equals 0. Then, for most executions, the index case is not a super-spreader and infects
no one. In 0.1% of the cases, the index case is a super-spreader and infects all of its
neighbors, however none of them will be a super-spreader and propagate the infection.
The event that the index case and at least one of its neighbors are both super-spreaders
has probability about equal to the number of neighbors times 0.000001, too small to
ever occur in the simulations.

Symptoms See S14 and S15 Figs.

Durations of each period See S16 and S17 Figs.

Selected transmission trees

See S19, S20, S21, S22 Figs.
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