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1 Bayesian clustering of curves

1.1 Generative model specification

We use a mixture of curves model to cluster genetic risk profiles to latent curves fitted with
a spline basis. The graphic representation of the model is shown in SSFig 1. Our analysis is
performed independently for each disease, therefore without specific clarification, we omit
the disease index.

Our model assumes risk profiles of the S SNPs are assigned to K clusters, where we
denote the mean of risk profile for the jth SNP (j = 1, 2, ..., S) as β̂j ∈ RM and the standard

error of β̂j to be εj ∈ RM . M refers to the number of age intervals we have. The mean and
standard error of risk effect sizes within M age intervals are the summary statistics which
are our model inputs.

The model infers latent curves that generate risk profiles for each variant. We use a
linear combination of cubic spline bases to construct smooth latent curves, where Xθi(∈



SSFig 1. Schematic representation of the model. i = 1, 2, ..,K is the index of the mixture
components; j = 1, 2, .., S is the index of the SNPs. β̂j and εj are the summary statistics
for SNP j that are estimated using an interval-censored proportional hazard model (See
S1 Supplemental Methods). zj is the latent variable, which assigns SNP j to cluster i.

RM ) is the latent curve of ith cluster (i = 1, 2, ...,K). The cubic spline basis matrix
X ∈ RM×P is defined as follows [1, p. 141]:

Xs(m) = ms−1, s ≤ 4

Xs(m) = (m− ξs−4)3
+, s > 4.

(1)

Here m = 1, 2, ...,M , and s = 1, 2, ...P . P are the number of bases, which controls the
degrees of freedom of the cubic spline. (·)+ denotes the positive part of a function and ξs
are even split points across the M age intervals. θi ∈ RP is the linear coefficients of P
bases.

Other variables shown in SSFig 1 specify the generative process for the risk profiles,
using a mixture model. Σs is a vertical translation matrix with all elements equal, which
allows β̂j to be vertically translated from the latent curve Xθi that generates it. πi is the
mixture weight of the ith latent curve and zj ∈ RK is latent one-hot vectors assigning jth

SNP to one of K latent curves. We use Θ = (π, ε, θ,X,Σs) to denote the set of parameters
in the mixture model, then we summarise our generative model as follows:

P (β̂j |Θ) =
K∑
i=1

πiN (β̂j |Xθi,Σs + Σj). (2)

Here Σj ∈ RM×M is a diagonal matrix with diagonal elements ε2j . Intuitively, the model

is a mixture of K latent curves, each fitted with a spline Xθi. The profile for the jth SNP



is generated from one of the latent curves with a variance Σj , then vertically translated

with Σs. Note Σj is the standard error for β̂j (summary statistics; see S1 Supplemental
Methods) and the vertical translation is controlled by a hyper-parameter Σs.

We further specify a prior distribution for θi, which is a Gaussian distribution with zero
mean and a fixed covariance matrix:

P (θi) = N (θi|0,Σ0). (3)

In following sections we will derive the equations used in the inference of the latent
curve Xθi for each cluster. Note the spline bases X are shared across clusters, so we infer
the posterior of θi.

Two hyper-parameters we have in the model are set as:

Σ0 = diag(1P ),Σs = 0.0004

1.2 Inference of cluster distribution: EM

In our model, the variables for different clusters are exchangeable [2], which will cause the
so-called “label switching” problem if we apply a sampling method. Therefore, we derive
an EM algorithm to maximize the following log likelihood:

l =
S∑
j=1

ln
K∑
i=1

πiN (β̂j |Xθi,Σs + Σj) +
K∑
i=1

lnN (θi|0,Σ0). (4)

To derive the inference equations we first write down the complete data log likelihood
function with the latent variable Z:

lnP (β̂,Z|Θ) =

S∑
j=1

K∑
i=1

zji{lnπi + lnN (β̂j |Xθi,Σs + Σj)}. (5)

Classic mixture models use “cluster specific” covariance matrices, which are inferred for
each mixture component. However, it is worth noting that we use “SNP specific” covariance
matrices Σj for the jth variant. The rationale is that when we estimate the effect size β̂j
for a specific locus, we obtain its standard error εj . Therefore, we use different Σj for each
variant to capture the uncertainty differences across loci.

To keep the notation simple, from here on we will use Σj to denote Σs + Σj . By

maximizing the expected value of the complete data likelihood Ez[ln{P (β̂, Z|Θ)P (θi)}]
from Equation 5 and 3, we obtained the M-step update as follows:

πi =
Ni

N
, Ni =

s∑
j=1

γ(zji), (6)



θi = {Σ−1
0 +

S∑
j=1

γ(zji)X
TΣ−1

j X}−1
S∑
j=1

γ(zji)X
TΣ−1

j β̂j . (7)

γ(zji) is the expectation of zji, which will be obtained in the E-step. By Bayes’ theorem,
we could write down the posterior distribution of the latent variable Z:

P (Z|β̂,Θ) ∝
S∏
j=1

K∏
i=1

{πiN (β̂j |Xθi,Σj)}zji . (8)

Since the posterior factorizes over j, zj follows an Multinoulli distribution for each SNP.
From this we can derive the expectation of zji , which is the E-step:

γ(zji) = E[zji] =
πiN (β̂j |Xθi, zj)∑K

m=1 πmN (β̂j |Xθm, zm)
. (9)

The inference is performed by randomly initialising θis, then alternating between the M-
step and E-step until likelihood function converges. For each setting, we initialize multiple
runs (see S1 Supplemental Methods) and keep the sequence with the highest converged
likelihood.

1.3 Approximating the confidence interval of latent curves: Variational
inferences

The EM algorithm provides an efficient way to maximize the likelihood, but we only get
a point estimate of θi without uncertainty quantification. Since we are interested in how
genetic risk changes over age, we would ideally want to get the posterior of the latent risk
curves over age. As discussed in previous sections, any sampling method will cause the
“label switching”” problem, which will be hard to deal with, so we choose an approximation
method. Here we apply “one step” of a Variational Bayes update to approximate the
posterior distribution of the latent curves, the validity of which is discussed later in this
section. We assume a factorized Variational distribution q(z, θ) = q(z)q(θ). The full data
distribution is as follows:

P (β̂, θ,Z) =
∏K
i=1

∏S
j=1 P (β̂j |θi,Z)P (Z)P (θ) =

∏K
i=1

{
N (θi|0,Σ0)

∏S
j=1{πiN (β̂j |Xθi,Σj)}zji

}
(10)

In order to get the posterior distribution of the latent profiles, we derive the update of the
variational distribution q∗(θi) as follows:

ln q∗(θi) =Ez[lnP (β̂|Z, θi) + lnP (θi)] + const

=− 1

2
θTi (XT {

S∑
j=1

E[zji]Σ
−1
j }X + Σ−1

0 )θi

+ θTi X
T

S∑
j=1

E[zji]Σ
−1
j β̂j + const,

(11)



q∗(θi) = N (θi|A−1
i bi,A−1

i )

Ai = XT {
S∑
j=1

E[zji]Σ
−1
j }X + Σ−1

0

bi = XT
S∑
j=1

E[zji]Σ
−1
j β̂j .

Since θi is Gaussian, the latent profile Xθi is also Gaussian (cubic spline is a linear trans-
formation of θi) with covariance matrix XA−1

i XT .
We note that full Variational Bayes inference could potentially be performed by es-

timating q∗(zji) and πi by maximizing the Variational lower bound of the marginal like-
lihood [3, p. 484]. However, for Variational inference we use a factorized distribution
q(z, θ) = q(z)q(θ) to approximate the true posterior distribution of P (Z, θ|β̂), which can
not be factorized. So, directly using Variational Bayes to estimate the mean of θ that
maximizes Equation 5 is not as good as EM if we want an unbiased estimate. We therefore
use EM to estimate the mean and the Variational Bayes approach to estimate the credible
interval.

It is interesting to notice in Equation 11, the only expectation we took was over zji,
which is also estimated in the EM algorithm’s E-step, as in Equation 9. We now show
how directly plugging in the expectation from EM will give a good approximation for the
posterior distribution of latent curves.

Recall that the EM algorithm maximizes the marginal likelihood by iteratively max-
imizing the lower bound LEM (q, θ) with respect to q and θ. The estimated value after
converging can be expressed as:

(q̂EM (Z), θ̂EM ) = arg max
q,θ

LEM (q(Z), θ)

= arg max
q,θ

∑
z∈Z

q(z) ln
P (β̂, z|θ)P (θ)

q(z)

(12)

The variational Bayes method also maximizes a lower bound for the marginal likelihood



LV B(q), which can be written as:

(q̂V B(θ), q̂V B(Z)) = arg max
q
LV B(q)

= arg max
q

∫
θ

∑
Z

q(z)q(θ) ln
P (β̂, z|θ)P (θ)

q(z)q(θ)

= arg max
q

∫
θ
q(θ)

∑
Z

q(z) ln
P (β̂, z|θ)P (θ)

q(z)
+

∫
θ
q(θ) ln

1

q(θ)

= arg max
q

∫
θ
q(θ)LEM (q(Z), θ)−

∫
θ
q(θ) ln q(θ).

(13)

In Equation 12, if we plug in the q̂EM (Z) estimated via EM, we see that the lower bound
LEM (q̂EM (Z), θ) = g(θ) is a function of θ, which is maximized at θ̂EM . We note that
the Variational lower bound in Equation 13 is the negative KL(q||g), which is maximized
when q = g. Comparing Equation 11 and Equation 12, we can see that g(θ) is estimated
as q∗(θ) on the right hand side of Equation 11, with respect to q̂EM (Z). Therefore, one
step of Variational approximation of q∗(θ) is sufficient to provide an approximate posterior
distribution for the latent curve for each cluster, which has the mode that maximizes the
marginal likelihood (as in the EM algorithm).

2 The effect of unobserved factors on risk effect estimation

2.1 Independent unobserved effects: frailty

Disease is caused by many risk factors, including those that are not observed. The unob-
served confounders can cause biases for effect size estimation [4]. Here, we describe how
unmeasured confounders affect risk effect size estimation, even when the confounders are
independent of the focal variant of interest. We also provide methods to account for these
effects through estimating frailty parameters from incidence rates of disease over age.

2.1.1 Parametric modelling of effect size in the presence of frailty

Assuming we have a proportional hazards risk for disease incidence, with an unobserved
risk background u, the hazard rate is given by

h(t|x, u) = h0(t)eβxu,

where h(t|x, u) is the conditional hazard rate, x is the focus genetic variant of interest.
u is the unobserved background risk effect (called frailty in epidemiology). Since u is
unobserved, instead of estimating the effect size β and baseline risk h0(t) under the true



model specification, we can only estimate the marginal effect size β∗ and baseline hazard
h∗0(t) under a mis-specified model:

h(t|x) = h∗0(t)eβ
∗x. (14)

Suppose we have a parametric form for u, we can then work out the marginal distribution
for β∗ and h∗0(t) directly. For simplicity, here we assume that u has a Gamma distribution
[5]: u ∼ F (u) = Gamma(u|shape = a, scale = θ). The marginal hazard ratio h(t|x) can
be computed as follows:

h(t|x) =
f(t|x)

F(t|x)

=

∫
U f(t|x, u)dF (u)∫
U F(t|x, u)dF (u)

=

∫
U h0(t)eβxu exp(−ueβx

∫ t
0 h0(t)dt)dF (u)∫

U exp(−ueβx
∫ t

0 h0(t)dt)dF (u)

=h0(t)eβx
∫
U u

a exp(−(Λ(t)eβx + 1
θ )u) du∫

U u
a−1 exp(−(Λ(t)eβx + 1

θ )u) du

=h0(t)eβx
Γ(a+ 1)

Γ(a)

1

Λ(t)eβx + 1
θ

=h0(t)eβx+ln a−ln( 1
θ

+Λ(t)eβx),

(15)

where Λ(t) =
∫ t

0 h0(t)dt. Suppose x ∈ {0, 1} is a binary variable, then by comparing
Equation 14 and Equation 15 we have:

β∗ = β + ln
1 + θΛ(t)

1 + θΛ(t) exp(β)
.

Since most of the diseases have a low incidence rate in the population and the genetic risk
sizes are relatively small, we can assume both Λ(t) and β to be small too. This leads to an
approximation for β∗:

β∗ ≈ β(1− θΛ(t)), (16)

which indicates that as age increases, we tend to increasingly underestimate the true risk.
To account for the frailty effect in the clustering of curves, we change the intercept base in
Equation 1 to be (1 − θΛ(t)), and set the degrees of freedom of the model to be 1, which
will infer a latent curve with an age dependency computed from the frailty model. The
likelihood is then computed by plugging in the latent curve in Equation 4.

2.1.2 Inferring frailty parameters from the population incidence rate

We describe an approach to fitting a parametric distribution F (u)) for frailty, with the
constraint that the expectation, E[u], equals one [5]. We use u to represent the disease



hazard heterogeneity, and assume that the baseline risk h0(t) increases monotonically for
each individual. The net impact of frailty is to cause individuals with larger frailty u
to acquire the disease earlier, causing the incidence over the population to bend or even
decrease for older age groups. We can fit a parametric hazard model with frailty to empirical
incidence rates over age by assuming following parametric form of h0(t) and F (u):

h(t|u) = u · γtk

u ∼ G(shape = a, scale = θ) s.t. E[u] = 1, var[u] = θ.

Here we adopted a polynomial baseline hazard which represents the multi-stage nature of
disease and a Gamma distribution for F (u) [5]. We then compute the survival function:

F(t) =

∫
U

exp(−u
∫ t

0
γskds)dF (u)

=

∫
U

exp(−uγt
k+1

k + 1
)

1
θa

Γ(a)
e−

u
θ ua−1du

=
1

(1 + θγ t
k+1

k+1 )a
.

(17)

Considering E[u] = aθ = 1, the hazard over the population is then computed as:

h(t) = −F
′(t)

F(t)
=

γtk

1 + θγ t
k+1

k+1

.

We then computed the empirical hazard rate ĥ(t) from age 45 to age 70 in the UK Biobank
cohort and subtracted the intercept to match the parametric form. The disease incidence
after 70 years old is low and its analysis is complicated by competing health related events,
giving an empirical hazard rate rate in the population that drops rapidly to zero. Therefore,
we decided to only fit the model until age 70. The parameter k, b, γ is then computed
through the following least squares optimization:

argmink,b,γ
∑
t

(ĥ(t)− h(t))2

.
Examples of the fitted hazard rates using the frailty model are shown in S2 Fig, we

then plug the fitted values k, b, γ into Equation 16 to obtain the frailty correction term.
We can then fit a genetic profile with frailty, as described in the S1 Supplemental Methods.

2.2 Dependent unobserved effects: GxE and GxG interactions

Here, we show how interactions can induce the decreasing profile of genetic risk that we
observe. Interactions between genetic risk factor and other risk factors, either observed



or unobserved, can be modeled as an individual-level risk effect that is centered on the
population level marginal effect size. Intuitively, if a risk allele affects individuals differently
(because of the interactions), those individuals with the higher risk will tend to get the
disease earlier, while those with lower risk will tend to have a later onset. When estimating
risk effects at a particular age, we are essentially estimating the effect size from individuals
whose disease onset is within that age group. Thus, we observe the decreasing risk over
age.

To illustrate how such interactions can lead to a decreasing effect size (over age) for
genetic risk factors, we consider a proportional hazard model with a single covariate. Fol-
lowing the model specification in Section 2.1, we use β∗ to represent the marginal effect
size under a mis-specified model:

h(t) = h0(t) exp(β∗x), (18)

where h0(t) is a positive baseline hazard and x is the covariate. Assuming the effect size β
interacts with the environment or other genetic factors, we further assume that the effect
size for each individual is generated from a positive defined probability distribution:

β ∼ G(β).

The survival function F(t) can be computed by integrating out β.

F(t) =

∫
β∈G
F(t, β)

=

∫
β∈G

exp(−eβx ∗
∫ t

0
h0(x)dx)

=

∫
β∈G

exp(−eβxΛ(t)).

(19)

As in Section 2.1, we use Λ(t) =
∫ t

0 h0(x)dx. Assuming continuity in Λ(t) and G(β), such
that Leibniz’s rule can be applied, we obtain the analytical form for the hazard rate:

h(t) = −F
′(t)

F(t)

= −
∫
β∈G h0(t)eβx exp(−eβxΛ(t))∫

β∈G exp(−eβxΛ(t))

= h0(t) ·
∫
β∈G e

βx exp(−eβxΛ(t))∫
β∈G exp(−eβxΛ(t))

.

(20)

We first discuss the initial condition when t→ 0:

lim
t→0

h(t) = lim
t→0

h0(t)

∫
β∈G

eβx = lim
t→0

h0(t)EG [eβx]



Under these conditions, the estimation of the marginal effect size limt→0 β
∗ equals the

expectation of β under the distribution G.

lim
t→0

β∗ =
ln(EG [eβx])

x
.

Comparing Equation 18 and 20, we find:

exp(β∗x) =

∫
β∈G e

βx exp(−eβxΛ(t))∫
β∈G exp(−eβxΛ(t))

. (21)

Since we have specified the baseline hazard rate h0(t) > 0, we have Λ(t) increasing mono-
tonically with t. Therefore, we can take the derivative of Equation 21 with respect to Λ(t)
to analyse the gradient of β∗ at time t:

∂ exp(β∗x)

∂Λ(t)
=− 1

(
∫
β∈G exp(−eβxΛ(t)))2

·

[
−
( ∫

β∈G
(eβx)2 exp(−eβxΛ(t)) ∗

∫
β∈G

exp(−eβxΛ(t))
)
+

( ∫
β∈G

eβx exp(−eβxΛ(t))
)2]

< 0,

(22)

Where we make use of the Cauchy-Schwarz inequality, as

eβx exp(−1

2
eβxΛ(t)) > 0, exp(−1

2
eβxΛ(t)) > 0.

. Comparing Equations 18, 20, 21, and 22, we conclude that the estimated marginal effect
size β∗ will be underestimated as t increases. This result could be extended to a general
case of almost any probability distribution for G(β). Many different scenario could be fitted
into this framework, all of which will lead to a decreasing genetic risk profile with age.
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