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Membrane Shape - Analytic Approximation

For a spherical cap, where the entire crowded domain forms a single protrusion, the energy change going from a flat to
a budding membrane, is written as:
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(
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with

Ac = 2πR2
s (1− cosα) . (S2)

Inserting Eq. S2 into Eq. S1, the energy difference is expressed as
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Minimizing Eq. S3 with respect to Rs, we find
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8πκ

Cind
. (S4)

The height of the spherical cap is written as:

L = Rs (1− cosα) ,

=
AcCind

2π

1

1 + σAc

8πκ

. (S5)

Inserting Eq. S4 into Eq. S3 the energy of the minimal energy shape becomes:

∆E = −2κAcC
2
ind

1 + σAc

8πκ

. (S6)

If the membrane shape is described by a cylinder with radius 1/(2Cind), then the energy and the protrusion height are
obtained directly as

∆E = −2κAcC
2
ind + σAc − σπ
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and
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π
. (S8)
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Based on Eqs. S6, S7 the Cind-range for which a cylindrical shape is energetically favorable compared to a spherical cap
shape, is given by
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, (S9)

which leads to

AcC
2
ind >

(
2π +

σAc

4κ

)
+

√(
2π +

σAc

4κ
− π

4

)2

− π2

16
. (S10)

Since 8π + σAc/κ > π, we approximate Eq. S10 as
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2
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)
. (S11)

The induced spontaneous curvature for which a cylindrical shape becomes energetically favorable is

Cind >

√
4π + σAc

2κ

Ac
. (S12)

To understand why the transition point between a flat and a tubular membrane shape depends on the size of the
crowded domain, we examine in more detail the size dependence of the two energy contributions, bending energy and
tension. We start with a completely flat membrane where the bending energy is given by Ebend = 2κAcC

2
ind. Thus

Ebend is extensive and proportional to Ac. If we now remodel the membrane into a cylinder with radius 1/(2Cind), the
bending energy approximately vanishes. The membrane energy is dominated by the tension, where the energy difference

between a flat and a cylindrical shape is written as σ
(
Ac − π

4C2
ind

)
. Hence, the tension term is not simply proportional

to Ac. In a hypothetical scenario where the membrane is transformed into a cylinder with vanishing radius, the tension
energy would be given by σAc. The transition from a flat to a cylindrical shape, in this case given by the condition
2κAcC

2
ind > σAc, would depend only on the ratio κC2

ind/σ. However, a cylinder with vanishing radius is impeded by
the divergent bending energy. In other words, while the bending energy of a flat membrane can be approximated as
being extensive in Ac, the tension term is not, since it contains an additional term proportional to C−2ind. Consequently,

the transition point between a flat and a cylindrical shape, determined by 2κAcC
2
ind > σ

(
Ac − π

4C2
ind

)
, depends on both

κC2
ind/σ and AcC

2
ind.

Energy Functional

The energy functional (Eq. 1 in the main text) in the arc length parameterization reads
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with the Heaviside function Θ. The coordinates along the protein surface, which are shifted by rp relative to the
membrane surface, are indicated with an asterisk. If the protein radius rp is small compared to the inverse of the
membrane curvature, the coordinates along the protein surface (dashed line in Fig. 1c in the main text) are given by

R∗ = R + rp sinψ and Z∗ = Z + rp cosψ. An arc length element dS∗ is then written as dS∗ =

√
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2
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and the area element along the protein surface is given by dA∗ = dS∗R∗ =
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)
. The protein density ρ along the membrane surface is equivalent to ρ = dNp/dA, with Np

the number of proteins. Since the number of proteins is conserved, we write the protein density along the shifted surface

as ρ∗ = dNp/dA
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Next, we rewrite the lateral pressure p, by first expressing p in a virial expansion p(ρ∗) =
∑∞
i=1 kBTνi(ρ

∗)i and then
performing a Taylor expansion around rpC1 = rpC2 = 0, with C1 = dψ/dS and C2 = sinψ/R, up to second order in C1
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and C2,
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Inserting Eq. S14 into Eq. S13 and introducing the non-dimensional variables c1 =
√
AcC1, c2 =

√
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Θ(Ac −A), and σ̃ = σAc/κ, we can now write the total membrane energy, Eq. S13, as
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where we also used the non-dimensional variables defined in the main text. For a fixed protein density the energy, Eq.S15,
can be expressed, in terms of an induced spontaneous curvature Cind, an effective increase of the bending rigidity ∆κ,
an effective Gaussian bending rigidity κg, and a constant γ as
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with Cind =

rp
2κ

(
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)
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ind(ρ).

All four quantities Cind, ∆κ, κg, and γ are constant within the crowded domain. We note that γ has units of a surface
tension, where γ combined the lateral pressure and a term that compensates the C2

ind term in the Helfrich energy. A
crowding induced membrane tension was also described by Linden et al., who discussed the interplay between the induced
membrane tension and the opening and closing of protein channels [1]. The contribution from γ depends solely on the
protein density ρ, but not on the membrane shape. Hence, γAc/πκ does not influence the energy minimizing shape since
the size of the crowded domain, Ac, is fixed. In contrast, the overall membrane area A is not constrained, which means
that σ̃ cannot be neglected in the energy minimization.
If the protein size is much smaller than the size of the crowded domain, rp �

√
Ac, we can omit all terms of order r2p/Ac

in Eq. S15, which simplifies the energy to
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with Cind =
rp
2κ

(
ρ
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)

and γ = 2p(ρ)− 4κC2
ind(ρ).

We note that Eq. S17 is equivalent to Eq. 2 in the main text.

Shape Equations

In the previous section, we have shown that the membrane energy in non-dimensional variables is written as:

E
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[
(ψ′ +
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r
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with cind =
√
AcCindΘ(Ac − A). The derivative with respect to s is indicated by a prime, d/ds = ()′. We use the

Euler-Lagrange formalism to derive the shape equations that minimize Eq. S18. L, a function similar to the Lagrangian
in the Euler-Lagrange formalism, is given by

L = r

[
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r
− 2cind)2 + 2σ̃

]
+ λ1(r′ − cosψ) + λ22πrΘ(1− a), (S19)

S3



with the Lagrange multiplier function λ1 enforcing the relation between r and ψ. The Lagrange multiplier λ2 maintains
a fixed area of the crowded domain.
Based on d

ds
∂L
∂ψ′ = ∂L

∂ψ , we find
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λ1
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1
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(
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)
− cind. (S20)

And d
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We define H in analogy to a Hamiltonian, with
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+ r′
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We note that H is not an energy, but rather an auxiliary function that we use to derive the shape equations. The explicit
and implicit dependence of H and L on the scaled arc length s are related as dH/ds = −∂L/∂s. Since L does not depend
on s explicitly, H is constant. The upper integration boundary in Eq. S18 is not fixed. The functional variation of L
then leads to H = 0 [2, 3, 4, 5, 6]. Eq. S22 is now written as
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Inserting Eq. S23 into Eq. S21 we find
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Next, we define the auxiliary function u := λ1/(2r), so that
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)
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)
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Eq. S20 and S25, together with the geometric relations between r, z, ψ, and a, lead to the shape equations (Eqs. 7 in
the main text):

dr

ds
= cosψ, (S26a)

dz

ds
= − sinψ, (S26b)

dψ
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= 2h− sinψ

r
+ 2cind, (S26c)

dh
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=
u

2
sinψ, (S26d)

du
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=

4h

r

[
h− sinψ

r
+ cind

]
, (S26e)

da

ds
= 2πr. (S26f)

Boundary Conditions and Numerical Implementation

The boundary conditions of the membrane shape at the center line (Eq. 8 in the main text) are given by r = 0, a = 0
and ψ = 0. At the outer boundary, in the protein-free region (cind = 0), the membrane transitions to a flat shape with
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ψ(s→∞) = 0 and a vanishing mean curvature (h(s→∞) = 0). Hence, H as given in Eq. S22, at the outer boundary
simplifies to

H(s→∞) = 2r(u− σ̃), (S27)

which leads to the boundary condition for u, with u(s→∞) = σ̃ = σAc/κ.
Since Eq. S26 has a singularity for r = 0, we have to shift the inner boundary from s = 0 to s = τ in the numerical

calculations, where we set τ = 0.0001. We denote the scaled mean curvature at the center line as 2c0. According to
ψ(τ) =

∫ τ
0
ψ′ds ≈

∫ τ
0
c0ds, we obtain the new boundary condition ψ(τ) ≈ c0τ . Analogously, from r′ = cosψ ≈ 1− ψ2/2

and a′ = 2πr we find the new boundary conditions r(τ) ≈ τ and a(τ) ≈ πτ2. In addition, we denote the value of u at
s = τ as u0. Evaluating H (Eq. S22) at s = τ , we find the following relation between u0 and the Langrange multiplier λ2:
u0 = λ2π+σ+2c2ind−2c0cind. In summary, we obtain the following boundary conditions for the numerical calculations:

r(τ) = τ, (S28a)

z(send) = 0, (S28b)

ψ(τ) = c0τ, ψ(send) = 0, (S28c)

h(τ) = c0 − cind, (S28d)

u(τ) = u0, u(send) =
σAc

κ
, (S28e)

a(τ) = πτ2, (S28f)

with send the total arc length, which we set to values between send = 2.0 and send = 6.0, while ensuring that a change
in send has no influence on the shape of the protein crowded domain.

In the numerical implementation, we set c0 to a fixed value and vary u0 such that the outer boundary condition
ψ(send) = 0 is satisfied. From u(send) = σAc/κ, we then obtain the scaled membrane tension that corresponds to c0.
Subsequently, from a systematic variation of c0 and u0 we determine the solution of the shape equation for any given
value of the scaled membrane tension.

Transmembrane Pressure

Above, we derived the shape equations for a protrusion budding from an infinite flat membrane. We now turn to a
protrusion budding from a spherical vesicle and discuss the limit where the two models are equivalent. In particular, the
following derivation shows that the transmembrane pressure does not influence the shape equations in the limit of large
vesicles.
The energy of a closed membrane shape reads:

E = 2π
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[
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which is similar to Eq. S13, but we here consider the transmembrane pressure Π and the integration does not extend to
infinity. The upper integration limit Send (see Fig. S1) itself depends on the membrane shape. In dimensionless units
the energy becomes:
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]
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with Π̃ = ΠA
3/2
c /κ. The corresponding L and H then read:
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Following the same arguments as in the derivation of Eq. S26, we find H(s) = 0. Based on the Euler-Lagrange equations(
d
ds

∂L
∂ψ′ = ∂L

∂ψ ,
d
ds

∂L
∂r′ = ∂L

∂r

)
we find the following shape equations:

dr

ds
= cosψ, (S33a)

dz

ds
= − sinψ, (S33b)

dψ

ds
= 2h− sinψ

r
+ 2cind, (S33c)

dh
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2
sinψ − Π̃

4
r cosψ, (S33d)
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[
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r
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]
− Π̃

2
sinψ, (S33e)

da

ds
= 2πr. (S33f)

Far away from the budding region, the membrane shape transitions into a spherical shape with radius Rv (Fig. S1),

which implies ψ′ = sinψ/r = 1/rv, with rv = RvA
−1/2
c the scaled curvature radius of the vesicle. Hence, the mean

curvature h far away from the budding region is constant, which according to Eq. S33d means u = Π̃/2[sinψ/r]−1 cosψ.
Inserting these relations into Eq. S32, we find

Π̃ =
2σ̃

rv
. (S34)

If the protein crowded region is much smaller than the overall vesicle size (rv � 1), the scaled transmembrane pressure
(Eq. S34) becomes negligible and Eqs. S33 are equivalent to Eqs. S26.

Z

R

S

Send

RV

Figure S1: The protein crowded domain (blue) protrudes from an initially spherical vesicle (red). Far away from the crowded domain the
membrane shape transitions into a spherical shape with a curvature radius Rv.
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