Drug repurposing for COVID-19 using computational screening: Is Fostamatinib/ R406 a potential candidate? : Supplementary Document

Sovan Saha^{a, +}, Anup Kumar Halder^{b,c, +}, Soumyendu Sekhar Bandyopadhyay^{c,d}, Piyali Chatterjee^e, Mita Nasipuri^c, Debdas Bose^f, Subhadip Basu^{c,*}

^a Department of Computer Science & Engineering, Institute of Engineering & Management, Salt Lake Electronics Complex, Kolkata –700091, West Bengal, India.

^b Department of Computer Science & Engineering, University of Engineering & Management, Kolkata 700156, West Bengal, India.

^c Department of Computer Science & Engineering, Jadavpur University, Jadavpur, Kolkata, West Bengal 700032, India.

^d Department of Computer Science & Engineering, School of Engineering and Technology, Adamas University, Kolkata 700126, West Bengal, India.

^e Department of Computer Science & Engineering, Netaji Subhash Engineering College, Garia, Kolkata, West Bengal 700152, India.

> ^fInstitute of Hematology and Transfusion Medicine, Medical College Hospital, Kolkata, 700073, India

⁺These authors have equal contributions, both shared 1st authorship

*Corresponding author

Corresponding Author's email: subhadip.basu@jadavpuruniversity.in

Corresponding Author's contact: +91-9674354573

Basic Terminologies

- 1. **Protein-Protein Interaction Network (PPIN):** When one protein interacts with another protein, it forms a network-like structure known as PPIN. Generally, it is portrayed as a graph where proteins are represented as nodes, and their corresponding connecting edges represent their interactions. Mathematically, PPIN can be highlighted as a graph G_{nv} , which consists of vertices v (nodes) connected by edges e (links). Thus, $G_{nv} = (v, e)$ [1].
- 2. Level-1 and Level-2 proteins: In a PPIN, level-1 proteins of a node are those proteins that are in direct connection with that node, i.e., its immediate neighbors, whereas level-2 proteins are those proteins that are indirectly connected with level-1 proteins of that node, i.e., its indirect neighbors [1].
- 3. **Spreader nodes and spreader edges:** The viral infection gets mediated from one part of the PPIN to another through spreader nodes and edges [2]. Generally, in disease-specific PPIN models, at least two entities are involved: pathogen/Bait and host/Prey [3]. In this research work, SARS-CoV takes the role of the former while human the latter one. Viral proteins of SARS-CoV tend to target their corresponding interaction with human proteins, which target its next level of proteins. So, the establishment of interactions between SARS-CoV and human occurs through connected nodes and edges of PPIN. But mostly, these viral proteins try to interact more with the central/hub proteins rather than the other proteins [2]. Thus, proper identification of central nodes (i.e., spreader nodes) is required. It is also confirmed that the interaction is not possible without the edges connecting two spreader nodes. Thus, these connecting edges are called spreader edges.
- 4. **Spreadability index:** The spreadability index of node *i* [4] is defined as the ability of node *i* to mediate a viral infection in a PPIN. Three important network terminologies are involved in the spreadability index. They are 1) Edge ratio [5] 2) Neighborhood diversity [5] 3) Node Weight [6]. Mathematically it can be defined as:

Spreadability_index (i) = (Edge ratio (i) × neighborhood_diversity (i)) + Node weight (w_i)

Nodes having a high spreadability index are termed as spreader nodes, i.e., if the viral proteins establish interactions with these nodes, then the viral infection can be mediated to a more significant number of nodes in a much short amount of time compared to the other nodes in PPIN.

- 5. **MolDock Score:** MolDock is considered to be a new heuristic search algorithm. It combines differential evolution with a cavity prediction algorithm. The docking scoring function of MolDock is an extension of the piecewise linear potential (PLP). It includes new hydrogen bonding and electrostatic terms. As a result, MolDock has a very high docking accuracy for the identification of ligand-binding modes [7].
- 6. **ReRank Score:** The re-rank score is a linear combination of E-inter (steric, Van der Waals, hydrogen bonding, electrostatic) between the protein and the ligand and E-intra. (torsion, sp2-sp2, hydrogen bonding, Van der Waals, electrostatic) of the ligand weighted by pre-defined coefficients. The re-ranking procedure is adequate for identifying high-quality binding modes in place of more advanced scoring schemes [7].

Significance of choosing loss of smell as a major Covid-19 symptom

Several health symptoms like cough, fever, breathing difficulty, loss of smell etc., are studied in the proposed research work as highlighted in section 2.3 in the main manuscript. However, "loss of smell" is given higher preference in comparison to the other symptoms due to the following reason: 1) According to a correspondence published on April 15, 2020, in The Lancet Infectious Diseases [8], it was highlighted by the authors that though the reason of losing smell by COVID-19 patients was not discovered yet, their initial inspection suggests that loss of smell "manifests either early in the disease process or in patients with mild or no constitutional symptoms." 2) Another correspondence published on June 04, 2020, in The Lancet [9], stated that "after quantifying the sensitivity, specificity, positive predicted value, and negative predicted value of fever, cough, fever or cough, and loss of smell in 76 260 users of the COVID Symptom Study app who underwent the SARS-CoV-2 test (13 863 testing positive; 62 397 testing negative), they found that the predictive ability of loss of smell and taste to be higher than fever or persistent cough, which is in line with their previous finding that loss of smell and taste was the strongest predictor of having the virus [10]. Moreover, they found that the median duration of anosmia symptoms was 5 days, whereas the median duration of fever was only 2 days."

SL. No.	Journal/Article name	Involved drugs	Report type	Drug Categorization	Results/Outcome	
	The Use of Anti-	Glucocorticoids		Anti-malarial		
	Inflammatory Drugs in the Treatment of People With	IL-6 antagonist		Anti-maranai	Confirmation of the short-	
1	Severe Coronavirus Disease 2019 (COVID-19):	JAK inhibitors	Clinical		term efficacy of HCQ in the treatment of	
	The Perspectives of Clinical Immunologists From China [11]	Chloroquine (CQ)/ Hydroxychloroq uine (HCQ)		Anti- inflammatory	COVID-19	
	Hydroxychloroquine and azithromycin as a treatment of COVID-19:	HCQ		Anti-viral	A combination of the two is effective in the	
² results o non-rando	results of an open-label non-randomized clinical trial [12]	Azithromycin	Clinical	Anti- inflammatory	extermination of coronavirus.	
3	Lianhuaqingwen exerts anti-viral and anti- inflammatory activity against novel coronavirus (SARS-CoV-2) [13]	Lianhuaqingwen (LH)	Laboratory test	Traditional Chinese Medicine	LH hinders the replication of SARS-COV-2	
	Hydroxychloroquine, a less toxic derivative of		In vitro	Anti-malarial	HCQ can effectively stop	
4	chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. [14]	HCQ	Cytotoxicity and antiviral	Anti- inflammatory	the infection of SARS- CoV-2 <i>in vitro</i> .	
	Aminoquinolines Against Coronavirus Disease 2019	HCQ		Anti-malarial	Though both HCQ and CQ	
5	(COVID-19): Chloroquine or Hydroxychloroquine [15]	CQ Other medicinal agents	Opinion paper	Anti-viral	are beneficial, HCQ is safer in comparison to CQ	
6	Experimental Treatment with Favipiravir for COVID-19: An Open- Label Control Study [16]	Favipiravir (FPV)	Clinical	Anti-viral	FPV performs a faster clearance of viral infection with a better chance in chest imaging.	
7	TH17 responses in cytokine storm of COVID-	Janus kinase 2 (JAK2)	<i>In vitro</i> study	Anti- inflammatory	JAK2 inhibitor Fedratinib can prevent the	

Table S1. List of significant research articles involving potential recommended drugs for COVID-19

	19: An emerging target of JAK2 inhibitor Fedratinib [17]	Fedratinib			deteriorating outcomes of TH17 associated cytokine storms in COVID-19.	
0	In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for	HCQ	In vitro	A /* 1 * 1		
8	the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [18]	CQ	study	Anti-malarial	Inhibits COVID-19.	
	Coronavirus Disease 2019	Lopinavir	Case study		Recovery symptoms noted	
9	(COVID-19) Pneumonia in a Hemodialysis Patient [19]	Ritonavir	on Hemodialys is Patient	Anti-viral	though the combination of the drugs needs more testing.	
	Repurposing of clinically approved drugs for treatment of coronavirus	Cepharanthine	Cell culture and	Anti- inflammatory		
10	disease 2019 in a 2019-	Selamectin	pangolin	antineoplastic	Reduction of cytopathic effects in cell culture.	
	novel coronavirus (2019- nCoV) related coronavirus model. [20]	Mefloquine	coronavirus modelling	anti-parasitic	cheets in een culture.	
11	TraditionalChineseMedicineforCOVID-19Treatment	Qingfei paidu decoction	Case study	Traditional Chinese Medicine	Control COVID-19.	
	COVID-19: combining antiviral and anti-	Baricitinib Fedratinib		Anti-	Favourable in COVID-19	
12	inflammatory treatments [22]	Ruxolitinib	In silico	inflammatory	treatment.	
13	The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. [23]	Remdesivir	In vitro study	Anti-viral	High effectiveness of remdesivir against RNA viruses in cell-based assays.	
14	Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. [24]	CRISPR/Cas13d strategy	In vitro test	Other treatment/drugs	Capable of RNA virus treatment	
	Therapeutic options for the	Remdesivir Umifenovir				
15	2019 novel coronavirus	Oseltamivir	Opinion	Anti-viral	Biocontainment capability against covid-19.	
	(2019-nCoV) [25]	ASC09F Other inhibitors				
16	Inhibitors of RAS Might Be a Good Choice for the Therapy of COVID-19 Pneumonia [26]	Renin- Angiotensin System (RAS) inhibitors	Opinion	Other treatment/drugs	ACEI and AT1R inhibitors could be used in patients with COVID-19 pneumonia to reduce the pulmonary inflammatory response and mortality.	
	Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019	Lopinavir				
	in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID- 19 Pneumonia Monitored by Quantitative RT-PCR. [27]	RitonavirA	Clinical	Anti-viral	Combat COVID-19 harmful effect.	
18	Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China [28]	Angiotensin- converting enzyme 2	Opinion	Other treatment/drugs	Potentiality of ACE2-Fc to act as the neutralizing antibody which can be used for COVID-19 treatment.	

		Remdesivir		Anti-viral		
		Ribavirin				
	Remdesivir and	Penciclovir				
10	chloroquine effectively	Nitazoxanide	In vitro		Drugs proved to be	
19	inhibit the recently	Nafamostat	study	Anti-malarial	effective with Remdesivir	
	emerged novel coronavirus	Remdesivir	,		and chloroquine.	
	(2019-nCoV) in vitro. [29]	Favipiravir				
		Chloroquine				
	Clinical characteristics	Lopinavir/				
	and therapeutic procedure	Ritonavir				
	for four cases with 2019			Anti-viral		
20	novel coronavirus	Arbidol	Case		Effective treatment was	
20	pneumonia receiving		study		observed.	
	combined Chinese and	Charlen - L'ada		Anti-malarial		
	Western medicine	Shufeng Jiedu		Anti-malariai		
	treatment. [30]		Case			
	First case of 2019 novel		Study on a			
21	coronavirus in the United	Remdesivir	single	Anti-viral	The patient got recovered.	
	States. [31]		patient			
	One highly suspected case		putterit			
	of novel coronavirus		G			
	pneumonia treated by	Traditional	Case	Tra 1:4: 1		
22	Integrated Traditional	Chinese	Study on a single patient	Traditional Chinese Medicine	The patient got recovered.	
	Chinese and Western	Medicine				
	medicine and nucleic acid					
	analysis. [32]					
	COVID-19 in patients with		Case		Darunavir was proved to	
23	HIV: clinical case series	Darunavir	Study on a	Anti-viral	be ineffective against	
	[33]		single		COVID-19 due to low	
			patient		affinity.	
	Favipiravir:					
	Pharmacokinetics and				Recommendation for use	
24	Concerns About Clinical	Favipiravir	Opinion	Anti-viral	in COVID-19. Needs more	
	Trials for 2019-nCoV				clinical confirmation.	
	Infection [34]					
	Remdesivir for COVID-19:		Case		Effective against	
25	challenges of	Remdesivir	study	Anti-viral	Effective against COVID-19.	
	underpowered studies [35]		study		COVID-1).	

Table S2. Few statistical analyses of genes in COVID-19 symptoms, risk factors and clinical outcome

Categorizations	Symptoms	Total no. of genes
	Cough	270
COVID 10 [26]	Fever	1743
COVID-19 symptoms [36]	Dyspnea	323
	Pneumonia	1416
	Heart Disease	1964
	Kidney Disease	2131
Dials factors [26]	Lung Disease	1018
Risk factors [36]	Diabetes	5078
	Hypertension	1573
	Cancer	4747
Clinical Outcomes	Lymphopenia	241
(Mild & Moderate Case) [36]	Pulmonary infiltrate	43
	Leukocytosis	179
	Neutrophilia	152
Clinical Outcomes (Severa Case)	Sepsis	1506
Clinical Outcomes (Severe Case)	Kidney injury	228
[36]	Coagulopathy	21
	Thrombocytopenia	774
	Multiple organ failure	25

Lovel 1 Key Cones	Approved/Approved & Investigational Drug					
Level-1 Key Genes	Drug	Drug ID				
PPIA	Cyclosporine	DB00091				
FFIA	Copper	DB09130				
ACE2	Hydroxychloroquine	DB01611				
ACE2	Chloroquine	DB00608				
EIF3F	No approved	drug				
UBC	No approved	drug				
PRKDC	Caffeine	DB00201				
CDK2	Bosutinib	DB06616				
CDK1	Fostamatinib	DB12010				
	D-alpha-Tocopherol acetate	DB14002				
Γ	Midostaurin	DB06595				
	alpha-Tocopherol succinate	DB14001				
PRKCA	Phosphatidyl serine	DB00144				
	Vitamin E	DB00163				
Γ	Tamoxifen	DB00675				
	Ingenol mebutate	DB05013				
AKT1	Arsenic trioxide DB01169					
TRAF6	No approved drug					

Table S3. Mapping of FDA drug of DrugBank with selected key genes of level-1

Table S4. Mapping of FDA drug of DrugBank with selected key genes of level-2

Level 2 Very Corner	Approved/Approved & Inv	vestigational Drug
Level-2 Key Genes	Drug	Drug ID
	Aluminium phosphate	DB14517
	Dimercaprol	DB06782
	Copper	DB09130
	Florbetapir (18F)	DB09149
	Flutemetamol (18F)	DB09151
	Deferoxamine	DB00746
APP	Zinc	DB01593
	Zinc sulfate, unspecified form	DB14548
	Florbetaben (18F)	DB09148
	Zinc acetate	DB14487
	Aluminum acetate	DB14518
	Aluminium	DB01370
	Zinc chloride	DB14533
ELAVL1	No approved	drug
	Entrectinib	DB11986
	Fostamatinib	DB12010
	Cenegermin	DB13926
NTRK1	Amitriptyline	DB00321
	Imatinib	DB00619
	Regorafenib	DB08896
	Larotrectinib	DB14723
XPO1	Selinexor	DB11942
MEOX2	No approved	drug
GRB2	Pegademase	DB00061
	Lidocaine	DB00281
	Gefitinib	DB00317
	Fostamatinib	DB12010
	Zanubrutinib	DB15035
EGFR	Cetuximab	DB00002
	Erlotinib	DB00530
	Vandetanib	DB05294
	Osimertinib	DB09330
	Dacomitinib	DB11963
	Brigatinib	DB12267

	Foreskin keratinocyte (neonatal)	DB10772		
	Trastuzumab	DB00072		
	Lapatinib	DB01259		
	Panitumumab	DB01269		
	Afatinib	DB08916		
	Necitumumab	DB09559		
	Neratinib	DB11828		
	Zinc acetate	DB14487		
	Zinc chloride	DB14533		
TP53	Acetylsalicylic acid	DB00945		
	Zinc	DB01593		
	Zinc sulfate, unspecified form	DB14548		
BAG3	No approved drug			
NXF1	NXF1 No approved drug			

 Table S5. Mapping of FDA drug of DrugBank with selected key genes of level-2 associated with "loss of smell" symptom of COVID19

Genes in L2 n-CoV	Target drugs	DrugId	Approved
DCC 2	N/A	N/A	N/A
EIF4G1	N/A	N/A	N/A
GIGYF2	N/A	N/A	N/A
HTRA2	N/A	N/A	N/A
LRRK2	Fostamatinib	DB12010	TRUE
PARK7	Copper	DB09130	TRUE
PINK1	N/A	N/A	N/A
PODXL	N/A	N/A	N/A
PTPN11	Dodecyltrimethylammonium	DB02779	FALSE
SNCA	Copper	DB09130	TRUE
UCHL1	Phenethyl Isothiocyanate	DB12695	FALSE
VPS35	N/A	N/A	N/A

Drugs	Drug ID	Moldock score	Rerank Score	Best docked poses	H-bond interaction details best pose	H-bond interaction best pose
Fostamatinib	DB12010	-140.495	-102.464		Gen 110 Gen 110 Gen 110 Free 130 Free 130 Free 230 Free 230	
Remdesivir	DB14761	-134.19	-56.312			
Hydroxychloroquine	DB01611	-106.266	-69.417			

Table S6. Best dock poses for potential COVID19 drugs and interactions of hydrogen bonds with respect to 6LU7

Favipiravir	DB12466	-62.855	-55.371	(Thr 111) (Asp 295) (Gin 110) (Thr 292)	
Darunavir	DB01264	-128.798	-80.316	Gen 110 Thr 111	
Azithromycin	DB00207	-86.77	29.53	Arg 105	

Lopinavir	DB01601	-83.09	-30.19	Thr 292 Gin 110	
Ritonavir	DB00503	-110.36	103.40	Gin 127	

Prodrugs	Drug id	Active promoieties	Moldoc k Score	Rerank Score	Best docked poses	H-bond interaction details best pose	H-bond interaction best pose
Fostamatinib	DB12010	R406 (using 3FQS) [37, 38]	-110.11	-93.83		Gin 107 Gin 107 Gin 107 Gin 222	
Remdesivir	DB14761	GS-441524	-93.37	-76.07		Thr 292 Thr 111 Ger 153 Ger 153 (Aep 153)	
Favipiravir	DB12466	RdRp complex (6K32) [39, 40]	-50.72	-45.20		Thr 111 Gin 110 Ser 158	

Table S7. Best dock poses for active metabolites/promoieties of potential COVID-19 Prodrugs with respect to 6LU7

References

[1] S. Saha, P. Chatterjee, S. Basu, M. Nasipuri, D. Plewczynski, Funpred 3.0: Improved protein function prediction using protein interaction network, PeerJ 2019(5) (2019) e6830-e6830.

[2] A.F. Brito, J.W. Pinney, Protein–Protein Interactions in Virus–Host Systems, Frontiers in Microbiology 8(1557) (2017).

[3] S. Saha, K. Sengupta, P. Chatterjee, S. Basu, M. Nasipuri, Analysis of protein targets in pathogen-host interaction in infectious diseases: a case study on Plasmodium falciparum and Homo sapiens interaction network, Briefings in Functional Genomics 17(6) (2017) 441-450.

[4] S. Saha, P. Chatterjee, S. Basu, M. Nasipuri, Detection of spreader nodes and ranking of interacting edges in Human-SARS-CoV protein interaction network, bioRxiv (2020) 2020.04.12.038216-2020.04.12.038216.

[5] N. Samadi, A. Bouyer, Identifying influential spreaders based on edge ratio and neighborhood diversity measures in complex networks, Computing 101(8) (2019) 1147-1175.

[6] S. Wang, F. Wu, Detecting overlapping protein complexes in PPI networks based on robustness, Proteome Science 11(Suppl 1) (2013) 1-8.

[7] R. Thomsen, M.H. Christensen, MolDock: a new technique for high-accuracy molecular docking, Journal of Medicinal Chemistry (0022-2623 (Print)).

[8] M.S. Xydakis, P. Dehgani-Mobaraki, E.H. Holbrook, U.W. Geisthoff, C. Bauer, C. Hautefort, P. Herman, G.T. Manley, D.M. Lyon, C. Hopkins, Smell and taste dysfunction in patients with COVID-19, The Lancet Infectious Diseases 20(9) (2020) 1015-1016.

[9] C. Menni, C.H. Sudre, C.J. Steves, S. Ourselin, T.D. Spector, Quantifying additional COVID-19 symptoms will save lives, The Lancet 395(10241) (2020) e107-e108.

[10] C. Menni, A.M. Valdes, M.B. Freidin, C.H. Sudre, L.H. Nguyen, D.A. Drew, S. Ganesh, T. Varsavsky, M.J. Cardoso, J.S. El-Sayed Moustafa, A. Visconti, P. Hysi, R.C.E. Bowyer, M. Mangino, M. Falchi, J. Wolf, S. Ourselin, A.T. Chan, C.J. Steves, T.D. Spector, Real-time tracking of self-reported symptoms to predict potential COVID-19, Nature Medicine 26(7) (2020) 1037-1040.

[11] W. Zhang, Y. Zhao, F. Zhang, Q. Wang, T. Li, Z. Liu, J. Wang, Y. Qin, X. Zhang, X. Yan, X. Zeng, S. Zhang, The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China, Clinical immunology (Orlando, Fla.) 214 (2020).

[12] P. Gautret, J.-C. Lagier, P. Parola, V.T. Hoang, L. Meddeb, M. Mailhe, B. Doudier, J. Courjon, V. Giordanengo, V.E. Vieira, H.T. Dupont, S. Honoré, P. Colson, E. Chabrière, B. La Scola, J.-M. Rolain, P. Brouqui, D. Raoult, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, International Journal of Antimicrobial Agents (2020) 105949-105949.

[13] L. Runfeng, H. Yunlong, H. Jicheng, P. Weiqi, M. Qinhai, S. Yongxia, L. Chufang, Z. Jin, J. Zhenhua, J. Haiming, Z. Kui, H. Shuxiang, D. Jun, L. Xiaobo, H. Xiaotao, W. Lin, Z. Nanshan, Y. Zifeng, Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2), Pharmacological Research 156 (2020) 104761-104761.

[14] J. Liu, R. Cao, M. Xu, X. Wang, H. Zhang, H. Hu, Y. Li, Z. Hu, W. Zhong, M. Wang, Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discovery 6 (2020) 1-4.

[15] Z. Sahraei, M. Shabani, S. Shokouhi, A. Saffaei, Aminoquinolines against coronavirus disease 2019 (COVID-19): chloroquine or hydroxychloroquine, International Journal of Antimicrobial Agents 55(4) (2020).

[16] Q. Cai, M. Yang, D. Liu, J. Chen, D. Shu, J. Xia, X. Liao, Y. Gu, Q. Cai, Y. Yang, C. Shen, X. Li, L. Peng, D. Huang, J. Zhang, S. Zhang, F. Wang, J. Liu, L. Chen, S. Chen, Z. Wang, Z. Zhang, R. Cao, W. Zhong, Y. Liu, L. Liu, Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study, Engineering (2020).

[17] D. Wu, X.O. Yang, TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib, Journal of Microbiology, Immunology and Infection (2020).

[18] X. Yao, F. Ye, M. Zhang, C. Cui, B. Huang, P. Niu, L. Zhao, E. Dong, C. Song, S. Zhan, R. Lu, H. Li, D. Liu, D. Clinical, D. Liu, W. Tan, D. Liu, D. Clinical, In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Main point : Hydroxychloroquine was found to be more potent than chloroquine at inhibiting SARS-CoV-2 in vit, Clinical Infectious Diseases 2 (2020) 1-25.

[19] B. Tang, S. Li, Y. Xiong, M. Tian, J. Yu, L. Xu, L. Zhang, Z. Li, J. Ma, F. Wen, Z. Feng, X. Liang, W. Shi, S. Liu, Coronavirus Disease 2019 (COVID-19) Pneumonia in a Hemodialysis Patient, Kidney Medicine (2020).
[20] H.H. Fan, L.Q. Wang, W.L. Liu, X.P. An, Z.D. Liu, X.Q. He, L.H. Song, Y.G. Tong, Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus (2019-nCoV) related coronavirus model, Chinese medical journal 133(9) (2020).

[21] J.I. Ren, A.H. Zhang, X.J. Wang, Traditional Chinese medicine for COVID-19 treatment, Pharmacological research 155 (2020).

[22] J. Stebbing, A. Phelan, I. Griffin, C. Tucker, O. Oechsle, D. Smith, P. Richardson, COVID-19: combining antiviral and anti-inflammatory treatments, The Lancet. Infectious diseases, 20 (2020) 400-402.

[23] C.J. Gordon, E.P. Tchesnokov, J.Y. Feng, D.P. Porter, M. Götte, The antiviral compound remdesivir potently inhibits RNAdependent RNA polymerase from Middle East respiratory syndrome coronavirus, The Journal of biological chemistry 295 (2020) 4773-4779.

[24] T.M. Nguyen, Y. Zhang, P.P. Pandolfi, Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses, Cell Research 30 (2020) 189-190.

[25] G. Li, E. De Clercq, Therapeutic options for the 2019 novel coronavirus (2019-nCoV), Nature Reviews Drug Discovery 19 (2020) 149-150.

[26] S. Ml, Y. Jm, S. Yp, S. Gh, Inhibitors of RAS Might Be a Good Choice for the Therapy of COVID-19 Pneumonia, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases 43(0) (2020).

[27] J. Lim, S. Jeon, H.Y. Shin, M.J. Kim, Y.M. Seong, W.J. Lee, K.W. Choe, Y.M. Kang, B. Lee, S.J. Park, Case of the index patient who caused tertiary transmission of coronavirus disease 2019 in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 pneumonia monitored by quantitative RT-PCR, Journal of Korean Medical Science 35(6) (2020).

[28] R.L. Kruse, Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China [version 2; peer review: 2 approved], F1000Research 9 (2020).

[29] M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Research 30 (2020) 269-271.

[30] Z. Wang, X. Chen, Y. Lu, F. Chen, W. Zhang, Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment, BioScience Trends 14(1) (2020).

[31] M.L. Holshue, C. DeBolt, S. Lindquist, K.H. Lofy, J. Wiesman, H. Bruce, C. Spitters, K. Ericson, S. Wilkerson, A. Tural, G. Diaz, A. Cohn, L. Fox, A. Patel, S.I. Gerber, L. Kim, S. Tong, X. Lu, S. Lindstrom, M.A. Pallansch, W.C. Weldon, H.M. Biggs, T.M. Uyeki, S.K. Pillai, First Case of 2019 Novel Coronavirus in the United States, New England Journal of Medicine 382(10) (2020) 929-936.

[32] H.L. Zhang, Y.X. Zhu, One highly suspected case of novel coronavirus pneumonia treated by Integrated Traditional Chinese and Western medicine and nucleic acid analysis, Tianjin Journal of Traditional Chinese Medicine. (2020).

[33] J.L. Blanco, J. Ambrosioni, F. Garcia, E. Martínez, A. Soriano, J. Mallolas, J.M. Miro, COVID-19 in patients with HIV: clinical case series, The Lancet 7 (2020) e314-e316.

[34] Y.X. Du, X.P. Chen, Favipiravir: Pharmacokinetics and Concerns About Clinical Trials for 2019-nCoV Infection, Clinical Pharmacology & Therapeutics (2020) cpt.1844-cpt.1844.

[35] I.T. Lancet, Y. Wang, Remdesivir for COVID-19 : challenges of underpowered studies, The Lancet 6736(20) (2020) 31022-31023.

[36] S. Kumar, COVID-19: A drug repurposing and biomarker identification by using comprehensive genedisease associations through protein-protein interaction network analysis, Preprints (March) (2020).

[37] RCSB PDB - 3FQS: Crystal structure of spleen tyrosine kinase complexed with R406, 2021. https://www.rcsb.org/structure/3fqs. (Accessed 28-02-2021 Access 2021).

[38] A.G. Villaseñor, R. Kondru, H. Ho, S. Wang, E. Papp, D. Shaw, J.W. Barnett, M.F. Browner, A. Kuglstatter, Structural Insights for Design of Potent Spleen Tyrosine Kinase Inhibitors from Crystallographic Analysis of Three Inhibitor Complexes, Chemical Biology & Drug Design 73(4) (2009) 466-470.

[39] RCSB PDB - 6K32: RdRp complex, 2021. <u>https://www.rcsb.org/structure/6K32</u>. (Accessed 28-02-2021 Access 2021).

[40] X. Li, L. Wang, X. Wang, W. Chen, T. Yang, J. Song, H. Liu, L. Cheng, Structure of RdRps Within a Transcribing dsRNA Virus Provides Insights Into the Mechanisms of RNA Synthesis, Journal of Molecular Biology 432(2) (2020) 358-366.