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Figure 1: Comparison of ribosome structures before and after 1 µs of equilibration.
The original cryo-EM structure (PDB code: 3JBU) is shown in pink, whereas the
post-equilibration structure is colored by molecule, with SecM in orange, tRNA in
green, L4 in yellow, L22 in grey, and L34 in red. No alignment was performed, as the
outer core of the ribosome is restrained in space.
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Figure 2: Identifying states based on force profiles. A) For all 30 50 pN/ns trajectory,
linear segments were identified as described in the Methods. The distribution of the
slopes of these segments is plotted. B) Same as A, but for all 30 5 pN/ns trajectories.
C) Same as A, but for all 5 0.5 pN/ns trajectories. D) The median of the slopes of
the linear segments plotted in A were subtracted from each force profile, generating
flattened profiles as in Fig. 2A. The distribution of flattened force profiles is plotted.
Superimposed is the results of fitting the distribution to the sum of five Gaussians.
Each Gaussian is plotted separately. E) Same as D, but for 5 pN/ns trajectories. This
panel is identical to Fig. 2B F) Same as D, but for 0.5 pN/ns trajectories.

Figure 3: Conformational changes are quantified for each amino acid in terms of the
distance between the φ and ψ dihedral angles of two states. Data are from 0.5 pN/ns
force loading trajectories. Data from 5 and 50 pN/ns trajectories are plotted in Fig.
3
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Figure 4: Representative conformations of the nascent chain and tRNA are displayed
for states 3 and 4. Moving between the states requires significant disruption of the
base-stacking interactions in the tRNA.

Figure 5: Simulations of SecM were run with the force on the N-terminus ramped at
50 pN/ns, with addition of a harmonic restraint on the alpha carbon of Gly165. The
applied pulling force on the N-terminus is plotted in black and the amount of force
that is acting on Gly165 is plotted in blue. The figure is equivalent to Fig. 3B, except
Gly165 was fixed and used to measure forces at the C-terminus rather than Arg163.
Regardless of the precise residue in the C-terminus at which force is measured, no
forces above the background are observed until state 3 is entered.
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Figure 6: A snapshot of SecM in the exit tunnel taken from state 2, with SecM colored
in orange. The ribosome atoms are colored according to the RMSD between frames
from state 2 compared with state 3. The RMSD is calculated using all frames from
all 5 pN/ns trajectories. Most of the exit tunnel undergoes minimal conformational
changes, with the exception of A751 and a few amino acid side chains.
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Figure 7: The tension along the VemP backbone relative to the tension during equili-
bration is averaged over all frames with helix 1 either intact or unfolded, then plotted
per amino acid. The unfolding of helix 1 is measured by the straightness of Thr135 at
the C-terminus of helix 1. When the dihedral angle is within 30 degrees of straight for
more than 3 ns, the helix is defined as unfolded. While helix 1 is intact, the pulling
force does not induce additional tension in helix 2, implying the propagation of force
up nascent chain is inhibited. Only once helix 1 is unfolded does helix 2 experience
increased tension.
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Figure 8: The order in which the dihedral angles of the first four amino acids in VemP
helix 1 straightens is determined for each trajectory and the distribution of these
orders is plotted. The expected order if the amino acids straightened consecutively
is indicated with the red dashed line. For example, Arg125 is most often the 4th
amino acid in helix 1 to straighten, despite being the 2nd amino acid from the helix
N-terminus. All four dihedral angles show significant heterogeneity in the order of
straightening across different trajectories.
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Estimation of energy landscape

Given a number of repeated and stochastic trajectories of force-induced disruption
of a bond, it is possible to estimate the free energy landscape of that bond. This
estimation is typically performed by assuming one-dimensional double-well energy
landscape that the system explores through thermal fluctuations, just as in Kramer’s
theory of chemical reaction rates[1]. The applied force distorts the underlying free
energy landscape of the bond, acting to reduce the height of the energy barrier and
increase the rate of crossing. Bond rupture occurs when the free energy barrier is
crossed.

Numerous theories have been developed that provide strategies to estimate an
energy landscape given different pulling protocols and force regimes [2, 3, 4]. In this
work, we use the framework developed by Bullerjahn, Strum, and Kroy [5] which
has the advantage of being directly applicable to the force loading protocol used in
our molecular dynamics simulations, namely the application of external force via a
stiff and rapidly moving harmonic potential. Their theory predicts the distribution of
observed rupture forces given the parameters describing the energy landscape and the
pulling protocol, i.e. p(F |x‡,∆G‡, D; ksv). x‡ is the distance from the minimum of
the bound state to the location of the barrier maximum, ∆G is the height of the free
energy barrier, D is the diffusion constant, and ksv is the force loading rate used in
simulation. ksv is chosen when setting up the simulation, while the remaining three
parameters need to be estimated. This is done by finding the value of the parameters
that maximizes p(F |x‡,∆G‡, D; ksv). The functional form for this probability is
provided in [5], and assumes the underlying free energy landscape to be harmonic
with a cusp at the barrier maximum.

Optimizing this probability to find x‡, ∆G‡, and D simultaneously produced un-
physical results with estimates of ∆G‡ and D both orders of magnitude higher than
expected for all transitions. The poor estimates are likely due to insufficient samples
of stall-breaking events. Instead of performing a fully flexible fit, we first estimate the
spring constant of the underlying harmonic energy landscape kl, which fixes the ratio

of x‡2 to ∆G‡ as kl = 2∆G‡

x‡2 . The estimate for the spring constant of the underlying
landscape is obtained by first expressing the effective potential as the sum of the
underlying landscape plus the moving harmonic trap, i.e.

U(x, t) = klx
2 + ks(x− vst)

2

where ks is the spring constant of the applied harmonic potential and vs is the speed
at which the applied potential is moved. Because the harmonic trap is moving with
time, the energy minimum of the effective potential moves as well, specifically

xmin(t) =
ksvst

ks + kl

As the system tracks the moving minimum of the effective potential, the expected
value of the applied force at a given time varies as:

E[F (t)] = ks (vt− xmin(t)) = ksvt

(
1− ks

ks + kl

)
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The applied force is an experimental observable, and all the other parameters
besides kl are known. This means that the spring constant of the underlying constant
can be simply estimated from the slope of the applied force as a function of time:

kl =
ks

1− Ḟ /ksv

where Ḟ is the slope of the applied force. The estimation of Ḟ is described in
Methods and results are shown in Fig. S1. The estimate of kl is informative because
the spring constants of the underlying landscape and the applied potential are of a
similar scale. This is not typically the case for optical tweezer experiments, for which
kl � ks and therefore E[F (t)] ≈ ksvt, which has no kl dependence.

Estimating kl removes one free parameter from the optimization problem, as x‡

and ∆G‡ are linked through kl = 2∆G‡

x‡2 . Still, fitting the observed forces at rupture

to p(F |x‡,∆G‡, D; ksv) produced unphysical parameters. To further reduce the com-
plexity of the fit, x‡ is fit to the median of the rupture forces while D is held constant.
By repeating this fit over each of the three pulling forces and finding the value of D
which leads to the best agreement between predictions of x‡, both x‡ and D can be
estimated (Fig. S9).

Figure 9: Each plot shows the optimum value for x‡ given a fixed value for the diffusion
constant. Each plot corresponds to the barrier for exiting a given state, and the fits
are performed separately for trajectories of different force ramping rates. The dashed
lines indicate the value of the diffusion constant that produces the best agreement
between estimates of x‡ across all three pulling speeds and states.

The above methodology allows fitting of a single-barrier landscape, however the the
pathway of force-induced SecM restart clearly exhibits multiple, sequential barriers.
To fit barriers beyond the first, it is necessary to find the location of the minimum of
the state before the barrier of interest. This is done by assuming that the distance
from the previous minimum to the barrier is the same as the distance from the barrier
to the subsequent minimum (Fig. S 10). This significant and simplistic assumption is
necessary because our trajectories do not exhibit the rebinding events that would be
necessary to gain more detailed information on the shape of the landscape between a
barrier and the subsequent minimum. Despite the simplicity of the assumption, we
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Table 1: Optimal parameters that describe that energy barrier for leaving states 1-3.
Confidence intervals were determined by bootstrapping over trajectories.

x‡(Å) x‡ 90% CI ∆G‡(kBT ) ∆G‡ 90% CI k0(s−1) k0 90% CI

State 1 1.0
0.83

4.2
3.3

1.0× 106 6.3× 104

1.3 8.1 2.3× 106

State 2 2.5
2.2

27
21

4.3× 10−4 6.7× 10−25

3.9 76 8.9× 10−2

State 3 5.3
5.0

120
110

2.8× 10−45 2.7× 10−61

6.0 160 1.6× 10−40

do not observe any states rupturing before their predicted minima, which would be
clear indicator of a poor choice of landscape. Having established a method to identify
the minima of a state given the parameters estimated for the previous state, we can
iteratively estimate the landscape of each state (Fig. S9, Table S1).

The estimated parameters clearly indicate that the barrier between state 1 and
2 cannot be the sole barrier before restart of translation, as it can be overcome by
thermal motion with a rate of over 104 s−1. The crossing of the barrier between states
3 and 4 cannot be required for restart of translation because the crossing time is far
too slow at physiological forces, e.g. Bell’s law predicts that with a force of 10 pN the

barrier will be crossed with a rate k0e
Fx‡/kBT = 10−44s−1. Note that both barriers

are still implausibly relevant even at the ends of the 90% confidence intervals.
By contrast, the barrier between state 2 to 3 has a more physiologically sensible

rate constant of 4.3 × 10−4 which drops to 5.6 × 10−3 with a 10 pN force, assuming
Bell’s law. Although the confidence intervals on these estimates are wide, this barrier
appears to be substantial yet still physiologically surmountable. In combination with
the fact that crossing this barrier allows the force to affect the conformation at the
C-terminus of SecM, the barrier between state 2 and 3 is likely to be the key barrier
to force induced restart of translation.

9



Figure 10: Estimated potential energy landscape for force-induced SecM restart. Each
potential energy well is colored by the state it corresponds to.
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Table 2: Enumeration of each set of simulation discussed in this work, providing the
number of independent replicas and the simulation time per replica

Description # Replicas Time per replica (ns)
SecM Equilibration 1 1000
SecM 50 pN/ns pull 30 78
SecM 5 pN/ns pull 30 600

SecM 0.5 pN/ns pull 5 6000
SecM Fixed Arg26 50 pN/ns pull 25 78
SecM Fixed Arg26 5 pN/ns pull 10 600
SecM Fixed Gly28 50 pN/ns pull 10 78

Mutant equilibration (per mutant) 1 250
Mutant 50 pN/ns pull (per mutant) 20 78

VemP Equilibration 1 500
VemP 35 pN/ns pull 30 200

SI Movie 1

A representative trajectory is shown with a pulling rate of 5 pN/ns and a total time of
600 ns. The ribosome is colored in blue, with the fully flexible region colored in dark
blue and the restrained outer shell in cyan. The nascent chain is colored in orange,
and the tRNA in red. Ribosomal atoms nearer to the viewer than the nascent chain
are removed. As portions of the nascent chain straighten in response to the applied
force, the fully straightened portions are colored in white. This region grows from
the N-terminus to the C-terminus in distinct steps, corresponding to the five states
characterized in Figs. 2 and 3.
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